Biomedical Imaging GroupSTI
English only   BIG > Publications > Wavelet Families

 Home Page
 News & Events
 Tutorials and Reviews
 Download Algorithms

 All BibTeX References
By request of the copyright holder, access to this paper has been protected by a password.

Families of Multiresolution and Wavelet Spaces with Optimal Properties

A. Aldroubi, M. Unser

Numerical Functional Analysis and Optimization, vol. 14, no. 5/6, pp. 417-446, October-December 1993.

Under suitable conditions, if the sampling functions φ1 and φ2 generate the multiresolutions V(j)(φ1) and V(j)(φ2), then their convolution φ1*φ2 also generates a multiresolution V(j)(φ1*φ2). Moreover, if p is an appropriate convolution operator from ℓ2 into itself and if φ is a scaling function generating the multiresolution V(j)(φ), then p*φ is a scaling function generating the same multiresolution V(j)(φ) = V(j)(p*φ). Using these two properties, we group the scaling and wavelet functions into equivalent classes and consider various equivalent basis functions of the associated function spaces. We use the n-fold convolution product to construct sequences of multiresolution and wavelet spaces V(j)(φn) and W(j)(φn) with increasing regularity. We discuss the link between multiresolution analysis and Shannon's sampling theory. We then show that the interpolating and orthogonal pre- and post-filters associated with the multiresolution sequence V(0)(φn) asymptotically converge to the ideal lowpass filter of Shannon. We also prove that the filters associated with the sequence of wavelet spaces W(0)(φn) converge to the ideal bandpass filter. Finally, we construct the basic wavelet sequences ψbn and show that they tend to Gabor functions. This provides wavelets that are nearly time-frequency optimal. The theory is illustrated with the example of polynomial splines.

AUTHOR="Aldroubi, A. and Unser, M.",
TITLE="Families of Multiresolution and Wavelet Spaces with Optimal
JOURNAL="Numerical Functional Analysis and Optimization",

© 1993 Informa Ltd. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Informa Ltd.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.