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Complex Wavelet Bases, Steerability,
and the Marr-Like Pyramid

Dimitri Van De Ville Member, Michael Unser Fellow

Abstract— Our aim in this work is to tighten the link between
wavelets, some classical image-processing operators, and David
Marr’s theory of early vision. The cornerstone of our approach
is a new complex wavelet basis that behaves like a smoothed
version of the Gradient-Laplace operator. Starting from first
principles, we show that a single-generator wavelet can be defined
analytically and that it yields a semi-orthogonal complex basis of
L2(R2), irrespective of the dilation matrix used. We also provide
an efficient FFT-based filterbank implementation.

We then propose a slightly redundant version of the transform
that is nearly translation-invariant and that is optimized for
better steerability (Gaussian-like smoothing kernel). We call it
the Marr-like wavelet pyramid because it essentially replicates
the processing steps in Marr’s theory of early vision. We use it
to derive a primal wavelet sketch which is a compact description
of the image by a multiscale, subsampled edge map. Finally, we
provide an efficient iterative algorithm for the reconstruction of
an image from its primal wavelet sketch.

Index Terms— wavelet design, steerable filters, feature extrac-
tion, primal sketch

MULTISCALE transforms are powerful tools for sig-
nal and image processing, computer vision, and for

modeling biological vision. A prominent example is the 1-D
wavelet transform, which acts as a multiscale version of
an N th-order derivative operator, where N is the number
of vanishing moments of the wavelet [1]. Its extension to
multiple dimensions and to 2-D, in particular, is typically
achieved by forming tensor-product basis functions. However,
such separable wavelets are not well matched to the singu-
larities occuring in images such as lines and edges which
can be arbitrarily oriented and even curved. Consequently,
there has been a considerable research effort in develop-
ing alternative multiscale transforms that are better tuned to
the geometry of natural images. Notable examples of these
“geometrical x-lets” include biologically-inspired 2-D Gabor
transforms [2], wedgelets [3], ridgelets [4], [5], curvelets [6],
[7], contourlets [8], bandelets [9], [10], directional wavelet
frames [11], and directionlets [12]. A second category of
methods takes advantage of the spectral separation into pos-
itive and negative frequency bands that can be achieved via
a 1-D complex wavelet transform whose real and imaginary
parts are in quadrature [13], [14], or, equivalently, via the
Hilbert transform [15]. Proper combinations of positive and
negative frequency bands in multiple dimensions then allow
one to separate various orientations (e.g., six for the dual-tree
wavelet transform [13], [16] or even more, using its M -band
extension [17]). The last important class of multiscale trans-
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forms are 2-D directional filterbanks [18] and, most notably,
steerable pyramids [19]–[21], which combine the structure
of the Laplacian pyramid [22] with steerable filters [23],
[24]. The derivation of the filters is not based on wavelets,
but rather obtained through a numerical optimization process.
Special constraints are imposed to ensure that the frequency
response of the filters is essentially polar-separable and that the
decomposition is simple to invert numerically (approximate
tight-frame property).

In this paper, we present an alternative approach based on
an explicit analytical and spline-based formulation of complex
wavelet bases of L2(R2). Special care is given to design basis
functions that best match the properties of the visual system,
in accordance with Marr’s theory of early vision [25]. To mo-
tivate our construction, we specify a number of properties that
are highly desirable and that are fulfilled, sometimes implicitly,
by a number of classical image-processing algorithms:

• Invariance. We aim at invariance with respect to elemen-
tary geometric operations such as translation, scaling, and
rotation. Traditional wavelet transforms only satisfy these
properties to some extent, since a trade-off needs to be
found between the conciseness of the representation—its
(non-)redundancy—and the degree of scale and transla-
tion invariance. Rotation invariance is probably the most
challenging property for wavelets, especially if one insists
on having basis functions (non-redundant representation).

• Feature detection. Image differentials are valuable clues
for feature detection. Most classical edge-detection algo-
rithms are gradient- or Laplacian-based, and, sometimes,
a combination of both. A wavelet transform that behaves
like a multiscale version of these fundamental operators
could therefore be of great use for image analysis.

• Steerability (a.k.a. rotation covariance). This property is
satisfied when all rotated versions of a basis function
remain in the span of the wavelet at that particular
scale [23]. It is one of the keys for efficient directional
analysis and, more importantly, for designing image-
processing algorithms that are truly rotation-invariant.

• Localization. A wavelet can always be expressed as
a multiple-order derivative of some smoothing func-
tion. The smoothing function should be isotropic, for
good steerability, and achieve a good trade-off between
space and frequency localization. Clearly, the Gaussian
would be an ideal choice, but it is incompatible with
the wavelets being orthogonal between different scales.
Accordingly, one should consider biorthogonal or even
mildly-redundant designs to alleviate this limitation.

• Simplicity. Multidimensional wavelet transforms typically
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lead to multi-channel data structures because the informa-
tion at a particular scale is encoded using several basis
functions. From a practical point of view, it would be
advantageous if there was a unique analysis wavelet so
that the coefficients at a given scale could be stored into
an image array, similar to what is done in the quincunx
case. This would reinforce the (joint) interpretation of the
wavelet coefficients and facilitate to the development of
in-band processing algorithms.

Design Method for Complex Wavelet Basis

Unlike most traditional wavelet designs, our starting point
is not filterbanks, but rather the selection of an appropriate
differential operator. We shall see that imposing three fun-
damental properties (translation and scale invariance, rotation
covariance) narrows down the choice to a family of com-
plex operators which involve some fractional iterate of the
Laplacian as well as the complex-gradient operator (j∂/∂x1+
∂/∂x2). Clearly, this operator gives access to derivatives
in any direction by suitable multiplication with a complex
number of unit modulus.

We then adopt a spline-like construction where the approx-
imation space is spanned by the integer-shifts of the Green
function of the operator. Since these Green’s functions are not
in L2, we need to search for a localized basis function. For a
pure Laplacian operator (associated to the rotation-invariance
property), we can select the polyharmonic B-splines that are
described in [26]–[28]. Incorporating the complex gradient
leads to complex polyharmonic B-splines, which have first
been explored in [29].

The next step is to specify wavelet functions that span the
orthogonal complement between approximation spaces at two
subsequent scales. Remarkably, the inter-scale orthogonality
constraint automatically enforces the operator-like behavior
of the wavelet, a mechanism that is well understood for the
1-D case [30] and for (real-valued) polyharmonic B-spline
wavelets [28]. While the present construction heavily relies on
the theoretical results of Forster et al. [29], it goes an important
step further by providing a solution to the wavelet-design
problem for arbitrary subsampling lattices. Remarkably, our
new operator-like wavelet is independent upon the choice of
the dilation matrix and it always generates a semi-orthogonal
basis of L2(R2) through simple shifts and dilations.

If the input signal is real, then the fact of expanding it on
complex-valued wavelets results into a redundancy factor of 2.

Marr-Like Wavelet Pyramid and Primal Sketch

The conceptual motivation for the present construction was
to provide a mathematical interpretation of Marr’s theory for
the early stage of vision [31]. Based on similarities with the
primate’s visual system, Marr proposed to analyze the zero-
crossings of the image filtered with a Laplacian-of-Gaussian
(LoG). He then determined the orientation of the zero-crossing
segments and used these to define a “raw primal sketch”,
which, he argued, could serve as input to higher-level visual
processing. We can transpose those ideas to the present setup

by combining both operations (LoG and orientation of zero-
crossings) into a composite complex gradient-Laplace opera-
tor, for which our wavelets provide a multiscale version. The
corresponding wavelet-domain local maxima give the intensity
(by their magnitude) and the orientation (by their phase) of
an edge at a particular scale. We coin the term “Marr-like
wavelet pyramid” for this decomposition, and we introduce
the “wavelet primal sketch” as a compact multiscale version
of the raw primal sketch (see Fig. 15 (a)). Specifically, we
propose a scheme to obtain a contour-based description of
images and complement it with an algorithm that reconstructs
a high-quality approximation of the original image.

