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Abstract: One of the ongoing challenges in single particle fluores-
cence microscopy resides in estimating the axial position of particles
with sub-resolution precision. Due to the complexity of thediffraction
patterns generated by such particles, the standard fitting methods used to
estimate a particle’s lateral position are not applicable.A new approach
for axial localization is proposed: it consists of a maximum-likelihood
estimator based on a theoretical image formation model thatincorporates
noise. The fundamental theoretical limits on localizationare studied, using
Craḿer-Rao bounds. These indicate that the proposed approach can be
used to localize particles with nanometer-scale precision. Using phantom
data generated according to the image formation model, it isthen shown
that the precision of the proposed estimator reaches the fundamental limits.
Moreover, the approach is tested on experimental data, and sub-resolution
localization at the 10nmscale is demonstrated.
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1. Introduction

Luminescent markers such as fluorescent proteins and quantum dots have become an invaluable
tool in biology, where they enable studies of molecular dynamics and interactions in living cells
and organisms. Such studies are usually performed with a fluorescence microscope configured
to acquire a time-series of two or three-dimensional data, the latter generally in the form of
a stack of images taken at different focal distances. These are then processed using particle
tracking techniques, which aim to establish the particles’trajectories from their position in in-
dividual acquisitions. Determining these positions with ahigh level of precision is essential
for obtaining biologically significant results; the typical sizes of the commonly employed fluo-
rophores are of the order of 10nm, which is significantly smaller than the optical resolutionof
the system.

This implies that a fluorescent particle can be assimilated to a point source, and thus, that
its image corresponds to a section of the microscope’s three-dimensional point spread function
(PSF), degraded by various types of noise. In essence, the localization task then amounts to
determining the position of the particle by fitting a model ofthe PSF to such an image.

In the lateral directions, for particles that are in focus, this is a relatively straightforward
task for which several methods have been proposed. Axial localization is more challenging,
however, since even when the specimen can be optically sectioned with an arbitrarily fine step
[1], localization is made difficult by the poor axial opticalresolution, the fact that the PSF of a
microscope is non-stationary along the optical axis [2], and the presence of noise [3].

These factors are not only limiting in the case of particle localization, but in any 3D imaging
application in microscopy. Consequently, various approaches for improving the resolution of
optical microscopes, such as I5M [4], 4-Pi Microscopy [5], and STED [6], have been proposed
in recent years, showing that Abbe’s resolution limit can bebroken. Alternatively, a system
specifically destined for particle tracking localization was introduced by Kaoet al., who pro-
posed the use of cylindrical optics to encode a particle’s axial position [7], and reached axial
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resolutions down to 12nm. The downside of these methods is that they require customized hard-
ware, which currently still limits their widespread applicability. In this work, we show that via
computational means, particles can be localized with a precision that is clearly beyond the limit
traditionally imposed by optical resolution. The method isdestined for widefield fluorescence
microscopy, which makes it widely applicable.

1.1. Review of computational approaches

The model-based methods proposed for lateral localizationtypically rely on a simplified
diffraction model, or some Gaussian approximation of the PSF (see, e.g. [8, 9]). Notably,
Thompson et al. proposed an iterative method based on the minimization of the least-squares
difference between an image of a particle and a Gaussian model of the PSF [10], and Ober
et al. studied the theoretical limits of lateral localization [11]. By computing the Craḿer-Rao
bound (CRB) for the lateral position, they confirmed that, although the images of single par-
ticles are limited by the microscope’s resolution, it is possible to estimate the lateral position
with sub-resolution accuracy. In some cases, nanometer-scale localization can be achieved.

To date, only few studies have dealt explicitly with the issue of sub-resolution localization
in the axial direction. This can be partly attributed to the scarcity of simple but accurate PSF
models for optical microscopes. Several attempts to circumvent the use of a PSF model have
been made. Van Oijenet al. [12] proposed a method involving a high-resolution z-stackac-
quisition of the particle (i.e., a series of images taken at different focal distances with regular
intervals). It is based on identifying the slice for which the radial size of a Gaussian fit to
the diffraction-limited spot is minimal within the z-stack. There are several limitations to this
approach, however. It can only work properly if the movementof the particle during the acqui-
sition process is sufficiently slow, and localization is limited by the size and resolution of the
z-stack. Additionally, the section of the PSF whose radial size is minimal does not necessarily
correspond to the situation where the particle is in the focal plane (we will emphasize this in
the following section). Also, for the estimation algorithmto be as fast as possible, it is desir-
able to localize particles from only one or few acquisitions, without needing to process entire
high-resolution z-stacks.

Speidelet al. demonstrated the feasibility of sub-resolution localization by experimentally
showing that the axial position of a particle can be determined from a single defocused image of
the particle [13]. When the particle is sufficiently out of focus, it gives rise to diffraction rings.
These authors empirically established a linear relation between the radius of the outermost
diffraction ring and the axial position of the particle, which allows them to estimate its position
with nanometer precision. This is especially attractive since the estimation becomes possible
from a single acquisition. The downside of the approach is again related to the non-stationarity
of the PSF, meaning that the linear relationship may vary as afunction of the particle’s depth
within the specimen. It is also constrained to the localization of particles that are sufficiently
out-of-focus such that rings are present in their diffraction patterns.

