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Abstract— Reconstruction of underconstrained tomographic
data sets remains a major challenge. Standard analytical tech-
niques frequently lead to unsatisfactory results due to insuffi-
cient information. Several iterative algorithms, which can easily
integrate a priori knowledge, have been developed to tackle this
problem during the last few decades. Most of these iterative
algorithms are based on an implementation of the Radon
transform that acts as forward projector. This operator and
its adjoint, the backprojector, are typically called few times
per iteration and represent the computational bottleneck of
the reconstruction process. Here, we present a Fourier-based
forward projector, founded on the regridding method with
minimal oversampling. We show that this implementation of the
Radon transform significantly outperforms in efficiency other
state-of-the-art operators with O(N2log2N) complexity. Despite
its reduced computational cost, this regridding method provides
comparable accuracy to more sophisticated projectors and can,
therefore, be exploited in iterative algorithms to substantially
decrease the time required for the reconstruction of undercon-
strained tomographic data sets without loss in the quality of the
results.

Index Terms— Tomography, iterative reconstruction
algorithms, Radon transform, forward and backprojector,
regridding method, minimal oversampling, kaiser-bessel,
prolate-spheroidal wavefunctions.

I. INTRODUCTION

THE word tomography refers to the method of reconstruct-
ing virtual cross-sections of an object using its projections

acquired at different angles. The filtered backprojection (FBP)
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algorithm, introduced in the 70’s [1], [2], is an analytical
method, that still represents the standard tomographic recon-
struction technique. It offers a good tradeoff between compu-
tational efficiency and accuracy. FBP provides high quality
reconstructions, when a sufficient amount of projections is
acquired and the noise affecting the experimental data is low
with respect to the object signal [3].

In many tomographic applications, one or both of these
conditions are not met due to experimental constraints. This
occurs, in particular, when the total scan time needs to stay
under a certain threshold due to dose limitations or to the
evolution speed of the sample.

Many iterative algorithms have been designed to outperform
FBP in the reconstruction of underconstrained datasets. These
methods can easily incorporate a priori knowledge about the
object or the image formation process and they usually provide
better reconstructions than FBP, but at a much higher computa-
tional cost. Most iterative reconstruction algorithms are based
on a forward projector and its adjoint (the backprojector),
typically called few times per iteration. The forward projector
usually corresponds to a discrete implementation of the Radon
transform on a specific basis. The efficiency of this operator
strongly determines the performance of the entire iterative
procedure.

Standard tomographic forward projectors require O(N3)
operations for an image of N × N pixels [4]–[12]
and their computational cost remains substantial, even for
highly optimized implementations on graphic processor
units (GPUs) [13]. Recently, algorithms with O(N2 log2 N)
complexity have been proposed to improve computational
efficiency. These algorithms are based on three different strate-
gies. The first group of projectors exploits the Fourier slice
theorem [3]. Samples in the Fourier space are directly inter-
polated from a Cartesian to a polar grid [14]. These methods
are characterized by poor accuracy and were never considered
for iterative applications. The second category uses a hier-
archical decomposition of either the line integrals [15]–[20]
or the image domain [21]–[23]. In particular, the backprojector
of [22] and [23] has shown great performance in terms of
accuracy and speed. This latter work is, however, focused on
analytical problems and an application to iterative algorithms
has never been presented. The third class is based on the
non-uniform fast Fourier transform with min-max interpola-
tion [24]. This accurate and fast method has been exploited
for iterative reconstruction techniques [25].
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In this paper, we present a novel cost-effective application
of the regridding method as tomographic forward projector
with O(N2 log2 N) complexity. This method is compared for
the first time with multiple state-of-the art implementations of
the Radon transform. The role of the new forward projector
in iterative procedures and, in particular, its influence on the
quality of the results is also studied.