Organization of the Paper

We present our design method in Sect. I, which starts with
the identification of a class of rotation-covariant differential
operator; this yields a complex wavelet basis of L2(R2). The
main technical contributions there are the specification of
the operator-like wavelets and the proof that they generate
Riesz bases for arbitrary subsampling configurations. Next,
we introduce the Marr-like wavelet pyramid and the wavelet
primal sketch representation in Sect. II. In Sect. III, we
illustrate essential features of the Marr-like wavelet pyramid
such as the angular selectivity and the importance of phase
and magnitude. We also propose an algorithm to efficiently
reconstruct an image from its wavelet primal sketch. Finally,
in Sect. IV, we conclude the paper with a discussion and
comparison of the Marr-like wavelet pyramid against other
state-of-the-art multiscale decompositions.

I. OPERATOR-LIKE WAVELETS

A. Operator Design Principle

Our design starts with the specification of a suitable dif-
ferential operator L that satisfies some desirable invariance
properties. This operator admits a Green function ρ(x) =
ρ(x1, x2) such that L{ρ} = δ. The integer shifts of ρ can be
used to define a sequence of embedded approximation spaces

Vi = span
{
ρ(2ix− k)

}
k∈Z2 ∩ L2(R2). (1)

For most differentiation operators, the Green’s functions ρ are
not in L2, which makes the representation (1) not practical for
implementation purposes. Yet, it is quite useful conceptually
because it focuses on the essentials (see [32] for a discussion
of the 1-D case which brings out an interesting connection
with fractals). We defer to subsection I-C the specification of
a valid scaling function of V0.

Let us now consider the function ψ = L?{φ}, where L?

is the adjoint operator of L and φ is a smoothing function.
The orthogonality condition between ψ at position x0 and the
function space V0 can then be expressed as

〈ψ(· − x0), ρ(· − k)〉 = 〈L?{φ}(· − x0), ρ(· − k)〉
= 〈φ,L{ρ(· − k + x0)}〉
= 〈φ, δ(· − k + x0)〉
= φ(k− x0) = 0, (2)
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and can be enforced by a judicious choice of φ and x0. Using
this fundamental property together with the fact that ψ is in the
finer approximation space V1, we want to specify the wavelet
subspace

W0 = span{ψ(x− k/2)}k∈Z2\2Z2 , (3)

which is spanned by a single wavelet function at all positions
(k/2)\Z2. We are going to show that this is possible; in
other words, that φ can be selected such that ψ is a Riesz-
basis generator of W0, while maintaining the orthogonality
condition with respect to V0. The wavelet spaces can then be
embedded as

Wi = span{2iψ(2ix− k/2)}k∈Z2\2Z2 , (4)

where the wavelet function ψ = L?{φ} behaves as a multiscale
version of L.

This strategy was used implicitly in one of the earliest
constructions of 1-D polynomial spline wavelets [33]. In
that case, the operator L was chosen to be dN/dxN , for
which the causal Green’s function is the one-sided monomial
(x)N−1

+ /(N − 1)!. The smoothing function φ corresponded to
the spline interpolant of order 2N dilated by a factor 1/2. It
can be readily verified that (2) holds in that case for x0 = 1/2.

The above derivation provides us with an important insight
on how the approximation space and wavelet space are tightly
linked together through the operator and its Green’s function.
In the sequel, we clarify the different ingredients—operator,
scaling function, and smoothing function—that lead to the
Marr-like wavelet pyramid, the wavelet primal sketch, and its
corresponding reconstruction algorithm.

B. A Suitable Operator for Image Processing

In classical (separable) wavelet theory, the underlying op-
erator L is necessarily an N -th order derivative, where N
corresponds to the number of vanishing moments. Here, we
are interested in selecting a true 2-D operator that has invari-
ance properties that are better suited for image processing.
Specifically, we have identified the following three desirable
properties:

Definition 1 (Translation Invariance): The operator L is
said to be translation-invariant when it commutes with the
shift operator: L{s(· − x0)}(x) = L{s(·)}(x− x0).

Definition 2 (Scale Invariance): The operator L is said to
be scale-invariant when it commutes (up to a constant)
with the dilation operator; that is, when L{s(T ·)}(x) =
cT L{s(·)}(Tx) where cT is an appropriate real-valued con-
stant.

Definition 3 (Rotation Covariance): The operator L is said
to be rotation-covariant when it commutes with the rotation
operator up to a rotation-encoding constant with unit mag-
nitude; specifically, when L{s(Rθ·)}(x) = cθL{s(·)}(Rθx)
where cθ ∈ C with |cθ| = 1.

Since we assume L to be a convolution operator, which
requires linearity and translation invariance, we can charac-
terize it by its Fourier transform L̂(ωωω) = L̂(ω1, ω2) in the
distributional sense. We have that L{s}(x) ↔ L̂(ωωω)ŝ(ωωω),
where ŝ(ωωω) =

∫
R2 s(x)e−jωωωT xdx is the Fourier transform

of s(x). Here, we want to further restrict ourselves to the
class of scale-invariant and rotation-covariant operators. This
imposes strong constraints on the form of L̂(ωωω) as specified
by Lemma 1, and, ultimately, leads to the identification of
the class of complex operators in Theorem 1, which are a
combination of the Laplace operator and complex gradient
or Wirtinger-type operators [34]. The proofs are given in
Appendices A and B, respectively.

Lemma 1: A scale-invariant and rotation-covariant convo-
lution operator L is necessarily γth-order scale invariant and
µth-order rotation-covariant. Its frequency response is such
that L̂(TRθωωω) = T γejµθL̂(ωωω) for any θ ∈ R and T > 0,
where γ ∈ R and µ ∈ Z.

Theorem 1 (Wirtinger-Laplace operator): The convolution
operator L is γth-order scale invariant and N th-order rotation
covariant if and only if its Fourier transform can be written
(up to some complex multiplicative factor) as

L̂(ωωω) = L̂γ,N (ωωω) = ||ωωω||γ−N (ω1 − jω2)N , (5)

where N is an arbitrary positive integer and γ ≥ N is real-
valued.

In the spatial domain, the Wirtinger-Laplace operator from
(5) corresponds to

Lγ,N = (−∆)
γ−N

2

(
−j ∂

∂x1
− ∂

∂x2

)N

, (6)

for which the Green’s function ρ is known to be

ργ,N (x1, x2) =


c1 ||x||γ−N−2 (x1 + ix2)N ,

for γ /∈ 2N,
c2 ||x||γ−N−2 (x1 + ix2)N (lnπ ||x||+ c3),

for γ ∈ 2N,

where c1, c2, c3 are some appropriate constants [29]. The novel
contribution here is to show that this class of operators is
complete with respect to the desired invariance properties.
Notice that, for γ = 3, N = 1, we obtain the complex gradient-
Laplace operator.

C. Complex Polyharmonic B-Splines

Definition 1 is not useful computationally because the
Green’s function ρ is not in L2. Therefore, we need to find
a localized basis function ϕ(x) =

∑
k v[k]ρ(x − k) that is a

Riesz-basis generator of V0, the space spanned by the integer
shifts of ρ. Our solution is somewhat different from the one
initially proposed in [29].

Definition 4 (Complex Polyharmonic B-Spline): The poly-
harmonic B-spline associated with the complex gradient-
Laplace operator Lγ,N , where the order γ is real-valued with
γ > 1 and N ∈ N, is defined via its Fourier transform

β̂γ,N (ωωω) =
Vγ,N (ejωωω)

||ωωω||γ−N (ω1 − jω2)N
=
Vγ,N (ejωωω)
L̂(ωωω)

. (7)

The numerator is the localization filter with polar represen-
tation Vγ,N (ejωωω) = Vγ(ejωωω) · ejθ(ωωω), where the modulus and
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phase are given by

Vγ(ejωωω) =
(

8
3

(
sin2

(ω1

2

)
+ sin2

(ω2

2

))
+

2
3

(
sin2

(
ω1 + ω2

2

)
+ sin2

(
ω1 − ω2

2

)))γ/2

,

θ(ωωω) = ∠(j[ω1]− j[ω2])N ,

and where [ω] stands for the unique ω in [−π, π[ such that
ω − [ω] = 2nπ for some integer n.

The amplitude term Vγ(ejωωω) makes the Fourier transform
well-behaved at ωωω = 0, where it “cancels” the zero of the
denominator exactly at the order γ. The pure phase term
ejθ(ωωω), on the other hand, is a 2π-periodic all-pass filter that
is specified to provide a zero-phase behavior in the whole
Nyquist band ωωω ∈ [−π, π[2.