In principle, it is possible to obtain an analytical solution to axial localization by using a
theoretical PSF model to estimate a particle’s position from one or few out-of-focus acquisitions
(the diffraction pattern increases in complexity as a function of defocus, thus containing more
“information”, but also less signal). In a preliminary report, we have investigated the viability of
such an approach by establishing the fundamental theoretical limits with respect to the precision
that can be expected in the estimation [14].

1.2. Organization of the paper

In this paper we present a refined particle localization method, built upon a non-stationary
theoretical PSF model. We first introduce an image formationmodel, which also includes the
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Fig. 1. Coordinate system and notational conventions used in this paper.

effect of noise. Next we establish the Cramér-Rao bound on axial localization, which gives
us the fundamental precision that can be achieved with such an image formation model, in-
dependently of the estimator used. We hereby extend the methodology presented by Oberet
al. [11] to three dimensions. Subsequently, we derive a maximum-likelihood estimator for the
axial position, and show that, under ideal circumstances, it reaches the precision predicted by
the theoretical bound. In the final part of the paper, we incorporate lateral localization into
the maximum-likelihood estimator, and show the validity ofour approach by demonstrating
the axial localization with sub-resolution precision of fluorescent beads. We also discuss the
possibility of optimizing acquisition parameters based onthe CRB.

2. Materials and methods

2.1. Notations and conventions

To formulate the mathematical expressions throughout thispaper, we use an absolute coor-
dinate system placed in the object space of the microscope. We make the hypothesis that a
standard microscope setup is used, meaning that the sample consists of a specimen mounted
between a microscope slide and a coverslip. We define the origin of our system at the interface
between the coverslip and specimen layer (see Fig. 1). The optical axis (z-axis) points from the
objective towards the sample, such that distances into the specimen are positive. We denote the
position of a particle by(xp,yp,zp), and a point of observation (corresponding to a point on the
focal plane) by(x,y,z). When multiple acquisitions at different focal positions are considered,
(x,y,zn) corresponds to a point on thenth acquisition. In the first part, where we concentrate
on axial localization, we assume that the particle is located in (0,0,zp) for the sole purpose
of making expressions as simple as possible. For the sake of consistency, we also express the
pixel coordinates of acquisitions in object space (imagineacquisitions being demagnified and
projected onto the focal plane). This results in a direct link between the PSF and the image gen-
erated on the CCD. Finally, all figures showing xz-sections of PSFs are logarithmically adjusted
for intensity in order to emphasize details in the diffraction pattern.

2.2. Simulation parameters and experimental setup

The implementation and simulation of the algorithms were performed using the Matlab pro-
gramming environment (The Mathworks, Natick, MA). Experimental measurements were car-
ried out on a Zeiss Axioplan 2 microscope system. Both theoretical and experimental results
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were computed for a 63× magnification, 1.4 NA Zeiss Plan-Apochromat oil-immersionobjec-
tive. For experimental validation, we prepared samples using fluorescent nanobeads by drying
dilutions of TetraSpeck fluorescent microspheres (Molecular Probes, Eugene, OR) onto a slide,
and subsequently embedding them under a coverslip using a solid mounting medium of re-
fractive index 1.46. The excitation and emission peaks of these beads are 365nmand 430nm,
respectively. In conjunction with this, we used a DAPI beamsplitter corresponding to an exci-
tation wavelength of 365nmand an emission wavelength of 450nm. The physical pixel width
of the AxioCam CCD mounted on the microscope is 6.45 µm.

In order to verify the estimated position of the particles inour sample during experimental
validation, we used a Leica TCS SP2 AOBS confocal microscope, configured to record 50% of
the light reflected by the specimen. In this way, the beads along with the coverslip-specimen and
specimen-slide interfaces are visible in acquisitions. The microscope has the capability of scan-
ning a single line through the sample, which results in an xz-acquisition. The latter confirmed
that all beads were adjacent to the microscope slide. Distance measures on such acquisitions are
accurate within 100nm, which is sufficient to indicate the validity of our experimental results.

2.3. Image formation model

We now briefly describe the theoretical PSF model, and put forward an image formation model
that incorporates noise.

2.3.1. PSF model

The dominant source of aberrations in modern optical microscopes originates from a mismatch
between the refractive index of the specimen and those of theimmersion and coverslip layers.
Objectives are designed for use with a specific immersion medium and coverslip, but cannot
compensate for the wide variety of specimen types occurringin practice. In fact, they only
produce aberration-free images for sources that are positioned at the coverslip-specimen layer
interface. For sources at an arbitrary depth within the specimen, the optical path of light rays
differs from the path for a source located at the aforementioned interface. This optical path
difference (OPD) then generates spherical aberrations in the images produced by the system.
Most importantly, the amount of aberration depends on the distance between the source and the
coverslip, implying that the PSF is non-stationary along the optical axis.

