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1 Introduction
Real-world data such as multimedia, biomedical, and

telecommunication signals are formed of specific struc-
tures. However, these structures only determine some
general properties of the data while the unknown or un-
predictable parts are assumed to be random. This fact
suggests that we can use stochastic models to explain
real-world signals. Processes such as Gaussian white
noise or Gaussian ARMA processes are well-known ex-
amples which are extensively used in modeling some
components of the natural signals.

Although Gaussian models are strong tools that of-
fer simplicity in analysis, they fall short of describing
sparse or compressible structures. To overcome this is-
sue, it is common to consider Gaussian mixture models.
The drawback of this technique is that it is restricted
to the discrete-time signals and cannot be generalized
to continuous-time data.

The recent framework introduced in [1] shows that
it is possible to generalize continuous-time Gaussian
stochastic processes to non-Gaussian models with al-
most the same structure. The interesting point is that
a large subset of the non-Gaussian part refers to com-
pressible/sparse models based on the definition in [2].
The new family exhibits desirable properties such as
being closed with respect to linear combinations or lin-
ear filtering, similar to the Gaussian models.

In this paper, we adhere to the model in [1] and
present a stochastic framework for sparse and non-
sparse processes. Based on the statistical information
of the model, we revisit the classical denoising problem
and show that the optimal MMSE estimator is achiev-
able in some cases. Thus, when possible, we use it
as the gold standard to evaluate the performance of
common variational methods for recovering sparse sig-
nals. The results show that, by fitting the sparsifying
penalty function to the signal statistics, we can almost
achieve the MMSE performance.

2 Stochastic Model
The stochastic model discussed in this paper is de-

picted in Figure 1. The signal of interest, s(x), is
formed by applying the linear shaping operator L−1

to the white innovations w(x). Also, the linear shift-
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Fig. 1 The general stochastic model.

invariant operator L whitens back the process s(x). In
this paper, we restrict the choice of L to the differential
operators of the form

∑n
i=0 λiDi, where D and D0 = I

represent the first-order derivative and identity oper-
ators, respectively. It is known that such nth-order
differential operators are not invertible for n ≥ 1. To
define L−1 uniquely, we need to introduce n boundary
conditions. We assume that the boundary conditions
depend only on w(x) for x ≤ 0 and are set such that the
operator L−1 is linear (not necessarily shift-invariant).
A simple example would be zero boundary conditions
at x = 0.

The model in Figure 1 is classical for Gaussian in-
novations. However, one of the main contributions
in [1] is to show that it is possible to replace Gaus-
sian innovations with other non-Gaussian innovations
found through the Lévy-Khintchine representation the-
orem [3]. Note that, for many differential operators
L, the inverse operator L−1 (after including proper
boundary conditions) is unstable. This creates diffi-
culties in showing that L−1w is well-defined for non-
Gaussian innovations. In order to benefit from the
Lévy-Khintchine representation theorem, we need to
use the notion of generalized stochastic processes de-
veloped by Gelfand. In his theory, instead of the con-
ventional point-wise definition, a random process is de-
fined through inner products (e.g., 〈w,ϕ〉) with a space
of test functions. The characteristic form defined by

P̂w(ϕ) = E
{
e−j〈w,ϕ〉} (1)

plays a key role in Gelfand’s theory. Now, a simplified
version of the Lévy-Khintchine representation theorem
reads as follows:

The function P̂w(ϕ) = exp
( ∫

R f
(
ϕ(x)

)
dx
)

is a
valid characteristic form of a stationary white process
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if

f(ω) = jb1ω − b2
2

2
ω2 +

∫

R\{0}

(
cos(aω) − 1

)
v(a)da, (2)

where b1 and b2 are arbitrary constants and v(·) is a
symmetric function satisfying

∫

R\{0}
min(1, a2)v(a)da < ∞. (3)

The functions f and v are called Lévy function and
Lévy density, respectively. Three special white pro-
cesses characterized by (2) are:
1. Gaussian white process: By setting v ≡ 0, all the

inner products will follow Gaussian laws.

2. Impulsive Poisson: By setting b1 = b2 = 0 and
v(a) = λpa(a), where pa is a symmetric probability
density function, we obtain a white process equiva-
lent to having a random stream of Diracs such that
the location of impulses obey a Poisson distribution
and there are λ impulses in a unit interval on av-
erage. Furthermore, the amplitude of the impulses
follow the probability law pa. It is easy to check
that this white process results in signals s(x) that
have a finite rate of innovation [4].

3. Symmetric α-stable: By setting b1 = b2 = 0 and
v(a) = cα

|a|α+1 , where cα is a positive constant and
0 < α < 2, we obtain α-stable innovations. Due
to their heavy-tail distributions, they are known to
have compressible realizations [2].