The space-domain counterpart of (7) is the so-called Green’s
function localization formula, which yields the equivalent B-
spline definition

βγ,N (x) =
∑
k∈Z2

vγ,N [k]ργ,N (x− k). (8)

This construction is such that βγ,0 coincides with the
isotropic polyharmonic B-splines that were earlier introduced
by us and that are associated with the Laplacian operator
alone [28]. Moreover, our complex extension has the desirable
feature that

∣∣∣β̂γ,N

∣∣∣ = β̂γ,0, so that our new B-splines share the
same autocorrelation filter as the polyharmonic ones, with

Aγ(ejωωω) =
∑
k∈Z2

∣∣∣β̂γ(ωωω + 2πk)
∣∣∣2 . (9)

Another important function, also independent of N , is the
unique interpolant within the polyharmonic-spline space of
augmented order spanned by ρ(·) ∗ ρ(−·) or equivalently by
β2γ,0. It is such that φ2γ(k) = δk and its Fourier transform is
given by

φ̂2γ(ωωω) =

∣∣∣β̂γ(ωωω)
∣∣∣2

Aγ(ejωωω)
. (10)

Based on our earlier results [29], we can deduce that the
complex polyharmonic B-splines satisfy all the requirements
for generating a valid multiscale analysis of L2(R2) (see [1]):
• Their integer shifts form a Riesz basis of the signal space
V0 = spank∈Z2 {βγ,N (x− k)} ;

• They satisfy the partition-of-unity property
∑

k βγ,N (x−
k) = 1;

• They satisfy a scaling relation for any admissible sub-
sampling matrix D that consists of a rotation combined
with a dilation and |detD| ≥ 2. The scaling relation is
given in the frequency domain by

β̂γ,N (DTωωω) =
1

|detD|
H(ejωωω)β̂γ,N (ωωω), (11)

where H(ejωωω) is the scaling filter.
These complex polyharmonic B-splines can therefore be

used to construct wavelets that span the orthogonal comple-
ments Wi = Vi 	⊥ Vi−1 between the sequence of embedded
spaces Vi = span

{
βγ,N (Dix− n)

}
n∈Z2 .

D. Operator-Like Wavelets

Real-valued polyharmonic wavelets (i.e., N = 0) have
been proposed both for the quincunx subsampling matrix [28],
which corresponds to a two-channel design in 2-D, and for the
dyadic subsampling matrix [35], [36]. So far, complex poly-
harmonic spline wavelets have only been specified explicitly
for the simpler quincunx case [29], which corresponds to a
classical two-channel design with a single wavelet generator.

In this work, we propose a more general construction that
yields operator-like wavelets for any admissible subsampling
matrix D. Another remarkable feature of our approach is that
the wavelet spaces are generated using a single wavelet instead
of |det(D)| − 1 distinct ones as in classical designs (e.g.,
separable constructions). It is also important to mention that
our wavelets are uniquely defined in the sense that they do
not depend on the specific choice of the generator of the
approximation space, but only on the approximation space
itself. We define M = |det(D)| − 1 as the canonical number
of wavelets.

Definition 5 (Operator-Like Wavelets): The operator-like
wavelets that span the detail space W−1 are defined as

ψ
(n)
γ,N (D−1x) = (−∆)

γ−N
2

(
j
∂

∂x1
− ∂

∂x2

)N

{φ2γ} (x+en),

n = 1, . . . ,M, (12)

where φ̂2γ is specified by (10) and en is in the cosets C \ e0

of the subsampling matrix D, with e0 = (0, 0).
Our wavelet space is generated by a single function ψ(0)

γ,N =
ψγ,N that is spatially shifted on all coset positions en. There-
fore, we compactly denote the wavelet space Wi as

Wi = span{|det(D)|i/2
ψγ,N (Dix−D−1k)}k∈Z2\DZ2 ,

(13)
where the factor |det(D)|i/2 ensures a proper L2-
normalization.

Theorem 2 (Riesz-Basis Property): For γ > 1, the
operator-like wavelet ψγ,N generates a semi-orthogonal basis
of L2(R2) for any admissible subsampling matrix D. Their
construction is such that

1) The space Wi is contained in the finer approximation
space Vi+1;

2) The space Wi is orthogonal to the approximation space
Vi at the same scale;

3) The basis ψγ,N generates a Riesz basis of W0, and, by
rescaling, of all the spaces Wi.

Proof: To establish the first property, we rewrite the Fourier
counterpart of (12) as

ψ̂
(n)
γ,N (DTωωω)

= ||ωωω||
γ−N

2 (ω1 + jω2)N ejωωωT en
β̂?

γ,N (ωωω)β̂γ,N (ωωω)
Aγ(ejωωω)

=
V ?

γ,N (ejωωω)
Aγ(ejωωω)

ejωωωT en︸ ︷︷ ︸
W (n)(ejωωω)

β̂γ,N (ωωω), (14)

which shows that ψ(n)
γ,N (D−1x) ∈ W−1 can be expressed as a

linear combination of integer shifts of βγ,N (x−k). This also
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identifies the wavelet filter W (n)(ejωωω) that needs to be used
with the scaling function βγ,N .
To prove the second property, we rewrite the inner product
between a wavelet and the scaling function at scale i = 0 as〈

ψ
(n)
γ,N (·), βγ,N (·+ n)

〉
=

〈
L?

γ,N {φ2γ} (D ·+en −Dn), βγ,N (·)
〉

= 〈φ2γ(D ·+en −Dn)),Lγ,N {βγ,N} (·)〉. (15)

Applying the operator Lγ,N to βγ,N cancels the denominator
of (7) so that the only remaining term is the filter Vγ,N (ejωωω).
The corresponding space-domain expression is

Lγ,N {βγ,N} (x) =
∑
k∈Z2

vγ,N [k]δ(x− k), (16)

where vγ,N is the inverse Fourier transform of Vγ,N (ejωωω).
Therefore, the inner product further simplifies to∑

k∈Z2

vγ,N [k]φ2γ(Dk + en −Dn) = 0, (17)

which is zero since the interpolating function φ2γ is sampled
at non-zero integer positions only.

For the third property, we first introduce the elements of the
Gram matrix as

r(n1,n2)[k] =
〈
ψ

(n1)
γ,N (·), ψ(n2)

γ,N (·+ k)
〉
, (18)

which has the discrete Fourier transform R(n1,n2)(ejωωω). We
need to prove that the determinant of the corresponding M×M
Fourier matrix R(ejωωω) = [R(n1,n2)(ejωωω)]n1,n2 is bounded by
two positive constants 0 < A1 ≤ A2 <∞. The entries of this
matrix are expressed as (using πππ = (π, π))

R(n1,n2)(ejωωω)

=
∑
k∈Z2

ψ̂
(n1)?
γ,N (ωωω + 2πk)ψ̂(n2)

γ,N (ωωω + 2πk)

=
M∑

n=0

ej(ωωωT D−1+πeT
n )(en2−en1 )

∣∣∣Vγ,N (ej(D−T ωωω+eT
nπππ))

∣∣∣2
Aγ(ej(D−T ωωω+eT

nπππ))

=
M∑

n=0

ej(ωωωT D−1+πeT
n )(en2−en1 )

(∑
k

1

||D−Tωωω + eT
nπππ + 2πk||2γ

)−1

=
M∑

n=0

ej(ωωωT D−1+πeT
n )(en2−en1 )

∣∣∣∣D−Tωωω + eT
nπππ
∣∣∣∣2γ

1 +
∑

k6=0
||D−T ωωω+eT

nπππ||2γ

||D−T ωωω+eT
nπππ+2πk||2γ

. (19)

As R(n1,n2)(ejωωω) is 2π-period, we can restrict our analysis to
[−π, π[2. It is easy to see that (19) is upper-bounded because
the denominator and the numerator are trivially lower- and
upper-bounded, respectively. Consequently, the determinant of
R(ejωωω) is upper-bounded too. For the lower bound, we can use
the fact that det(R(ejωωω)) > 0 if the M “fiber” vectors [37]

v(n) =
(
ψ̂

(n)
γ,N (ωωω + 2πk)

)
k∈Z2

, n = 1, . . . ,M (20)

are linearly independent for any fixed ωωω. This can be verified
by checking that

M∑
n=1

λnv(n) = 0 (21)

requires λn = 0. Component-wise, we can rewrite (21) as
M∑

n=1

λn[v(n)]k =

ψ̂(0)(ωωω + 2πk)
M∑

n=1

λne
j(ωωω+2πk)T D−1en = 0,

which really reduces to M + 1 conditions to be fulfilled. We
get the same equation for all k = DT k′, k′ ∈ Z2, and M +
1 different ones can be identified for k = el + DT k′, l =
0, . . . ,M , so that

ψ̂(0)(ωωω + 2π(el + DT k))
M∑

n=1

λne
j(ωωω+2πel+2πDT k)T D−1en

= ψ̂(0)(ωωω + 2π(el + DT k))︸ ︷︷ ︸
cl

M∑
n=1

λn e
jωωωT D−1en︸ ︷︷ ︸

c′n

ej2πeT
l D−1en

= 0, (22)

where |c′n| = 1 and |cl| > 0, except for ωωω = 0, l = 0. It is
convenient to rewrite the system of linear equations as c0 0 0

0
. . . 0

0 0 cM


︸ ︷︷ ︸

(M+1)×(M+1)


1 . . . 1

ej2πeT
1 D−1e1 . . . ej2πeT

1 D−1eM

...
. . .