In practice, most biological samples feature refractive indices closer to that of water than
that of immersion oil (which is required for high NA objectives). Even for objects that are
located only a few micrometers below the coverslip, the aberrations induced by the mismatch
of refractive indices become non-negligible. Much effort has gone into establishing suitable
theoretical models that account for these aberrations. Themost accurate ones use vectorial
computations based on either the Huygens-Fresnel principle [2] or the Debye approximation
[15]. It was recently shown that these two approaches are equivalent in the case of an infinitely
high Fresnel number [16], which is a reasonable assumption in biological microscopy. However,
when evaluated at the resolutions provided by the sensor grid of currently available CCDs, these
models do not yield significant improvements over scalar formulations of the OPD, especially
when considering the computational advantages of the latter. This aspect will be further justified
in the discussion section of the paper.

Gibson and Lanni [17] proposed a scalar PSF model that is reasonably simple and has the
advantage of depending only on the standard parameters of the objective and the optical prop-
erties of the specimen, both of which can be determined with adequate accuracy. According to
this model (formulated in object space), the response to a point source located in(xp,yp,zp) is
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given by

PSF(x−xp,y−yp,z|zp) =

∣

∣

∣

∣

A
∫ 1

0
eiW(ρ,z|zp)J0

(

k
√

(x−xp)2 +(y−yp)2NAρ
)

ρ dρ
∣

∣

∣

∣

2

, (1)

whereW(ρ,z|zp) = k ·OPD, with k being the wave number of the emitted light, NA is the
numerical aperture of the objective,ρ is the radius of the microscope’s limiting aperture in the
microscope’s back focal plane, andA is a constant complex amplitude. Due to the hypothesis of
spatial invariance in planes orthogonal to the optical axis, the PSF is radially symmetric and can
be expressed as a function of the coordinater =

√

(x−xp)2 +(y−yp)2. We can thus rewrite
Eq. (1) as

PSF(r,z|zp) =

∣

∣

∣

∣

A
∫ 1

0
eiW(ρ,z|zp)J0 (krNAρ)ρ dρ

∣

∣

∣

∣

2

. (2)

The detailed expression for the OPD is given in the appendix (Eq. (16)). Note that when imag-
ing a source located at the interface between the coverslip and specimen layers, the PSF cor-
responds to the standard defocus model [18], whereW(ρ,z|zp) is proportional to−z. When,
in addition to this, the system is in focus,W(ρ,0|0) = 0 andPSF(r,0|0) becomes the familiar
Airy function.

2.3.2. Noise model

In fluorescence microscopy, noise from a variety of sources contributes to the recorded images
of a specimen, depending on the nature of the specimen and thetype of image acquisition setup
used. The three main sources of noise occurring in CCD devices are photon noise (also called
shot noise), dark noise, and read-out noise. For high-performance cameras the latter two can
be considered negligible. Photon noise results from statistical variation in the arrival rate of
photons incident on the CCD. As a result of the nature of this variation, the recorded signal at
a given pixel on the CCD follows a Poisson distribution. Notethat the effect of photon noise
is particularly important when the energy of the photon-emitting source is low, implying a
lower photon flux. We thus define an image formation model where the photon count at a given
pixel on the CCD follows a Poisson distribution whose mean isproportional to the intensity
predicted by the PSF model. We characterize the ratio between the expected photon count
and the predicted intensity by introducing the conversion factorc, defined as the amount of
photons corresponding to a unitary increase in measured intensity. This factor, along with the
constant amplitude|A|2, depends on various properties of the experimental setup used, such as
the energy of the fluorescent particle, the sensitivity of the CCD sensor (a fixed property of the
camera), and the exposure time. Let ¯q denote the expected number of photons corresponding to
the measured intensity due to a point source located at(0,0,zp). Clearly

q̄(x,y,zn|zp) = c PSF(x,y,zn|zp), (3)

where the PSF is given by Eq. (1). The probability of observing q photons emitted by a particle
located in(0,0,zp) at a point(x,y) in the focal plane positioned atzn is then given by

P(q(x,y,zn|zp)) =
e−q̄(x,y,zn|zp)q̄(x,y,zn|zp)

q(x,y,zn|zp)

q(x,y,zn|zp)!
, (4)

which constitutes the basis for our image acquisition model. Thus, the probability of observing
a given spatial distributionq(x,y,zn) of photons due to a particle (located in(0,0,zp)) is then
given by the joint probability

N

∏
n=1

∏
x,y∈S

P(q(x,y,zn|zp)) , (5)
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whereS is the set of points in object space corresponding to pixels in the CCD array, andN
corresponds to the number of acquisitions of the particle. In order to simplify the notation, we
shall refer to the photon countsq andq̄ without explicitly writing their arguments(x,y,zn|zp).

2.3.3. Model-based particle localization

Localization consists of estimating the particle’s position (xp,yp,zp) from the aforementioned
distribution of photons. The estimation is done by fitting a theoretical model to the acquisi-
tion(s) of a particle. As opposed to conventional approaches where a generic model such as
a Gaussian is used, we perform the localization by fitting ourimage formation model to the
acquisitions.