The regridding method, originally devised for image recon-
struction in radio astronomy [26], [27], has been applied to a
broad range of reconstructive imaging methods like magnetic
resonance imaging (MRI) [28], [29], [33] and as backpro-
jector in computer tomography (CT) [30], [32], [34], [35].
This method is designed to retrieve a 2D or a 3D signal
from samples of its Fourier transform located on a non-
Cartesian lattice: the Fourier samples are, first, convolved
with a window function onto a Cartesian grid, the IFFT is,
then, applied and the signal in the real space is, finally,
corrected from the windowing contribution. The speed and
accuracy of the method depend entirely on the choice of the
convolving window. There are, in particular, three milestones
in the rather extensive literature about the regridding method:
the prolate-spheroidal wavefunctions (PSWFs) and the kaiser-
bessels (KBs) are recognized as high performing convolving
windows [30]; an oversampling factor of 2, defined as ratio
between the number of Fourier samples convolved onto the
Cartesian grid and the number of pixels to be retrieved in the
image space, is necessary for accurate reconstructions [31];
an efficient KB-based regridding method for MRI designed to
work with oversampling <2 is introduced in [33].

Here the three previous results are integrated and an efficient
forward projector tailored especially for iterative reconstruc-
tion algorithms is presented. The original contribution of this
manuscript can be summarized as follows.
• Novel cost effective forward (and backward) regridding

projector, based on the new combination of KB kernels
and a minimal oversampling strategy for fast and accurate
iterative reconstruction algorithms.

• Systematic comparison with multiple state-of-the-art
implementations of the Radon transform, clearly demon-
strating the advantages of the proposed projector for iter-
ative reconstruction. Its inferior accuracy as standalone
module is cancelled out rather than cumulated through
iterations and its simplicity leads to significant perfor-
mance (speed and memory) improvements of iterative
techniques.

This paper is structured as follows. In Section II, the
formulation and implementation details of the proposed
forward regridding projector (FRP) with standard and
minimal oversampling are presented. In Section III, the
efficiency and accuracy of the FRP against state-of-the-art
space- and Fourier-based forward operators are benchmarked.
Section IV deals with the reconstruction of underconstrained
simulated and experimental tomographic datasets with the
separable paraboloidal surrogate (SPS) and the alternate
direction method of multipliers (ADMM) implemented
with the FRP and the most accurate among the projectors
used in Section III. Section V offers a summary and final
remarks.

II. PROPOSED METHOD

A. Formulation

This paper focuses on the tomographic reconstruction of a
single 2D slice from line projections of an object in parallel
beam geometry. However, Fourier methods have been previ-
ously applied also to fan-beam [36], [37] and cone-beam [38]
geometry and the method proposed here can analogously be
extended beyond this simple 2D case.

The set of line projections for one tomographic slice is
called sinogram. The object to be reconstruncted is a finite
integrable real function f = f (x, y) : R2 → R with bounded
support. The symbol ˆ corresponds to the Fourier transform;
Pθ (t) is the Radon transform of f for an angle θ and a
distance t from the origin, as defined in [3]. Round and square
brackets are used when referring respectively to continuous
and discrete functions.

The Fourier slice theorem [3] states that:

P̂θ (ω) = f̂ (ω cos θ, ω sin θ). (1)

Thanks to (1), the problem of reconstructing f from its
projections Pθ (t) would be immediately solved, if the samples
f̂ [ωi cos θ j , ωi sin θ j ] were located on a Cartesian grid. This
is, however, not the case and the samples on the Cartesian
grid need to be estimated from those available on a polar
grid. Simple interpolation schemes (nearest neighbor, linear
or bilinear interpolation), used for this approximation, lead
to inaccurate reconstructions, since the localized interpolation
error in Fourier space smears back onto the entire image, once
the IFFT is computed.

In the regridding method (RM) [28], [31], the interpolation
from the [ωi , θ j ] to the [um, vn] grid is, instead, performed
as a convolution with a smooth window function ĥ, yielding
more accurate results, depending on the chosen kernel. The
standard RM for analytical CT reconstruction consists of five
steps [30], [32], [35]:

1) FFT-1D of each projection←− P̂θ ;
2) ramp filtering of the projections←− P̂( f )

θ ;
3) convolution with window function←− f̂ (m) = ĥ∗ P̂( f )

θ ;
4) IFFT-2D of f̂ (m) ←− f (m);
5) removal of the window function←− f = f (m)/h.

The last step, known as deapodization, is necessary, because
computing ĥ ∗ f̂ in Fourier space is equivalent to calculating
h · f in real space, so that removal of the convolving function
is required if f is sought. Accordingly, the forward regridding
projector (FRP) is defined by the same steps listed above (ramp
filtering excluded) in the reverse order:

1) pre-deapodization←− f (m) = f/h;
2) FFT-2D of f (m) ←− f̂ (m);
3) convolution with window function −→ P̂θ = ĥ ∗ f̂ (m);
4) IFFT-1D of each polar slice of P̂θ ←− Pθ .