...
ej2πeT

MD−1e1 . . . ej2πeT
MD−1eM


︸ ︷︷ ︸

E:(M+1)×M c′1 0 0

0
. . . 0

0 0 c′M


︸ ︷︷ ︸

M×M

 λ1

...
λM

 = 0.

We identify the aliasing offsets with respect to D as wl =
2πD−T el. In the case ωωω = 0, we have that c0 = 0, which
removes the first equation, leaving us with the system c1 0 0

0
. . . 0

0 0 cM


︸ ︷︷ ︸

M×M

 ejwT
1 e1 . . . ejwT

1 eM

...
. . .

...
ejwT

Me1 . . . ejwT
MeM


︸ ︷︷ ︸

E:M×M c′1 0 0

0
. . . 0

0 0 c′M


︸ ︷︷ ︸

M×M

 λ1

...
λM

 = 0.

The null solution is the only one if E is full-rank, which is
true in general as the matrix E is a submatrix of the (M +
1) × (M + 1) generalized discrete Fourier-transform matrix
with respect to D [38]. Specifically, in the quincunx case, we
have that

D =
[

1 1
−1 1

]
, (23)
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leading to E = [−1], which is clearly full rank. In the dyadic
case, we have that

D =
[

2 0
0 2

]
, (24)

leading to

E =

 −1 1 −1
1 −1 −1
−1 −1 1

 (25)

which has full rank again as well.
For the case ωωω 6= 0, we need to add the first equation again

((22) for l = 0), which makes the system overdetermined. Due
to the previous result, E has still rank M and thus the only
solution is still λn = 0, n = 1, . . . ,M .

We use the term semi-orthogonality to indicate that the
wavelet is orthogonal to its dilations, but not to its translations.
The fact that we have a Riesz basis does also imply the
existence of an equivalent orthogonal basis but it is unlikely
to have a single generator, except, of course, for the quincunx
case where M = 1. It is also important to note that the
operator-like wavelet generator at scale i = 0 is essentially
independent upon D (up to a geometrical transformation) and
that it is not tied to any particular choice of scaling function. In
fact, it is completely determined by the operator alone, which
is a clear indication of its fundamental nature. The same can
also be said for the higher-order interpolant φ2γ appearing in
the formula which is uniquely tied to the function space, and
hence, to the operator.

Let us now review a few more properties.
Property 1 (Relationship Between Real and Imaginary Part):

The operator-like wavelets have the following π/2-rotation
property between their real and imaginary parts:

Re {ψγ,N (x1, x2)} = −Im {ψγ,N (x2, x1)} . (26)
Property 2 (Multiscale Operator Signal Analysis):

Analyzing a function f with operator-like wavelets results
into complex coefficients for which we have that〈
f, ψγ,N (Di · −k)

〉
=

(−∆)
γ−N

2

(
−j ∂

∂x1
− ∂

∂x2

)N {
f(·) ∗ φ2γ(Di·)

}
(· − k),

where φ2γ is a max-flat lowpass function such that

φ̂2γ(ωωω) = 1 +O(||ωωω||2γ). (27)

Moreover, as γ → ∞, we have that φ̂2γ(ωωω) → rect(ωωω)
(see [28]).

For the choice γ = 3, N = 1, we obtain the behavior of the
“pure” complex gradient-Laplace operator as[

Re
〈
f, ψ3,1(Di · −k)

〉
Im
〈
f, ψ3,1(Di · −k)

〉 ]
=

[
∂/∂x2

∂/∂x1

]
∆
{
f(·) ∗ φ2γ(Di·)

}
(· − k).

In Fig. 1, we show the real and imaginary parts of the oper-
ator wavelet in (a) and (b), respectively. In (c), we display the
linear combination cos(π/4)Re{ψγ,N}+sin(π/4)Im{ψγ,N},
which is the wavelet steered at π/4. However, the steerability
is not perfect since the smoothing function φ2γ is interpolating

and thus not isotropic. We show in Section III how this can
be fixed.

Property 3 (Analysis-Synthesis): The operator-like wavelet
signal analysis of a function f ∈ L2(R2) can be inverted using
the dual synthesis wavelets; specifically,

f(x) =
∑
i∈Z

∑
k∈Z2

M∑
n=1

d
(n)
i [k] |det(D)|i/2

ψ̃
(n)
γ,N (Dix− k)

(28)
with

d
(n)
i [k] =

〈
f(·), |det(D)|i/2

ψ
(n)
γ,N (Di · −k)

〉
, (29)

where the ψ̃(n)
γ,N , n = 1, . . . ,M , are the unique functions in

Wi such that 〈
ψ̃

(n1)
γ,N (Di1 · −k1), ψ

(n2)
γ,N (Di2 · −k2)

〉
= δn1−n2 · δi1−i2 · δk1−k2 .

E. Implementation

We show in Fig. 2 the filterbank implementation of the
complex-wavelet decomposition. The derived filters

H(z) = |det(D)|1−γ Vγ,N (zD)
Vγ,N (z)

,W (n)(z) =
V ∗γ,N (z)
Aγ(z)

zen

(30)
are placed on the analysis side, while their duals are used
for the reconstruction; these can be found by imposing the
perfect-reconstruction condition and solving a linear system of
equations. Since the filters are known explicitly in the Fourier
domain, the transform is evaluated efficiently using the FFT
(implicit periodic boundary conditions).

In our implementation, we use a prefiltering step to obtain
the initial approximation coefficient c0[k] at scale 0. We
assume that the sampled input signal is bandlimited, and we
represent it by its cardinal series

s(x) =
∑
k∈Z2

s(k)sinc(x− k). (31)

The orthogonal projection onto V0 is then obtained as

c0[k] =
〈
s(·), β̃γ,N (· − k)

〉
, (32)

where β̃γ,N is the unique dual function in V0. In the Fourier
domain, this translates into

C0(ejωωω) = S(ejωωω)
β̂γ,N ([ωωω])
Aγ(ejωωω)

(33)

where [ωωω] is the component-wise extension of [ω], and where
C0(ejωωω) and S(ejωωω) are the discrete Fourier transforms of c0
and s, respectively.

II. THE MARR-LIKE PYRAMID

In the previous section, we exhibited semi-orthogonal
wavelets that we derived from the complex gradient-Laplace
operator. We now want to relate these to a wavelet-pyramid
decomposition inspired by Marr’s theory of early vision [25],
[31].
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(a) (b) (c)

Fig. 1. Semi-orthogonal operator-like wavelets (γ = 3, N = 1). (a) Real part. (b) Imaginary part. (c) Steered at π/4.

H(z−1) �
��D

↓ ci−1[k]

W
(1)(z−1) �

��D

↓ d
(1)
i−1[k]-ci[k]

W
(M)(z−1) �

��D

↓ d
(M)
i−1 [k]

. . .

�
��D

↑ H̃(z)

�
��D

↑ W̃
(1)(z)

. . .

�
��D

↑ W̃
(M)(z)

- ci[k]

Fig. 2. Filterbank implementation of the complex wavelet decomposition.