2.4. Theoretical Bounds

Having formulated the image formation model for a single fluorescent particle, we now proceed
with an investigation of the feasibility of axial localization. The aim is to establish the maximal
theoretical precision that axial localization can achieve. To determine this maximal precision,
we compute the Craḿer-Rao bound, which is the theoretical lower bound on the variance of
any unbiased estimator. Based on the image formation model,it yields a lower bound on the
precision that can be reached in estimating the particle’s axial positionzp. Mathematically, the
bound states that

Var(ẑp) ≥ 1

/

−E

[

∂ 2

∂z2
p

ln
N

∏
n=1

∏
x,y∈S

P(q̄(x,y,zn|zp))

]

, (6)

whereẑp is an unbiased estimator of the particle’s positionzp. By substituting Eq. (4) into this
result and simplifying, we obtain

Var(ẑp) ≥ 1

/

N

∑
n=1

∑
x,y∈S

q̄(x,y,zn|zp)
−1
(

∂
∂zp

q̄(x,y,zn|zp)

)2

, (7)

where the expression for∂ q̄
∂zp

is given in Eq. (17). The practical relevance of this fundamental
result becomes more readily apparent when applying the bound to particular cases, and studying
its relationship with the PSF. A simple example is given in Fig. 2, for a source located at the
interface between the coverslip and specimen layers. Note the singular behavior of the CRB
around the origin, which is related to the depth of field of themicroscope. The PSF varies
little within the center of that region, and localization becomes less precise. Mathematically
speaking, the singularity at the origin is due to the derivative of the PSF, which in this particular
case is zero at the in-focus position (sincezp = 0).

As indicated by Eq. (7), the shape of the CRB is solely determined by the PSF model,
whereas the scale depends on the amount of noise present in the acquisitions. In fact, the am-
plitude of the CRB is proportional to(c|A|2)−1. As mentioned above, besides exposure time,
the energy of the particle is the determining factor for the signal-to-noise ratio. A low-energy
particle emits fewer photons, which results in a higher variability in the photon counting pro-
cess on the CCD. The recorded image will thus be noisier than for a higher energy particle;
consequently the CRB will be proportionally higher (meaning that the precision of any estima-
tor will be lower). In our model, the energy of the particle isimplicitly related to the amplitude
A. Another parameter that influences the CRB—but to a lesser extent—is the size of the sup-
port within which the particle is observed. At high defocus distances, the support needs to be
sufficiently large in order to include the outermost rings ofthe diffraction pattern.

A more complete illustration of the CRB’s behavior in relation to the PSF and the particle’s
depth is given in Fig. 3. For very small changes ofzp (not shown, i.e., in our ongoing example,
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Fig. 3. (a) xz-sections of the theoretical PSF corresponding to point sources located at
different depthszp of the specimen. (b) CRBs corresponding to the PSFs shown in (a),
wherec = 3000 (in units of 1/|A|2).

up to∼ 100nm), the PSF can be assumed to be locally stationary. However, as the change ofzp

increases (up to∼ 1 µm), although the shape of the PSF remains essentially the same, a non-
negligible axial shift of the PSF with respect to the particle’s position occurs. This phenomenon
is accentuated for larger changes ofzp, where the “focal shift” increases as a function of the
particle’s depth. Incidentally, while the CRB also reflectsthis shift, it depends much more on the
complexity of the diffraction pattern. For sources deeper within the specimen, the diffraction
patterns become more complex and the CRB gets lower accordingly. Thus, the bound is much
higher for sections of the PSF that resemble a blurred spot, which is not surprising. For a given
configuration (i.e., set of acquisition parameters), the value of the CRB changes as a function
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of the amount of defocus alone. It is minimal only for a specific interval situated approximately
between the in-focus position and the positions where the first diffraction rings appear. From
this, it is readily apparent that taking out-of-focus acquisitions will lead to a better precision in
the estimation.

Having established the fundamental limits on sub-resolution particle localization we now
proceed with the development of an estimator whose precision reaches this lower bound.

2.5. A maximum likelihood estimator for axial localization

An optimal maximum-likelihood (ML) estimator for the axialposition of a particle is obtained
by maximizing the likelihood of our image formation model—inother words of Eq. (5)—with
respect to the particle’s positionzp:

∂
∂zp

ln
N

∏
n=1

∏
x,y∈S

P(q) =
N

∑
n=1

∑
x,y∈S

∂ q̄
∂zp

(

q
q̄
−1

)

≡ 0. (8)

The ML estimator for the axial position is then obtained by solving for zp in the above expres-
sion. Since it is not possible to obtain a closed form solution, we deploy a Newton optimization
scheme by linearizing the maximum-likelihood around an estimate of the position. Using the
Taylor expansion of the model, we obtain the following first order approximation of Eq. (8):

∂
∂zp

ln
N

∏
n=1

∏
x,y∈S

P(q) ≈
N

∑
n=1

∑
x,y∈S

∂ q̄
∂zp

(

q
q̄
−1

)

+
N

∑
n=1

∑
x,y∈S

(

∂ 2q̄
∂z2

p

(

q
q̄
−1

)

−

(

∂ q̄
∂zp

)2 q
q̄2

)

(zp− ẑp) ≡ 0,

(9)

where ẑp is an initial estimate of the axial position. It is then obvious that the linearization
can be performed around the new estimatezp, which implicitly leads to the following iterative
expression:

ẑ(m+1)
p = ẑ(m)

p −

N
∑

n=1
∑

x,y∈S

(

∂ q̄
∂zp

(

q
q̄ −1

)

