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ABSTRACT
Fluorescence localization microscopy (i.e., PALM, STORM)
has enabled optical imaging at nanometer-scale resolutions.
The localization algorithms used in these techniques rely on
fitting a 2-D Gaussian to the in-focus image of individual
fluorophores. For fixed fluorophores, however, the observed
diffraction pattern depends on the orientation of the underly-
ing molecular dipole and does not necessarily correspond to
a section of the system’s point spread function. By using a
physically realistic image formation model for dipoles to per-
form the fit, both the position and orientation of the dipole can
be estimated with high accuracy, improving upon Gaussian
localization. In this paper, we present an algorithm for joint po-
sition and orientation estimation based on a 3-D steerable filter,
and show that the results are near-optimal with respect to the
Cramér-Rao bounds. We show that patterns generated using
estimated positions and orientations closely fit experimental
measurements.

Index Terms— Fluorescence microscopy, Fluorescent
dipoles, Localization, Steerable filters, Superresolution

1. INTRODUCTION

The fluorescence localization microscopy techniques intro-
duced in recent years have enabled optical imaging of complex
specimens at molecular resolutions, down to the nanometer
scale. Most of these techniques, such as photoactivated local-
ization microscopy (PALM) [1] and stochastic optical recon-
struction microscopy (STORM) [2], are best suited to imaging
2-D sections of thin, fixed specimens. Accordingly, the im-
ages of individual molecules are assumed to correspond to the
in-focus section of the microscope’s 3-D point spread function
(PSF), which can be approximated by a 2-D Gaussian function
without significant loss in lateral localization accuracy [3]. In
this approach, any molecule within the depth of field of the
system can be detected and localized, meaning that the axial
resolution of the resulting image can be of the order of several
hundred nanometers (for an objective with a high numerical
aperture (NA)).
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The lateral localization accuracies that are claimed for
these super-resolution techniques are usually based on the
assumption that individual fluorophores in the sample act as
isotropically emitting point sources, and thus, that their im-
age corresponds to a section of the system’s PSF [4]. While
this is valid for fluorophores that freely rotate during image
acquisition, it does not hold for fixed fluorophores. Their cor-
responding diffraction patterns are significantly different and
highly specific of the orientation of the fluorophore’s underly-
ing dipole. Even when imaged in focus, the observed intensity
maximum corresponding to such a dipole may be shifted by
several nanometers with respect to the absolute position of the
fluorophore, inducing a significant bias in the localization [5].

In order to address the lack of depth discrimination, ex-
tensions of STORM to 3-D involving cylindrical optics have
been proposed (see, e.g., [6]). However, these approaches
require a specimen-specific calibration, and are also subject to
producing biased results when applied to fluorescent dipoles.
A solution to avoiding this bias in all instances is to use an
approach based on an accurate image formation model for
dipoles, where the localization is performed by numerically
fitting this model to observations. In comparison to PSF-based
localization approaches [7], this introduces additional degrees
of freedom in the form of dipole orientation parameters. In
this work, we show that image formation for dipoles can be
decomposed into six non-orthogonal basis functions, which
may be used to formulate the orientation estimation problem
as the optimization of a 3-D steerable filter [8]. The resulting
algorithm serves both as method to obtain an initial detection
with localization at the pixel level, and as an efficient means
of updating the orientation estimates when performing the
subsequent sub-pixel localization to achieve super-resolution.

2. IMAGE FORMATION FOR DIPOLES

A single fluorophore can be described as a harmonically oscil-
lating dipole characterized by a position xp = (xp, yp, zp) and
a moment p = (sin θp cos φp, sin θp sinφp, cos θp), where θp

is the zenith angle (i.e., between the dipole and the optical axis)
and φp is the azimuth angle. The diffraction pattern observed
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when imaging such a dipole may be written as

hθp,φp(x;xp, τ ) =

sin2 θp

(
|I0|2 + |I2|2 + 2 cos(2φp − 2φd)"{I∗0 I2}

)

− 2 sin(2θp) cos(φp − φd)#{I∗1 (I0 + I2)}
+ 4|I1|2 cos2 θp

= pTMp, (1)

where φd = tan−1
(
(y − yp)/(x − xp)

)
. An asterisk de-

notes complex conjugation, and vT stands for the Hermitian
transpose of v. The symmetric matrix M = (mij)1!i,j!3 is
specified by

m11 = |I0|2 + |I2|2 + 2"{I∗0 I2} cos 2φd

m12 = 2"{I∗0 I2} sin 2φd

m13 = −2 cos φd#{I∗1 (I0 + I2)}
m22 = |I0|2 + |I2|2 − 2"{I∗0 I2} cos 2φd

m23 = −2 sinφd#{I∗1 (I0 + I2)}
m33 = 4|I1|2.