A. Marr’s Theory of Vision and the Raw Primal Sketch

In his seminal work on vision [25], David Marr proposed
an influential model for the primate’s visual system. The
first (early) stage of the vision process leads to the “raw
primal sketch” [31]. It consists of three essential steps. First,
the image is smoothed by a Gaussian which is a low-pass
filter with optimal joint spatial-spectral localization. Next, the
Laplacian operator is applied and edges are detected as zero-
crossings. Last, zero-crossing segments are identified and their
orientation determined. The characterization of the image by
zero-crossing segments is called the “raw primal sketch”,
which is then processed by higher-level vision mechanisms.

The Laplacian-of-Gaussian (LoG) operation is performed at
several scales simultaneously [39]. Mathematically, the theory
of linear scale space elegantly deals with the continuous
stack of images blurred by a Gaussian kernel with increasing
width [40], [41]. Applying the Laplacian operator to the scale-
space representation and detecting the zero-crossings leads to
the “scale-space primal sketch” [42].

An outstanding theoretical question is whether or not the
multiscale primal sketch carries all the information of the
original image. Therefore, one is interested in reconstructing
an image from its primal sketch representation. To be practical,
the representation also needs to be stable, so that a small
perturbation of the primal sketch does only slightly modify
the image.

Several researchers have investigated the inversion prob-
lem from zero-crossings of band-limited signals (or, equiv-
alently, using an ideal band-pass wavelet function) in the 1-D

case [43]. These results rely on the band-limitedness of the
signal to compute its analytic extension [44]–[46], which is a
nonstable characterization. The properties of zero-crossings of
functions convolved with a LoG have also been studied, more
specifically its multiscale version [47], [48]. The completeness
of the representation is guaranteed for polynomial signals,
but not its stability [49]. To alleviate this problem, additional
information of the function is retained, such as the gradient
values at the zero-crossings [50]. Yet, one should note that the
scale-space primal sketch has a continuous scale, which makes
this approach unpractical. As an alternative, Mallat proposed
a stabilized zero-crossing representation using the redundant
wavelet transform at a sequence of dyadic scales (2i)i∈Z [49].
In addition to the zero-crossing positions, he records the
integral between two zero-crossings. The proposed reconstruc-
tion algorithm, which is based on iterative projections, is
able to recover a close approximation of the original signal.
Unfortunately, the proposed representation is not guaranteed
to be complete [51], [52]. In [51], Mallat and Zhong propose
another representation that stores the positions and the values
of the modulus maxima of the wavelet coefficients. In this
case, the wavelet is chosen to be a derivative of a B-spline.
The scheme extends for images using a separable wavelet
transform. In that case, local modulus maxima are extracted by
a Canny edge-detector-like procedure [53]. The reconstruction
algorithm is similar to the 1-D case and applied row-by-row
and column-by-column. The modulus maxima representation
uses dyadic scales, but is fully redundant inside each scale.
Moreover, two separate (redundant) wavelet transforms are
required to obtain horizontal and vertical derivatives.
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What we are after here is a decomposition/reconstruction
procedure that has the flavor of the one proposed by Mallat
and Zhong, but that uses a much lesser degree of redundancy
in the construction of the edge map. In other words, we seek
a pyramidal representation as opposed to a fully redundant
decomposition.

B. The Marr-Like Wavelet Pyramid

The operator-like wavelet basis constitutes our starting point
for specifying a wavelet decomposition that mimicks the first
stage of vision processing proposed by Marr. The innovation
of this paper is (1) a pyramid structure with mild redundancy
for better translation invariance; (2) the adaptation of the
smoothing function to make it more Gaussian-like.

1) Pyramid Structure and Dyadic Subsampling Scheme:
The wavelet spaces Wi are spanned by appropriate shifts and
dilations of the prototype wavelet. They are compactly written
as

Wi = span{
√
|detDi| ψγ,N (Dix−D−1k)}k∈Z2\DZ2 . (34)

In Fig. 3 (a), we show an equivalent polyphase representation
of the filterbank structure corresponding to a wavelet analysis
into Wi. It suggests that one can filter once and keep all but
one out of |detD| coefficients. It is then very tempting to
consider a true pyramid structure where the “missing” wavelet
would be included as well, as shown in Fig. 3 (b). The
corresponding “augmented” wavelet space is

W+
i = span{

√
|detDi| ψγ,N (Dix−D−1k)}k∈Z2 . (35)

Clearly, we now have that Wi ⊂ W+
i , but we loose the

semi-orthogonality property as the additional wavelet is not
orthogonal to the scaling function of Vi. Yet, since every
wavelet is in the span of the scaling function at the finer
resolution, it still holds that W+

i ⊂ Vi+1.
In this slightly redundant scheme, the reconstruction of

the pyramid decomposition is performed using the subband
regression algorithm, which we illustrate in Fig. 3 (c). Then,
the pyramid data is reprojected onto the (non-redundant)
wavelet basis such as to minimize a quadratic consistency error
criterion. More details and explicit filter expressions can be
found in [54].

From now on, we focus on the dyadic subsampling scheme
that corresponds to the matrix D = 2I, where I is the identity
matrix. As illustrated in Fig. 3 (d), the three wavelets and
the additional one can be rearranged in a single subband on
a Cartesian grid of high (non-subsampled) resolution. The
pyramid structure brings along two important advantages:
(1) only the approximation subband is subsampled and thus the
translation invariance of the wavelets is improved, (2) in-band
processing can be done using conventional image-processing
algorithms designed for the Cartesian grid.

2) Smoothing Function: An important feature of the Marr
framework is smoothing with a Gaussian filter. It is therefore
tempting to replace the smoothing function φ2γ in (12) by
another one that is closer to a Gaussian. While the possibility
of doing so in Wi is somewhat restricted (i.e., the zeros of the
smoothing function must be guaranteed according to (2)), it is

(a) (b)

Fig. 4. Smoothing functions of order γ = 3 for (a) the quasi-steerable
wavelets and (b) the Marr-like wavelets. Note that (a) is an interpolator while
(b) is an isotropic polyharmonic B-spline of order 6.

much easier to achieve within our enlarged wavelet space W+
i .

Our proposal is to consider appropriate linear combinations of
functions within W+

i , which corresponds to a filter Q(ejωωω/2)
at scale 0. Here, we pick the Marr smoothing function to be
the polyharmonic B-spline

φ̂Marr
2γ (ωωω/2) = φ̂2γ(ωωω/2)Aγ(ejωωω/2)

=
∣∣∣β̂γ(ωωω/2)

∣∣∣2 = β̂2γ(ωωω/2). (36)

This smoothing function closely resembles a Gaussian due to
the properties of the polyharmonic B-spline. In fact, it quickly
converges to a Gaussian with standard deviation

√
γ/12 as γ

increases [28]. In Fig. 4, we show the smoothing functions of
both the operator-like wavelet and the new proposed one for
γ = 3.

3) Pure Complex Gradient-Laplace Behavior: For our pur-
pose, the natural choice of the parameters of the operator
Lγ,N is γ = 3 and N = 1, which corresponds to the pure
complex gradient-Laplacian behavior. The Laplacian part has,
combined with the smoothing function, a LoG behavior. By
adding the gradient, we can easily map the zero-crossings of
the Laplacian onto the local extrema of the complex gradient-
Laplace. Additionally, the phase and magnitude of the complex
wavelet coefficient contain important information on the edges.

Definition 6 (Marr-Like Wavelet Pyramid): The Marr-like
wavelet pyramid is specified by a sequence of analysis
wavelets ψ(2ix− k/2) where

ψ(x) = ∆α

(
j
∂

∂x1
+

∂

∂x2

)
{β2γ(2·)} (x), (37)

with α = (γ−1)/2. In the sequel, we select α = 1 and γ = 3.
Note that the Marr-like wavelets span our augmented

wavelet spaces

W+
i = span{ψ(2ik− k/2)}k∈Z2

= span{ψ(γ−1)/2,1(2ix− k/2)}k∈Z2 ,

which follows directly from (36).
In Fig. 5, we show the real and imaginary parts of the

Marr-like wavelet in (a) and (b), respectively. The wavelet
steered at π/4 is shown in (c). Note the improved steerability
with respect to the complex operator-like wavelets. The total
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H(z−1) �
��D

↓ ci−1[k]

W (0)(z−1)

-ci[k] z
−e1 �

��D

↓ d
(1)
i−1[k]

z
−eM �

��D

↓ d
(M)
i−1 [k]

. . .