)

N
∑

n=1
∑

x,y∈S

(

∂ 2q̄
∂z2

p

(

q
q̄ −1

)

−
(

∂ q̄
∂zp

)2 q
q̄2

) , (10)

wheremdenotes themth iteration. An adequate initialization for the algorithmis crucial, since
the linearization of the likelihood holds only locally. If the initial estimate is too remote from the
correct position, convergence of the algorithm is not guaranteed. An efficient way of obtaining

an adequate initial estimate ˆz(0)
p is to evaluate the normalized cross-correlation between the

acquisitions and a number of sections pre-computed from the3D PSFs corresponding to a
range of possible particle positions:

ẑ(0)
p = argmax

zp

N
∑

n=1
∑

x,y∈S

(q−µq)(q̄−µq̄)

√

N
∑

n=1
∑

x,y∈S

(q−µq)2
N
∑

n=1
∑

x,y∈S

(q̄−µq̄)2

, (11)

whereµq andµq̄ are the mean values of pixels in the acquisitions and model, respectively. An
appropriate stopping criterion for the algorithm can be defined based on the absolute value of
the update step. If the latter is smaller than the CRB by an order of magnitude, further refining
the estimation is statistically meaningless and the algorithm can thus be stopped.
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Fig. 4. Result of the ML estimation from simulated acquisitions. For every point, the es-
timation was performed 50 times with a single acquisition (using different realizations of
the noise). The standard deviation of the estimates matches the CRB well, showing that
our ML estimator is optimal. The singularity around 0.25 µm is due to the mathematical
properties of the first derivative of the PSF, which is close to zero whenthe focus is near to
the particle’s position.

2.6. Localization in three dimensions

In practice, localizing a particle along the optical axis isnot possible without determining its
position in the acquisition plane. To this end, an ML estimator for the xy-position can be ob-
tained by making the same developments as for the axial estimator. Since the aim of this work is
to demonstrate a new approach for axial localization, we do not state the resulting expressions
here. Note, however, that the experimental results presented below were obtained by using an
ML estimator for all three dimensions.

3. Results

Prior to testing our estimation algorithm on experimental data, we verified its performance in
simulation. We generated phantom data by applying Poisson noise to computed sections of
the PSF corresponding to a particle at an arbitrary depth within the specimen. The estimation
algorithm was then run with these simulated acquisitions, generated for a particle situated at
zp = 5 µm, using an initial estimate that differed by 0.1 µm from the actual value. The process
was repeated for various focal distances, using different realizations of the Poisson noise. We
then compared the standard deviation of these estimations with the CRB. Fig. 4 shows this
result for one particular set of parameters; from other simulations, we have strong evidence that
our algorithm achieves the theoretical precision for any configuration.

In their analysis of lateral localization, Oberet al. [11] discussed the theoretical limits on
estimation precision and used a maximum-likelihood estimator based on their approximative
two-dimensional image formation model to show that these limits can be reached. Here, we
have presented an analytical expression for a maximum-likelihood estimator based on a com-
plete, three-dimensional formulation of the image formation process, and shown that it reaches
the theoretical limits in axial localization. Although they have not been specifically shown here,
theoretical bounds on lateral localization can be established for our model as well, and the es-
timator can be shown to reach these bounds.
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3.1. Calibration and experimental setup

Before presenting the results obtained with our localization method, it is necessary to mention
how the constant complex amplitudeA (cf. Eq. (1)) and the photon quantization factorc can be
estimated in practice. The former can be easily approximated by fitting the model to the data
after an initial estimate for the particle’s position has been determined using normalized cross-
correlation (which is used precisely because it is independent ofA). Using a least-squares fit, a
sufficiently precise value ofA is obtained. While an approximation ofc is not required by the
estimation algorithm, it is needed when computing the CRB for experimental data. Assuming
that the measures follow a Poisson distribution, the mean isequal to the variance in every point.
Since we only have a single realization per point, the mean can be computed using the PSF
model (with the estimate ofA), and the standard deviation approximated with the difference
between the model and measure. We obtain an estimate ofc by computing the sum of pointwise
ratios of standard deviation over mean.

Because our method relies on a non-stationary PSF, it requires the knowledge of the focal
positionszn in order to estimatezp. In practice, there are two possibilities to obtain these values.
The first is to prepare samples in a way such that the focus can be calibrated to the coverslip-
specimen interface. This is possible, for example, by drying reference beads onto the coverslip,
in order to mark the interface. Since focusing is done using apiezo actuator, the position of
the acquisition plane with respect to the interface is then known. The other approach is to
include reference beads that are visible over a large axial range in the specimen. By acquiring
z-stacks with known relative displacements, and performing a global fit of the PSF model to
these stacks, we can determine the position of the acquisition planes together with the locations
of the calibration beads. The precision of this calibrationincreases with the number of views
used in the fit (cf. discussion on CRB). In our case, we used thelatter approach with 30 views.
The initialization step also gave us very precise estimatesof the position of the reference beads,
which could then be used as gold standards for our experiments.