These three examples show that the type of white
innovations greatly influences the characteristics of the
desired continuous-time process s(x). The last thing
to mention about the model is that we assume to have
only a finite number of noisy/noiseless samples of s(x),
denoted by {s̃[k]}m

k=0 = {s(x = k) + n[k]}m
k=0. The

additive noise on the samples, if present, is assumed to
be Gaussian.

3 Denoising
The denoising problem defined as estimating the

noiseless values by observing the noisy samples, is a
classical problem. To employ the statistical informa-
tions provided by the model, we need to obtain the a
priori distribution of the noiseless samples. The char-
acteristic form of the white innovations is the key to ob-
taining the joint distribution. However, working with
the joint pdf at high dimensions is impractical, unless
there is an efficient way of factorizing it.

In spline theory, it is known that the nth-order dif-
ferential operator L has a discrete counterpart in form
of an FIR filter which we represent by {d[k]}n

k=0. Fur-
thermore, the impulse response of the filter formed by
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Fig. 2 SNR improvement vs. variance of the additive
noise for Gaussian impulsive Poisson innovations. The
denoising methods are: MMSE estimator, Log regular-
ization, TV regularization, and LMMSE estimator.
composition of the discretized operator with L−1 re-
sults in a compact-support function, βL(x), which is
known as the L-spline [5, 6]. Let us define

u[i] = (d ∗ s)[i] =
n∑

k=0

d[k]s[i − k]. (4)

The u[i] are referred to as generalized increments and
they are useful in factorizing the a priori distribution.
Theorem 1. The joint a priori distribution factorizes
as

ps

(
s[m], . . . , s[0]

)
=

∏m
θ=2n−1 |d[0]| pu

(
u[θ]

∣∣{u[θ − i]}n−1
i=1

)

×ps(s[2n − 2], . . . , s[0]), (5)

where ps(s[2n − 2], . . . , s[0]) depends on the boundary
conditions and the conditional probabilities are given
by

pu

(
u[θ]

∣∣{u[θ − i]}n−1
i=1

)
= (6)

F−1
ωi

{
eI(ω0,...,ωn−1)

}(
{u[θ−i]}n−1

i=0

)

F−1
ωi

{
eI(0,ω1,...,ωn−1)

}(
{u[θ−i]}n−1

i=1

) . (7)

In the above expression, F−1 stands for the inverse
Fourier operator and the multivariate function I(·) is
defined as

I(ω0, . . . ,ωn−1) =
∫

R
f

(
n−1∑

i=0

ωiβL(x − i)

)
dx. (8)

The factorization in Theorem 1 enables us to apply
statistical denoising methods such as minimum mean-
square error (MMSE). In Figures 2 and 3 we show the
denoising results for samples of Lévy processes (L = D)
with impulsive Poisson and α-stable innovations, re-
spectively. The MMSE method is implemented using a
message-passing algorithm, while the rest of the meth-
ods are variational techniques.
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Fig. 3 SNR improvement vs. variance of the addi-
tive noise for Cauchy (α-stable with α = 1) innova-
tions. The denoising methods are: MMSE estimator,
Log regularization, TV regularization (which is equiv-
alent to MAP here), and LMMSE estimator.

• Log:

{ŝ[k]} = arg mins[k]
∑m

k=0

∣∣s̃[k] − s[k]
∣∣2

+τ
∑m

k=1 log
(
1 +

∣∣s[k] − s[k − 1]
∣∣2
)
. (9)

• TV:

{ŝ[k]} = arg mins[k]
∑m

k=0

∣∣s̃[k] − s[k]
∣∣2

+τ
∑m

k=1

∣∣s[k] − s[k − 1]
∣∣. (10)

• LMMSE:

{ŝ[k]} = arg mins[k]
∑m

k=0

∣∣s̃[k] − s[k]
∣∣2

+τ
∑m

k=1

∣∣s[k] − s[k − 1]
∣∣2. (11)

The results in Figures 2 and 3 show that properly-
tuned variational methods can almost achieve the
MMSE performance. However, it should be noted that
both the innovation statistics and additive noise power
should be taken into account.

Acknowledgments
The author is supported by the FUN-SP ERC grant.

References
[1] M. Unser, P. Tafti, and Q. Sun, “A unified

formulation of Gaussian vs. sparse stochastic
processes: Part I—Continuous-domain theory”,
arXiv:1108.6150v1.

[2] A. Amini, M. Unser and F. Marvasti, “Compress-
ibility of deterministic and random infinite se-
quences,” IEEE Trans. on Sig. Proc., vol. 59, no.
11, pp. 5193-5201, Nov. 2011.
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