(2)

The integral expressions for I0, I1, and I2 are given by

I0(x;xp, τ )

=
∫ α

0
B0(θ)

(
t(1)s t(2)s + t(1)p t(2)p

1
ns

√
n2

s − n2
i sin2 θ

)
dθ

I1(x;xp, τ )

=
∫ α

0
B1(θ)t(1)p t(2)p

ni

ns
sin θ dθ (3)

I2(x;xp, τ )

=
∫ α

0
B2(θ)

(
t(1)s t(2)s − t(1)p t(2)p

1
ns

√
n2

s − n2
i sin2 θ

)
dθ,

where

Bm(θ) =
√

cos θ sin θJm(krni sin θ)eikΛ(θ,z,zp,τ ). (4)

For conciseness, the arguments are omitted from the notation
of these functions whenever they are explicit from the context.
The phase component Λ(θ, z, zp, τ ) describes the system’s
aberrations due to defocus, index mismatches etc., and the
parameter vector τ = (NA,n, t) contains the optical param-
eters of the system: NA, refractive index n and thickness t
of the specimen, glass, and immersion layers in the sample
setup [9, 10].

2.1. Noise model

In single molecule fluorescence microscopy, shot noise in-
duced by fluorescence emission in the sample is the dominant
source of noise. In addition to the signal of interest, it depends
on the contributions of potential background terms, such as

residual signals from other fluorophores and autofluorescence
of the sample. Additionally, read-out noise in the detector
may also be a factor. Unlike shot noise, which obeys Poisson
statistics, read-out noise is Gaussian-distributed. Given that
the Poisson distribution rapidly converges towards a Gaus-
sian with equal mean and variance when the variance is large
enough (this is usually considered the case when σ2 > 10),
we propose a general noise model consisting of a shifted Pois-
son formulation that incorporates a term accounting for the
read-out noise factor and background. Consequently, we for-
mulate the expected photon count q̄(x; xp, τ ) corresponding
to a point x on the detector (in object-space coordinates) as

q̄(x; xp, τ ) = c ·
(
A hθp,φp(x; xp, τ ) + b

)
, (5)

where A is the amplitude, c is a conversion factor, and b is the
sum of the background fluorescence signal and the variance
σ2

r (in intensity) of the read-out noise. The probability of
detecting q photons at x is then given by

Pq̄(x;xp,τ )(q) =
e−q̄(x;xp,τ )q̄(x;xp, τ )q

q!
. (6)

3. STEERABLE FILTERS

A standard approach to estimating the position and orienta-
tion of arbitrarily rotated image features—such as the dipole
diffraction patterns discussed in this work—consists in corre-
lating the input data with a set of templates that correspond to
rotated versions of the expected feature. The quadratic form (1)
shows that the 3-D rotation of a dipole can be decoupled from
filtering, i.e., that the orientation and position estimation can
be expressed as a 3-D steerable filter (for localization at the
pixel level). Similarly to the steerable filters introduced by
Freeman and Adelson [8], the dipole diffraction pattern can
be decomposed into six templates weighted by trigonometric
interpolation functions, as illustrated in Fig. 1. An example of
these templates is shown in Fig. 2.

A suitable decomposition is obtained by formulating the
orientation and position estimation problem using the least-
squares criterion

JLS(x; θp, φp) =
∫

Ω

(
Ahθp,φp(v;xp, τ ) − f(x − v)

)2 dv

=
∥∥Ahθp,φp(x;xp, τ )

∥∥2 +
∫

Ω
f(x − v)2 dv

− 2Ahθp,φp(x; xp, τ ) ∗ f(x), (7)

where f(x) is the observed signal from which the estimated
value b has been subtracted, and where Ω ⊂ R2 is the sup-
port of hθp,φp . The correlation term is steerable and can be
expressed as

(
hθp,φp ∗ f

)
(x) =

∑

ij

aij(φp, θp)
(
mij ∗ f

)
(x)

= pTMfp,

(8)
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where aij(θp, φp) are the weighting functions given in Fig. 1,
and where [Mf ]ij = mij ∗ f . The model energy term is
independent of φp and can be rewritten as