Experimental data were obtained by acquiring z-stacks withan axial step of 100nmof the
fluorescent nano-bead preparations described in the materials and methods section. An xz-
section of such a stack is shown in Fig. 5(a). The corresponding section of the theoretical PSF
(Fig. 5(b)) shows that the model fits the data well, even for relatively difficult conditions (high
NA, depth of the particle). As apparent in the xz-section, but more evidently so in the slices
of the z-stack shown in Fig. 6, a non-negligible amount of background noise is present in the
acquisitions. This needs to be taken into account for the estimation algorithm and thus requires
an extension of our image formation model.

3.2. Extension of the statistical noise model

The mean and variance of the background noise can be estimated to reasonable accuracy from
sections of acquisitions that are exempt of fluorescent sources. For the sample discussed at the
end of this section, the estimated values for the mean and variance are, respectively,µb = 514.74
andσ2

b = 177.82. From these measures it is obvious that the background noise does not follow
a Poisson distribution, which suggests that the backgroundin our experiment is due to read-
out noise (especially since a cooled camera was used). In principle, it is possible to extend our
statistical model (Eq. (4)) such as to incorporate background noise, which is typically described
as white Gaussian in the literature. To facilitate this extension, we investigate the possibility of
approximating background noise with Poisson statistics.

A fundamental property of the Poisson distribution is that it rapidly converges towards a
Gaussian with equal mean and variance, given that the latteris large enough, which is usually
considered the case whenµ > 10. Since the variance of the background noise is significantly
higher than this value, we make the approximation by splitting the Gaussian distribution into a
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Fig. 5. (a) xz-section of a z-stack of a bead located atzp = 22.1 µm. (b) xz-section of the
PSF model corresponding to the parameters from (a).

Poisson distribution and a fixed offset (equal toµb−σ2
b ), which leaves us with the convolution

between two Poisson distributions. The convolution of two Poisson distributions yields another
Poisson distribution, whose mean is equal to the sum of meansfrom the original distributions.
We thus obtain the following extension of our image formation model:

P(q) =
e−(q̄+σ2

b )(q̄+σ2
b)q

q!
. (12)

Consequently, the expression for the CRB becomes

Var(ẑp) ≥ 1

/

N

∑
n=1

∑
x,y∈S

(

∂
∂zp

q̄(x,y,zn|zp)
)2

q̄(x,y,zn|zp)+σ2
b

, (13)

with the iterative estimator given by:

ẑ(m+1)
p = ẑ(m)

p −

N
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x,y∈S

(

∂ q̄
∂zp

(

q
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b
−1

)
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N
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n=1
∑

x,y∈S

(

∂ 2q̄
∂z2

p

(

q
q̄+σ2

b
−1

)

−
(

∂ q̄
∂zp

)2 q
(q̄+σ2

b )2

) . (14)

To illustrate the appropriateness of this model, we comparein Fig. 6 a few slices of a measured
z-stack with the simulated acquisitions obtained using theextended model. When rings are
present in the diffraction model, there is an intensity peakat the center of the pattern. If the
source is aligned with the xy-grid, this peak is recorded by asingle pixel on the CCD. If,
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Fig. 6. Comparison of acquisitions of a bead located atzp = 22.1 µm with their counter-
parts generated from the theoretical model. The distances indicate the amount by which the
acquisitions are defocused.

however, the source is slightly shifted, the peak’s intensity is distributed across four pixels,
like it appears in these examples. Localization in three dimensions was used to determine the
particle’s position in the measured z-stack. This estimated position was then used to generate
the phantom data.

3.3. Validation with real data

In our acquisitions of the nano-bead sample described in thematerials and methods section,
several dozen beads were visible. Among these, we chose five beads whose diffraction patterns
were well separated, such that estimation errors due to overlap from the patterns of different
beads were not possible.

For our setup, the CRB shown in Fig. 3 indicates that localization is much more precise when
positioning the focus below the bead, such that diffractionrings appear in the acquisition. The
xz-section of the bead confirms this; it is indeed much harderto differentiate two acquisitions
that depict a blurred spot of light than two acquisitions that present clearly disparate diffraction
patterns. In order to illustrate the performance of our estimator, we thus apply it to acquisitions
that feature diffraction rings. Initial values for the particle’s position were obtained using nor-
malized cross-correlation with a series of slices of the PSFmodel computed with the same axial
spacing (100nm) as the experimental acquisitions.

To demonstrate the localization for acquisitions taken at various defocus distances, the esti-
mation was performed using pairs of acquisitions spaced by 200 nm, for all such pairs within
the acquired z-stacks. Independently of the amount of defocus, the algorithm converges rapidly,
requiring 5 iterations on average. Fig. 7 demonstrates the result of the estimation for three beads
over a range of 2.5 µm. In the best case, localization precision (i.e., standard deviation of the es-
timation with respect to the reference) of 12.8nmis achieved. The worst result obtained with the
selected beads was a precision of 23.8 nm. The averages of the estimated positions for the three
beads shown in Fig. 7 are 22.046 µm, 22.069 µm, and 22.085 µm, respectively. These values
are also in perfect agreement with the reference positions of the beads (22.050µm, 22.073µm,
and 22.081µm, respectively), which are obtained using a global fit where all measurements are
included. To further confirm our results, we compared our estimates with those obtained using
the Leica TCS SP2 AOBS confocal microscope. This acquisition showed that the beads were
located approximately between 22.0 µm and 22.1 µm within the specimen, which is strong
evidence for the soundness of our estimations. In Fig. 8 we show the CRB for the shot noise-
only image formation model, the CRB for the extended image formation model and the average
value of the precision estimation achieved with the beads.
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3.4. Optimal acquisition settings