H(z−1) �
��D

↓ ci−1[k]

W (0)(z−1)

-ci[k]

di−1[k]

(a) (b)

H(z−1) �
��D

↓ ci−1[k]

W (0)(z−1) A(z−1)

-ci[k]

di−1[k]

�
��D

↑ H̃(z)

�
��D

↑ W̃ (1)(z)

. . .

�
��D

↑ W̃ (M)(z)

- ci[k]

SR

(c)

d
(2)
i−1 d

(3)
i−1

d
(1)
i−1

non-redundant

ci−1

pyramid

ci−1

di−1

(d)

Fig. 3. (a) Filterbank at the analysis side of the non-redundant wavelet decomposition where the same filter W (0) = V ∗
γ,N/Aγ can be applied to the data

and shifted afterwards. (b) The pyramid extension of (a) can be obtained by adding the non-shifted wavelet subband W (0) and regrouping all coefficients in
a single subband. (c) Marr-like wavelet pyramid with subband regression (module “SR”) reconstruction. (d) Pyramid organization for the dyadic subsampling
scheme.

redundancy of the Marr-like wavelet pyramid is 8/3, which
corresponds to a factor of 4/3 from the pyramid structure,
and a factor of 2 due to the complex nature of the wavelet
coefficients.

The coefficients for the Marr-like wavelet pyramid with J
decomposition levels at scales i = −1, . . . ,−J are given by

di[k] =
〈
f(·), 2iψ(2i · −k/2)

〉
. (38)

These are complemented with the coarser-scale approximation
coefficients

c−J [k] =
〈
f(·), 2−Jβ3,1(2−J · −k)

〉
. (39)

Any function f ∈ L2(R2) is thereby uniquely specified by
its Marr-like wavelet pyramid (di[k], c−J [k])i=−J,...,+∞;k∈Z2 ,
which constitutes a frame represented by the operator W . The
reconstruction (operator W−1) is performed according to the
algorithm described in Fig. 3(d) which reprojects the data onto
the complex wavelet basis.

In Fig. 6, we visualize the Marr-like wavelet pyramid (b)
for a synthetic test image “disc” (a). The left side of the
pyramid corresponds to the real part, while the right side to
the imaginary one. The scale gets coarser from top to bottom.
The small thumbnail image at the bottom row represents the

approximation coefficients from the last decomposition level.
In (c), we show a zoom using a vector plot of the lower-
left corner of the subband at scale i = −2. Finally, we show
the Marr-like wavelet pyramid of the well-known “Einstein”
image in Fig. 7.

C. Wavelet Primal Sketch

We now have all the tools at hand to extract the wavelet
primal sketch, as illustrated by the flowchart in Fig. 8. First,
the image is decomposed into its Marr-like wavelet pyramid.
The resulting images are interpreted as multiscale gradients
and fed into a Canny-like edge detector (Fig. 9). Specifically,
the gradient phase and magnitude are computed and the coeffi-
cients that are not local maxima are suppressed. The remaining
magnitude values are subjected to a hysteresis threshold within
each subband [53]. This yields a multiscale edge map of the
image. Note that we retain the positions of the edges, as well as
the phase and magnitude of the detected wavelet coefficients.

Our wavelet primal sketch is compact when compared to
other state-of-the-art primal sketch representations. Indeed, the
complete Marr-like wavelet pyramid has a small redundancy
(factor of 8/3), and there is only a small portion of coefficients
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(a) (b) (c)

Fig. 5. Marr-like wavelets from Eq. (37). (a) Real part. (b) Imaginary part. (c) Steered at π/4.

(a)

(c) (b)

Fig. 6. (a) Disc test image (size 256× 256; central disc of radius 50; Gaussian smoothing with σ = 4 pixels). (b) Marr-like pyramid (J = 3 decomposition
levels) of the disc image. (c) Vector plot of the lower-left corner of the wavelet subband at scale i = −2.

that is retained after hysteresis thresholding. These “primal-
sketch” wavelet coefficients carry essential information that
can be used to reconstruct the image, as we show in the next
section.

Mathematically, we denote (di|Ωi) the wavelet primal sketch
of f ∈ L2(R2) with Marr-like wavelet pyramid coefficients
(di[k])i,k, where Ωi is the index domain at scale i indicating
the edge positions. The masks corresponding to the wavelet
primal sketches of the images “disc” and “Einstein” are shown
in Fig. 14 (b) and Fig. 15 (a), respectively.

III. EXPERIMENTAL RESULTS

We now present a series of experiments to illustrate the
properties and possible applications of the complex Marr-like
wavelets. In particular, we describe a reconstruction algorithm
that is able of re-synthesizing a close approximation of the
original image from this reduced primal wavelet sketch.

A. Angular Selectivity

Due to the rotation covariance of the complex gradient-
Laplace operator, the wavelet coefficients of the Marr-like
pyramid have angular selectivity. The “zoneplate” test image,
shown in Fig. 10 (a), forms an ideal test case. The Marr-like
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Fig. 7. Marr-like pyramid (J = 3 decomposition levels) of the “Einstein” image.

image -
Marr-like wavelet

pyramid -

-

- Canny edge

detector -

-

- wavelet
primal sketch

Fig. 8. Flowchart of how to extract the “wavelet primal sketch” from the Marr-like wavelet pyramid. The Canny edge-detection procedure is applied to
every subband. Real and imaginary parts of the wavelet coefficients are interpreted as vertical and horizontal derivatives, respectively.

subband -

-
×
?

gradient

extraction

?
phase

- non-maximum
suppression

- hysteresis

thresholding
- edge

mask

6

subband
primal sketch

Fig. 9. Flowchart of how the “Canny edge detector” is applied to a subband of the Marr-like pyramid decomposition. First, the gradient is extracted by
considering real and imaginary parts of the wavelet coefficients. Then, non-maximum suppression is applied along the gradient direction, followed by hysteresis
thresholding. Finally, a complex coefficient is restored for the coefficients that are detected.

wavelet pyramid is shown in Fig. 10 (c). Note the different ver-
tical/horizontal sensitivity between real and imaginary parts,
and the varying frequency selectivity according to the scale. In
Fig. 10 (b), we show the reconstruction corresponding to the
coefficients whose phase is within a wedge of π/4±π/8; the
other coefficients are set to zero. Note that we have a complete
directional control of the transform thanks to the steerability
of the basis functions; in other words, we could as well have
extracted an angular wedge in any other direction.

B. Significance of Phase and Modulus
It is a well-known property of the Fourier transform that

the main perceptual information of the image is carried by
the phase of the Fourier coefficients rather than their magni-
tude. As a consequence, interchanging phase and magnitude

between two images reveals the image from which the phase
was selected. An example is shown in Fig. 11 (b), using
the “cameraman” (magnitude) and “Einstein” (phase) images.
It is informative to perform the equivalent experiment with
our complex-valued wavelet coefficients. In Fig. 11 (a), we
interchanged the phases and magnitudes of the Marr-like
wavelet pyramid of the same images. As with the Fourier
transform, the reconstruction mainly reveals the image from
which the phase was selected. However, since the wavelet
basis functions are more localized, the magnitude retains
some “diffuse” spatial content from; i.e., the halo from the
“cameraman” can be recognized as well.
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(a)

(b) (c)

Fig. 10. (a) Test image “zoneplate” (256× 256). (b) Marr-lik wavelet pyramid (J = 5). (c) Phase selectivity: only coefficients with phase within a wedge
π/4± π/8 are retained for the reconstruction. The phase of the coefficients is interpreted modulo π.

(a) (b)

Fig. 11. Effect of interchanging phase and magnitude between two images.
The phase is recovered from the “Einstein” image, and the magnitude from
the “cameraman” image. (a) Marr-like wavelet pyramid, full decomposition
(J = 8), (b) Discrete Fourier transform.