∥∥Ahθp,φp(x;xp, τ )
∥∥2 = A2uT

θp
Euθp , (9)

where uθp = (sin2 θp, sin 2θp, cos2 θp)T, and where E is de-
fined as

E =




〈m2

11〉 〈m11m13〉 〈m11m33〉
〈m11m13〉 〈m2

13〉 〈m13m33〉
〈m11m33〉 〈m13m33〉 〈m2

33〉



 . (10)

The notation 〈mij〉 stands for integration over the support Ω
of mij(x). The optimization of (7) is independent of the data
term, and the criterion thus simplifies to

J(x; θp, φp) = A2uT
θp

Euθp
− 2ApTMfp. (11)

This function cannot be solved in closed form for θp, φp, and
A. However, an iterative algorithm is obtained by setting the
partial derivatives

∂

∂θp
J(x; θp, φp) = 2A

(
AuT

θp
E

∂

∂θp
uθp

− 2pTMf
∂

∂θp
p
)

∂

∂φp
J(x; θp, φp) = −2pTMf

∂

∂φp
p

(12)
to zero and alternately solving for θp and φp, which is more
efficient in comparison to a gradient-based approach. The nota-
tion ∂

∂tv stands for the component-wise derivative of the vector
v with respect to t. Between these iterations, the amplitude is
updated using the least-squares solution

Â =
pTMfp
uT

θp
Euθp

. (13)

When all other parameters are known (i.e., xp, and τ ), the
angles can be estimated in a small number of iterations (usually
less than five).

As stated earlier, this approach based on steerable filters
results in a pixel-level localization of dipoles. In order to
obtain super-resolved position information, further refinement
is needed; this is achieved iteratively using a gradient-based
approach. The position returned by the steerable filter serves
as an initialization to this procedure, during which the angles
are also updated. Due to the precise pixel-level estimates, the
sub-pixel adjustments are usually fast. A complete description
of this algorithm is given in [10].

4. ESTIMATION ACCURACY

The performance of the proposed least-squares orientation es-
timation method is near-optimal in the sense that the variance
of the estimation results essentially reaches the Cramér-Rao

Fig. 1 Filterbank implementation of the steerable dipole filters.

Fig. 2 High-resolution versions of the templates used in the steerable de-
composition of dipole diffraction patterns. The example shown is for dipoles
at an air/glass interface, imaged with a 100×, 1.45 NA objective at 400 nm
defocus.

bounds (CRB) for both angles. These bounds provide a lower
bound on the variance of any unbiased estimator; for the angu-
lar parameters of a dipole they are given by

Var(θ̂p) ≥ [F−1]11

Var(φ̂p) ≥ 1
/ ∫

Ω

1
q̄

(
∂q̄

∂φp

)2

dx,
(14)

where the Fisher information matrix for the parameters
ϑ = (θp, A) is specified by

Fij =
∫

Ω

1
q̄

∂q̄

∂ϑi

∂q̄

∂ϑj
dx. (15)

Note that the bound for φp is independent of the bounds
for the other parameters, i.e., the respective cross-components
in the Fisher information matrix are zero. In Fig. 3, we com-
pare the standard deviations of the estimated angle values and
amplitude from simulated data to the value of the CRB.

5. RESULTS

The localization accuracy achieved in simulation and the CRBs
show that it is possible to estimate the orientation of a fluo-
rescent dipole with a precision of a few degrees (see Fig. 3).
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Fig. 3 Performance analysis of the 3-D steerable filter-based estimation of
θp, φp, and A. The solid lines correspond to the Cramér-Rao bounds, and the
markers correspond to the standard deviation σ of estimation results over 100
experiments using different realizations of noise. Optical parameters: M =
100×, NA = 1.45, ni = 1.515, ns = 1.00, λ = 666 nm, z = 400 nm, average
peak signal-to-noise ratio at 25 dB, background intensity level: 20%.

We performed preliminary experimental validation of the pro-
posed approach by imaging single Cy5 molecules bound to
single-stranded DNA (ssDNA). A solution of these molecules
was dried onto a microscope coverslip (it can thus be assumed
that zp = 0 in the phase term of (4)), and imaged using a 100×,
1.45 NA, oil-immersion objective. At such an air/glass inter-
face, highly characteristic diffraction patterns are observed,
as shown in Fig. 4. We compare experimental measurements
to images generated with the theoretical dipole diffraction
model (1) using estimated orientations and positions. The
results shown here were obtained after running the complete
localization algorithm, and thus reflect super-resolved esti-
mates. An accurate correspondence with the measurements is
obtained, up to some residual aberrations visible around some
of the Cy5 molecules.
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