Beyond its theoretical applications, the CRB can also be used to determine optimal acquisi-
tion settings that may serve as guidelines to experimentalists. As the evaluation of the CRB
showed, it is advantageous to take acquisitions slightly defocused with respect to the particle’s
actual position. In practice, however, particles can be situated anywhere within the specimen,
and it is therefore not possible to adequately position the focus with respect to an individual
particle. Still, the study of particles is usually confined to a predetermined section of the spec-
imen. In such cases, under the hypothesis that the particle’s axial position follows an uniform
distribution within the section, optimal focal positions leading to the lowest average CRB can
be determined. This optimization is non-trivial, but can beperformed by solving the following
cost function:

arg min
z1,...,zN

∫ b

a

(

1

/

N

∑
n=1

∑
x,y∈S

1
q̄

(

∂ q̄
∂zp

)2
)

dzp, (15)

wherea andb are the bounds of the region of interest. In Fig. 9, we show theresults of this opti-
mization for a variety of settings. It is immediately clear that the optimal settings are non-trivial.
The estimation precision is significantly higher when acquisitions are taken with an optimal fo-
cus, especially for particles that are deeper within the specimen. At the same time, these results
also show the effect on the CRB of increasing the number of acquisitions. Notice how the CRB
decreases as the number of acquisitions is augmented. This is expected, since increasing the
amount of “information” on the particle should implicitly lead to a better estimation precision.
This property is especially useful in highly noisy acquisition conditions.

4. Discussion

By investigating the fundamental theoretical limits of axial localization from defocused ac-
quisitions of sub-resolution fluorescent particles, we have shown that nanometer precision can
be achieved. The maximum-likelihood estimator proposed inthis work reaches the theoretical
limit provided that the image formation model is accurate, which we have experimentally shown
to be the case. The use of a non-stationary PSF model makes thelocalization applicable to any
configuration of microscope objectives and specimen preparation; it is especially powerful for
localizing particles at any depth within the specimen. Usually, the non-stationary nature of the
PSF along the optical axis requires approximative models that suppose stationarity to hold for
small layers of the specimen (see, e.g., [19]). Here, we developed an approach based directly
on the analytical expression of the PSF, thus guaranteeing convergence within the precision of
the theoretical limits.

In our experimental tests we have shown that an axial localization precision below 15nm
can be reached. These results confirm the practical applicability of the proposed approach, and
demonstrate sub-resolution localization. They also confirm the findings of Speidelet al. [13],
who were the first to show that nanometer-precision axial localization from defocused acqui-
sitions is possible in widefield fluorescence microscopy. While most localization and tracking
approaches that claim such a precision along the optical axis are limited to one or two particles
(see, e.g., [20]), the method proposed here can be applied toany number of particles detected
within a z-stack. For such a multiple-particle scenario, our model could be extended to account
for overlap between the diffraction patterns of particles.

An efficient method to model the combined effect of various sources of noise was introduced,
rendering the estimation possible for a wide range of configurations. In particular, incorporating
additional sources does not increase the complexity of the model.

An important observation is that the localization algorithm performs significantly better for
acquisitions that are taken by placing the focus on the side of the particle where the diffraction
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Fig. 9. Optimal focal positions for a variety of acquisition settings. For a single acquisition,
(a) and (b) clearly show the influence of the particle’s depth on the optimalposition; this is
notably due to the focal shift that occurs as a particle moves deeper into the specimen (here
a 4µm thick section is considered). The optimal position is indicated by the vertical bars.
(c), (d) Optimal focal positions when two acquisitions are used for two different sections
of the sample. (e), (f) Scenario with three acquisitions. The optimal acquisition settings are
considerably different from the uniform ones, and their effect on theCRB is substantial.
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Fig. 10. Comparison of the Cramér-Rao bounds for the scalar and vectorial formulations
of the PSF. The xz-sections of the PSF and the dotted line in the CRB plots wereobtained
using the vectorial model. As the source moves deeper into the specimen,the difference
between the two models becomes increasingly negligible.

pattern is more detailed (in cases wherens < ni , such as in our example, this corresponds to
zn > zp). The lesser performance of the estimation on the other sideis consistent with the higher
value of the CRB (see Fig. 3); we also suspect that it may be partly due to slight discordancies
between the PSF model and the experimental observations (see Fig. 5 in the range of−2 to
0 µm).

4.1. Influence of the PSF model

We briefly justify our choice of a scalar PSF model for the proposed localization method. Our
experiments with the vectorial model proposed by Török et al. [15] and Hell et al. [2, 16]
indicate that the differences with respect to the results obtained using the scalar model are not
significant in the context of our work. Studies of the CRB for the vectorial formulation show
that in some cases, it is slightly lower than its scalar equivalent (see Fig. 10). However, this
is only apparent for strongly out-of-focus acquisitions where the signal intensity is weak and
generally undetectable, mainly due to background noise. Also, this effect is most noticeable for
less aberrated cases; as one penetrates deeper into the specimen, the CRBs for the two models
become virtually equivalent.