The FRP does not require density compensation factors,
because, differently from the regridding method used for
backprojection, the input samples are uniformly distributed
in Fourier space. To simplify the algorithm, the convolving
function ĥ = ĥ(u, v) is chosen to be separable in u, v,
implying that also h = h(x, y) will be separable in x , y:

ĥ = ĥ(u, v) = ψ̂(u) · ψ̂(v) �⇒ h(x, y) = ψ(x) · ψ(y) (2)
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The FRP is defined as:

Pθi [tl ] = F−1
ω

{
P̂θi [ω j ]

}
l
= F−1

ω

{(
ĥ ∗ f̂ (m)

)
[ω j , θi ]

}
l

= F−1
ω

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑
un∈Uij
vm∈Vi j

ψ̂[g1(ω j,u − un)]ψ̂[g1(ω j,v − vm)]︸ ︷︷ ︸
Ci, j,n,m

× f̂ (m)[un, vm ]

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

l

= F−1
ω

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
un∈Uij
vm∈Vi j

Ci, j,n,m F x,y

{
f [x p, yq ]

ψ[g2x p]ψ[g2yq ]
}

un,vm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

l
(3)

where Fa is the (discrete) Fourier transform with respect to
the variable a, {...} indicates a collection of discrete values,
ω j,u = ω j cos θi , ω j,v = ω j sin θi , Uij and Vij are respectively
the sets of values of un and vm inside the interpolation support,
g1 and g2 are factors to map distances in the polar and
Cartesian grid into look-up tables (LUTs) indices.

The accuracy and efficiency of the RM (and, therefore, of
the FRP) lie entirely in the choice of the convolving function ĥ.
In terms of accuracy, the optimal kernel is an infinite sinc func-
tion [30], which is, however, computationally impractical. For
finite kernels and, therefore, superior efficiency, the smaller
the supports of h and ĥ are, the better the performance of
the method [30]. If h has compact support in real space, the
interpolation error is still smeared out on the whole image,
but it can be expected to remain as local as possible and
the reconstruction will be accurate [31]; if ĥ has compact
support in Fourier space, only few datapoints in the support
region will contribute to the convolution and the method will
be computationally efficient. The accuracy of a convolution
kernel ĥ is strongly determined by the shape (in particular, the
rolloff) of the central lobe and the amplitude of the aliasing
sidelobes characterizing h. The deapodization removes the
rolloff induced by this central lobe, especially at the borders
of the output image, but, at the same time, it amplifies the
aliasing sidelobes [31]. Aliasing contamination from sidelobes
can be reduced by oversampling [30], [31], i.e. artificially
extending the image field-of-view (FOV) and ignoring the
outer portion of the image after reconstruction. In this way,
smaller sidelobes will alias back into a wider central lobe,
whose tails are neglected, once the output array is cropped.
The extended central lobe also tapers less steeply, so that less
rolloff correction is required. For a more detailed discussion on
the optimal characteristics of convolution kernels, the reader
is referred to the abovementioned references.

An oversampling α = G/N = 2.0, with G the size of the
grid, where the interpolation takes place, and N the size of the
original input grid, guarantees accurate reconstructions with
the RM [30], [31]. The aliasing error is a metric to compare
the performance of different convolving functions and has the

following pixel-based form [31], [33]:

ε(i) =

√√√√√
∑
p �=0

[h(i + Gp)]2

[h(i)]2 . (4)

B. FRP With Prolate Spheroidal Wavefunctions

As outlined above, the energy of the ideal convolution
kernel should be maximally concentrated in a compact
support both in real and Fourier space. We introduce the
operators PT and P�, that create respectively time- and
band-limited functions:

PT f (t) = �T f (t) P� f (t) = F−1
ω [�� F t ( f (t))]

�T (t) =
{

1 if |t| ≤ T/2

0 if |t| > T/2
��(ω) =

{
1 if |ω| ≤ �/2
0 if |ω| > �/2

(5)

The prolate spheroidal wavefunctions (PSWFs) are the
eigenfunctions of the self-adjoint operator P�PT [39]:

P�PTψi (t) =
T/2∫

−T/2

dt ′
sin
(
�(t − t ′)