C. Translation Invariance and Rotation Covariance

Due to the rotation covariance of the operator L, we know
that

L{s(Rθ·)}(x) = ejθL{s(·)}(Rθx). (40)

Since the Marr-like wavelet pyramid is a multiscale version of
the operator, it should approximately maintain this property.
We demonstrate this feature by geometrically transforming
an image by individually rotating each subband. Ideally, we

Fig. 12. Reconstruction of the “Einstein” image after rotating each subband
in the Marr-like wavelet pyramid by π/18. The wavelet coefficients are also
multiplied by a phase factor ejπ/18.

would like to set the rotated wavelet coefficients to

d′i[k] = ejθ
〈
f(·), 2iψ(2i · −Rθk)

〉
. (41)

In practice, we approximate this step by a bicubic interpo-
lation step of the original subband (Matlab implementation
imrotate). As shown in Fig. 12 for the “Einstein” image,
the reconstruction of the rotated pyramid closely resembles
the original (but rotated) image. This would not work at all if
we were rotating the coefficients of a conventional separable
wavelet transform, because the wavelets cannot be steered.
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D. Image Reconstruction from Wavelet Primal Sketch

We now present a practical algorithm for reconstructing an
image that is consistent with the primal wavelet sketch. First,
we define the space M of all Marr-like pyramid transforms of
real-valued functions in L2(R2). Any such Marr-like pyramid
transform is invariant under the projector

PM = W � Re�W−1, (42)

which consists of three operations: the inverse wavelet trans-
form W−1 is an orthogonal projector onto the image with
respect to the norm that is minimized by the subband regres-
sion algorithm; the pointwise transform Re is an orthogonal
projector onto the space of real-valued images; and the wavelet
transform W provides the Marr-like wavelet pyramid of the
new image.

Second, we are interested in those Marr-like pyramids that
have the same values on the domain Ωi of the wavelet primal
sketch. In order to restrict the range of solutions and to impose
some unicity, we search for a solution that is consistent with
the wavelet primal sketch (i.e., the desired values di[k] on
Ωi) and that minimizes some ad-hoc wavelet-domain energy.
Specifically, we would like the coefficients to be small and
essentially non-oscillating. Therefore, we propose to minimize
the regularizing norm

|(di[k])i,k|2R =
∑
i∈Z

∑
k∈Z2

|di[k]|2 (43)

+λi

(
|di[k]− di[k− e1]|2 + |di[k]− di[k− e2]|2

)
,

where e1 and e2 are the unit horizontal and vertical vectors,
respectively. Let us define R as the space of pyramids with a
consistent primal sketch; i.e., (di)i,k such that (di|Ωi

) match.
A critical component of our algorithm is the projector PR
onto R, which is orthogonal with respect to the norm (43),
and which is made explicit in Appendix C.

We are now able to precisely formalize the objective of
the reconstruction algorithm: We are searching for an image
corresponding to an admissible Marr-like wavelet pyramid
such that

(d′i[k])i,k ∈M, subject to min
(d′i|Ωi

)=(di|Ωi
)
|(d′i[k])i,k|

2

R ,

(44)
where (di|Ωi) is the given wavelet primal sketch. This ob-
jective can be reached by alternating between the projectors
PM and PR, a procedure that is proven to converge to the
orthogonal projection on Λ = M∩R [55]. If we start from
the zero element of M, we are eventually going to converge
to the element of Λ whose norm (43) is minimum. We give
the flowchart of the algorithm in Fig. 13. Our procedure has
similarities with the approach of Mallat and Zhong [51] who
consider a more redundant representation. However, in our
case the method is adapted for the Marr-like wavelet pyramid,
which is a compact representation and has an efficient PM
projection (simple inverse transform). In other words, we
directly take into account the discrete nature of the subbands.
In practice, the algorithm is applied for a limited number
of decomposition levels (J), while retaining the unaltered
coarsest-approximation subband.
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Fig. 16. PSNR as a function of the iteration index for the recovery of various
test images from their wavelet primal sketch (J = 3 decomposition levels).
The maximum number of coefficients in each subband of the wavelet primal
sketch is limited at 15%.

The projector PR can be further refined to suppress spurious
edges. Let us denote Ω′i as the domain at scale i of the
wavelet primal sketch of the current estimate. We extend the
boundary conditions by imposing on Ω′i\Ωi that the magnitude
should be reduced at the low threshold value of the Canny
edge detector. Note that this associated space with the refined
projector changes at each iteration, meaning that convergence
is no longer guaranteed. Yet, we have observed experimentally
that this strategy converges; it has the advantage of somewhat
reducing ringing artifacts.

In Fig. 14, we show the results of the reconstruction
algorithm for the disc image. The mask of the wavelet primal
sketch for J = 4 is shown in (b), while a partial vector
representation of the subband at i = −2 is given in (c).
Since the image is noiseless, all local maxima were retained by
the Canny edge detector (about 2% of the coefficient at each
scale). The reconstruction reaches more than 40dB PSNR after
5 iterations, and 50dB at full convergence (50 iterations).

In Fig. 15, we show the results for the test image “Einstein”.
The high threshold value of Canny’s hysteresis threshold
is chosen in an empirical way as a factor 3(1 + 2i) of
median-absolute-deviation (MAD) at each scale i. The low
threshold value is then adapted such that the number of wavelet
coefficients for the primal sketch at scale i remains limited at
15%. The evolution through the iterations is shown in (b).
In Fig. 16, we plot the PSNR performances for a couple of
popular test images. Convergence at 32–35dB can be observed
after about 10 iterations only.

IV. DISCUSSION & CONCLUSION

We summarize in Table I the essential features of the
complex wavelet basis, the Marr-like wavelet pyramid, and
comparable state-of-the-art transforms. The steerable pyra-
mid [20] is an orientation-sensitive extension of the well-
known Laplacian pyramid [22]. The filters are obtained by
a constrained numerical optimization and can be implemented
either in the spatial or the Fourier domain (using the FFT). The
complex dual-tree wavelet transform [16] relies on the 1-D
Hilbert transform to separate negative from positive frequency
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Fig. 13. Flowchart of the algorithm to recover the image from the “wavelet primal sketch”. The consistency of the sketch of the intermediate image is verified:
Wavelet coefficients of the known sketch are imposed with respect to a regularizing norm. The consistency in the image domain removes the imaginary part
of the reconstructed image.

(a)

(c) (b)

Fig. 14. (a) Disc test image recovered from the wavelet primal sketch after 50 iterations, PSNR=50dB. (b) Mask indicating the wavelet coefficients selected
for the wavelet primal sketch (J = 4). (c) Vector plot of the lower-left corner of the wavelet subband at scale i = −2.

TABLE I
OVERVIEW OF THE ESSENTIAL FEATURES OF THE NEW WAVELET DECOMPOSITIONS AND SOME POPULAR COUNTERPARTS.

separable Laplacian steerable complex operator-like Marr-like wavelet
orthogonal pyramid pyramid dual-tree complex basis pyramid

translation invariance − + + + − +

steerability − − ++(1) +(2) +(2) + + +(3)

number of orientations − − 2K 6 2 2
vanishing moments yes 2 no yes, 1-D dγe dγe
implementation filterbank/FFT filterbank filterbank/FFT filterbank FFT FFT
construction type basis frame tight frame frame complex basis complex frame
redundancy factor 1 4/3 4K/3 + 1 4 2 8/3

localization +(4) ++(5) +(4) +(4) +(4) ++(5)

analytical formulas yes (splines only) no no no yes yes

(1)sinc-like smoothing function; (2)non-isotropic smoothing function; (3)Gaussian-like smoothing function; (4)essentially localized; (5)Gaussian-like
localization
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(a) (b)

Fig. 15. The “Einstein” image reconstruction from its wavelet primal sketch. (a) The edge map as detected by the Canny procedure (limited at 15% for
each scale). (b) Iterative reconstruction. First 4 iterations left to right, top to bottom. The larger image is obtained after 50 iterations, corresponding to
PSNR=33.7dB.

components. This aim is pursued by designing two 1-D
wavelet transforms with a half-sample shift difference between
them. Making suitable combinations in 2-D yields 6 distinct
orientations.

The steerable pyramid is most similar to our construction
when the number of orientations is selected as K = 1. In that
case, the redundancy is 8/3 + 1 = 11/3, which is slightly
higher than in our case due to the special treatment at the first
decomposition level. The constraints imposed on the filterbank
design lead to a tight “sinc-like” frame. A remarkable feature is
that the construction generalizes to a larger number of channels
with improved angular selectivity, which can be very useful
for applications in computer vision [20], [21]. We should note,
however, that the price to pay for higher-order steerability
is a comparable increase in redundancy, which suggests a
fundamental incompatibility with the specification of basis
functions with that type of property.