Moreover, the scalar model has a clear computational advantage. A vectorial model requires
three integrals instead of one for the scalar case, not to mention the fact that the integrands are
much more involved. Since the localization algorithm also requires the second derivative of the
PSF, the difference in computational cost is considerable.

We note that our methodology is generic enough to accommodate for other theoretical mod-
els as further progress is made in this field (see, e.g., [21, 22]).
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4.2. Shortcomings and possible extensions of the method

In practice, when a thick section of specimen is considered,a z-stack with sufficient axial
resolution (i.e., low spacing between acquisitions) is required to guarantee that all particles
present in the specimen are recorded. As a consequence, eachparticle is visible in multiple
slices, which can then be used in the localization. The analytical expression for the CRB can be
used to derive the optimal acquisition positions with respect to a particular experiment, in order
to maximize the performance of the localization.

A parameter not explicitly taken into account is the temporal resolution of the acquisitions;
its determining factor is the movement of the particle during the acquisition of the z-stack.
For fast-moving particles, it is still possible to perform the localization, however, by limiting
the number of acquisitions. The volume (i.e., depth) of observation is then reduced, and as a
consequence localization becomes less precise. Another element that can hinder the efficiency
of localization is the diffusion of light occurring within the specimen. Although our approach
permits the localization of particles at any depth, it is in this respect limited by a factor that
affects any localization method.

The first-order approximation made in the development of theML estimator holds only lo-
cally, meaning that the estimator is very sensitive to the initial estimate. Precision in the latter
can be increased, if necessary, by computing the normalizedcross-correlation with a finer sam-
pling step (see Eq. (11)). Another possible improvement in this direction might be obtained by
using a higher order (e.g. quadratic) approximation of the likelihood function.

These limitations aside, the methodology presented in thiswork is promising, showing that
with a standard widefield fluorescence microscope, particles can be localized with nanometer-
scale precision. Our experimental results confirm that the localization precision is comparable
to that of specialized hardware such as the setup proposed byKaoet al. [7].
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Appendix

In this appendix we recall the essential aspects of the PSF model [17], and provide the full ex-
pressions of the derivatives used in the computations of theCRB and the maximum-likelihood
estimation.

The optical path difference, noted OPD (= ABCD - PQRS) is approximated as follows:

1
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√
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(16)

As shown in Fig. 11, a ray emitted at pointP in the design systemPQRSfirst passes through
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first in the design configuration (PQRS, withzp = 0), and the second in an arbitrary position
zp (path ABCD).

a coverslip of thicknesstg∗ and refractive indexng∗ , then through an immersion medium of
thicknessti∗ and refractive indexni∗ , before entering the front lens of the objective. Under
non-design conditions (pathABCD), a ray is emitted at a pointA within the specimen. Thus
it first traverses a specimen layer of thicknessts, which in our notation corresponds tozp and
refractive indexns, before passing through a coverslip of thicknesstg and refractive indexng.
Then it passes the immersion medium of thicknessti and refractive indexni before entering
the objective. The first and second derivatives of the PSF with respect to the axial positionzp,
required in Eqs. (7)-(10), are as follows:

∂ q̄(x,y,zn|zp)

∂zp
= 2k|A|2

∫ 1

0
sin
(

W(ρ,zn|zp)
)

J0 (krNAρ)ρ dρ

·
∫ 1

0
cos
(

W(ρ,zn|zp)
)

J0 (krNAρ)g(ρ)ρ dρ

−2k|A|2
∫ 1

0
cos
(

W(ρ,zn|zp)
)

J0 (krNAρ)ρ dρ

·
∫ 1

0
sin
(

W(ρ,zn|zp)
)

J0 (krNAρ)g(ρ)ρ dρ,

(17)
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∂ 2q̄(x,y,zn|zp)

∂z2
p

= 2k2|A|2
(

∫ 1

0
cos
(

W(ρ,zn|zp)
)

J0 (krNAρ)g(ρ)ρ dρ

)2

−2k2|A|2
∫ 1

0
sin
(

W(ρ,zn|zp)
)

J0 (krNAρ)ρ dρ

·
∫ 1

0
sin
(

W(ρ,zn|zp)
)

J0 (krNAρ)g(ρ)2ρ dρ

+2k2|A|2
(

∫ 1

0
sin
(

W(ρ,zn|zp)
)

J0 (krNAρ)g(ρ)ρ dρ

)2

−2k2|A|2
∫ 1

0
cos
(

W(ρ,zn|zp)
)

J0 (krNAρ)ρ dρ

·
∫ 1

0
cos
(

W(ρ,zn|zp)
)

J0 (krNAρ)g(ρ)2ρ dρ,

(18)

where

g(ρ) =

(

(

1−
ni

ns

)

√

n2
i −NA2ρ2 +

√

n2
s −NA2ρ2

)

. (19)

Note that Haeberlé [23] proposed an easy way of evaluating the vectorial modelby Török
et al. and Hell et al., based on the parameters and formulation of the OPD of the Gibson and
Lanni model.
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