The dual-tree and Marr-like wavelet transforms are both

complex, but they differ in the kind of information that is
encoded in the phase. In the former, the phase of a wavelet
coefficient gives an indication of relative displacement within
the direction of analysis (similar to the correlation with a
complex sinusoid), while in the latter it corresponds to the
orientation of the underlying pattern. This is consistent with
the interpretation of the modulus as the maximal correlation
along the dimension encoded by the phase.

While all methods have their strength and niche of ap-
plications, the complex wavelet basis and Marr-like wavelet
pyramid bring together some interesting analytical properties.
First, these wavelets are, by design, multiscale versions of the
gradient-Laplace operator which plays such an essential role in
image processing (e.g. contour detection). The corresponding
wavelet transforms are non-separable and they share all the
good theoretical properties of earlier spline transforms:

• They have an order of approximation γ, which means that
the approximation error of a scale-truncated expansion
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decays like the γth power of that scale.
• They have dγe moments, which implies that the wavelet

coefficients are essentially zero in smooth image areas
where the image is well represented by its lower-order
Taylor series.

• The basis functions have a maximal degree of smoothness
for the given order (γ derivatives in the L2-sense).

• The wavelets have explicit analytical formulas in both
space and frequency domains.

The last two properties are direct consequences of the func-
tional construction approach (specification of the Green’s func-
tion of the underlying operator); they are specific to splines.
The final crucial ingredient, which is much less standard with
regard to classical wavelet theory, is that the decomposition
works for any 2-D subsampling matrix with a straightforward
characterization of the corresponding wavelet basis of L2(R2).
More precisely, the subsampling matrix determines a single
(universal) wavelet generator that is appropriately dilated and
shifted to the coset positions. As far as we know, there is
no counterpart for any of these continuous-domain properties
in the case of the other directional wavelet decompositions
because the corresponding formulations are strictly discrete.

An important feature of the present construction is that the
complex wavelet basis is associated with a frame (consisting
of Marr-like wavelets) with a redundancy factor that is com-
petitive in comparison to the other decompositions. Thanks to
the true pyramid structure, one gains in terms of translation-
invariance and ease of in-band processing. In particular, this
opens the door to the application of standard image-processing
operations in the wavelet domain (such as Canny’s edge
detector). Our design also takes advantage of the redundancy
to improve upon the steerability of the wavelets so that the re-
sulting smoothing kernel closely resembles a Gaussian. These
modifications considerably improve the feature-extraction ca-
pabilities of the transform, as illustrated by our examples.
The Marr-like wavelet analysis is coupled with an effective
reconstruction algorithm which consists of re-projecting the
pyramid data onto the wavelet basis. In this way, we end up
with a hybrid basis-frame approach that combines the best
of both worlds. It results in improved properties for signal
analysis (good translation invariance, rotation covariance, and
steerability) and computationally-efficient reconstruction.

We coined the term “Marr-like wavelet pyramid” for the
new decomposition, due to its resemblance with David Marr’s
theory [25] for early-stage processing in the primate’s visual
system [56]. In particular, the complex gradient-Laplace oper-
ator can be seen as a combination of Laplacian-like processing
in the ganglion cells of the retina and directional selectivity
in the primary visual cortex. Multiscale is also available, such
as indicated by the presence of ganglion cells with small (P-
type) and large (M-type) receptive fields. The fact that there
are many more P- than M-type cells also suggests a compact
organization to represent in coarser way the information com-
ing from large basis functions. The localization of the wavelet
by the Gaussian(-like) smoothing function is also similar to
Marr’s framework.

Finally, we have proposed a way to obtain a compact primal
wavelet sketch in the form of a multiscale edge map, which is

much less redundant than Mallat’s wavelet-modulus-maxima
representation [51]. This compact representation opens up
interesting perspectives, not only for image analysis, but also
for image processing because of the existence of a reverse syn-
thesis procedure. Specifically, we have proposed an iterative
scheme that reconstructs a high-quality approximation of the
original image from its primal wavelet sketch. The algorithm
could probably be improved even further by introducing more
sophisticated regularization constraints.

APPENDIX A
PROOF OF LEMMA 1

Let us consider a scale-invariant and rotation-covariant
convolution operator L. Note that the effect of the dilation and
rotation operators can be combined into a single multiplication
with a complex-valued function f(T, θ) = cT cθ, where cT
is real-valued and cθ a pure phase term. As L̂(ωωω) is a
distribution, it acts as a linear functional on the test functions
ϕk in Schwartz’ class S and satisfies the continuity condition〈
L̂, ϕk

〉
→
〈
L̂, ϕ

〉
when ϕk → ϕ as k → ∞. This implies

continuity at (T, θ) = (1, 2πn) of the function f(T, θ), for
any n ∈ Z:
• By making a change of variables ωωω → TRθωωω, we have

that〈
L̂(TRθωωω), ϕ(ωωω)

〉
=
〈
L̂(ωωω), T−1ϕ(T−1Rθωωω)

〉
. (45)

Using scale invariance and rotation covariance, this
proves that

f(T, θ)
〈
L̂(ωωω), ϕ(ωωω)

〉
=
〈
L̂(ωωω), T−1ϕ(T−1Rθωωω)

〉
.

(46)
• The limit of T−1ϕ(T−1Rθωωω) as (T, θ) → (1, 2πn) is

obviously ϕ(ωωω). Therefore, the right-hand side of (46)
tends to

〈
L̂(ωωω), ϕ(ωωω)

〉
. This proves that the left-hand

side is convergent as well when (T, θ) → (1, 2πn), and,
finally, that f(T, θ) → 1.

Next, we verify that f(T, θ) has to satisfy the chain rule

f(T1T2, θ1 + θ2)L̂(ωωω) = L̂(T1T2Rθ1+θ2ωωω)
= L̂(T1T2Rθ1Rθ2ωωω)
= f(T1, θ1)L̂(T2Rθ2ωωω)
= f(T1, θ1)f(T2, θ2)L̂(ωωω).

Using complex analysis, we show that functions that satisfy
the chain rule f(T1T2, θ1 + θ2) = f(T1, θ1)f(T2, θ2) and are
continuous at (T, θ) = (1, 2πn) with f(1, 2πn) = 1, are
necessarily of the form f(T, θ) = T γejµθ, where γ ∈ R and
µ ∈ Z. In this way, we identify cT = T γ and cθ = ejµθ.

APPENDIX B
PROOF OF PROPOSITION 1

From Lemma 1, the frequency response of L satisfies
L̂(TRθωωω) = T γejµθL̂(ωωω). We make use of complex analysis
and identify L̂(ω1, ω2) with L̂(z, z) using complex-valued
variable z = ω1 + jω2. We further introduce the complex
constant a = Te−jθ such that we can rephrase the condition
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as L̂(az, az) = a
γ−µ

2 a
γ+µ

2 L̂(z, z). We can now make use
of Gelfand’s theory for homogeneous distributions of degree
(γ−µ

2 , γ+µ
2 ) [57, A-6, p. 501]. We find that L̂(z, z) is unique

and proportional, up to some complex constant, to z
γ−µ

2 z
γ+µ

2 ,
which can be reinterpreted as

||ωωω||γ ej∠(ω1−jω2)
µ

= ||ωωω||γ−µ (ω1 − jω2)µ. (47)

APPENDIX C
PROJECTION OPERATOR PR

We consider the projector PR that transforms a pyramid
(d′i[k])i,k ∈M into the closest sequence (d′′i [k])i,k ∈ R with
respect to the regularizing norm (43). We define the update
term εi[k] = d′i[k] − d′′i [k]. The coefficients εi[k] have to
be chosen such that: (1) the norm |(εi[k])i,k|2R is minimum;
(2) the boundary conditions imposed by the wavelet primal
sketch of f , denoted as (di|Ωi

), are satisfied with εi|Ωi
=

di|Ωi − d′i|Ωi , for every scale i.
The minimization of |(εi[k])i,k|2R is solved at every scale

i for k ∈ Z2 \ Ωi. We can easily derive from (43) that the
constraint

εi[k]− (

 0 1 0
1 −4 1
0 1 0

 ∗ εi)[k] = 0 (48)

should hold. The solution is found by a simple numerical
implementation that alternates between applying the update
formula

εnext
i =

1
5

 0 1 0
1 0 1
0 1 0

 ∗ εprev
i

 (49)

and imposing the boundary conditions.
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