)

π(t − t ′)
ψi (t

′) = λiψi (t). (6)

If ψi ’s are bandlimited, the PSWF of 0-th order, ψ0, with
the largest eigenvalue λ0, has the highest amount of energy
E0 = ‖PTψ0‖2 in the interval [−T/2, T/2] [39]. From
the eigenvalue equation (6), no analytical expression for the
PSWFs can be obtained; however, several approximations
exist, depending on the magnitude of the parameter c =
T�/2 [39]. Since T should not be larger than ± 1 to guarantee
an accurate deapodization correction [35], PSWFs are best
approximated using spherical Bessel functions, expressed as
normalized linear combinations of even Legendre polynomials
in Fourier space [39]:

ψ̂
(a)
0 (k) =

Na∑
n=0

c2n L2n(k)

Na∑
n=0

c2n L2n(0)

, (7)

where the superscript (a) stands for “approximated”, Ln is the
Legendre polynomial of degree n and {c2n} are the expansion
coefficients. The inverse Fourier transform of a series of even
Legendre polynomials corresponds to a series of even spherical
Bessel functions, that can themselves be expanded in the inter-
val [−1, 1] in terms of even Legendre polynomials [40], [41].
According to this argument, ψ(a)0 (x) represents a scaled
version of ψ̂(a)0 (k):

ψ
(a)
0 (x) = C · ψ̂(a)0

(
x

S

G

)
, (8)

where S is the density of the convolution LUT and C ∈ R0
is a constant.

It has been shown that an analytical regridding algorithm,
based on this approximation of the PSWFs of 0-th order, is
about 20 times faster than FBP, without accuracy degrada-
tions [35]. The FRP has been implemented analogously with
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separable convolving kernel and deapodizer given respectively
by (7) and (8). The following additional parameters were used:
α = 2.0, Na = 10 and S = 2048. This implementation is
abbreviated with FRP-PSWF. Since α = 2 guarantees accurate
results [31], we consider this oversampling as “standard”.

C. FRP With Minimal Oversampling

Due to the lack of an analytical expression for the PSWFs,
it is difficult, in this case, to optimize the oversampling
and other parameters as a function of the aliasing error (4).
Kaiser Bessels (KBs) kernels have shown great accuracy com-
pared to other convolving windows like two- and three-term
cosine, Gaussian and B-splines [31], although their aliasing
error is slightly higher than for the PSWFs approximation
in (7). The simple analytical expression of KBs kernels
enables, however, an optimization of their shape as a function
of the oversampling [33]. The formulas for the KB window
and its inverse Fourier transform are [42]:

ĥ(kx) = G

W
I0

⎛
⎝β
√

1−
(

2Gkx

W

)2
⎞
⎠ for |kx | ≤ W

2G
, (9)

h(x) =
sin

√(
πW x

G

)2

− β2

√(
πW x

G

)2

− β2

, (10)

where I0 is the zero-th modified Bessel function, W is the
size of the convolving kernel and β is the tapering parameter,
that determines how fast the KB drops to zero. α < 2 yields a
substantial decrease in run time and memory required for the
reconstruction compared to the case of the RM with standard
oversampling. The shape optimization of the KB kernel as a
function of oversampling gives the following results [33]:

β = π
√(

W

α

)2

·
(
α − 1

2

)2

− 0.8, (11)

S = 0.91

α · εs
for NN S = 1

α

√
0.37

εs
for LIN, (12)

where NN and LIN refer, respectively, to the nearest neighbor
and linear interpolation scheme to sample the convolution LUT
and εs is the maximum allowed sampling error. The FRP
with minimal oversampling has been implemented with a KB
kernel based on (11) and (12), setting εs = 0.01, α = 1.125
and choosing a linear interpolation scheme for the LUT. The
FRP with these settings, abbreviated as FRP-KB, computes
artefact-free forward projections in the shortest time and with
the smallest memory allocation.

D. Further Details

The kernel width is set to W = 14.0/π for both
FRP-PSWF and FRP-KB. Experiments with the filtered adjoint
operators, conducted on the Shepp-Logan (SL) phantom [43],
show that for W ∈ [18/π, 20/π] the reconstruction is
affected by a “blackening” artefact at the sides of the image,

because the intepolation is not local anymore, whereas for
W ∈ [4/π, 10/π] the interpolation support is too small and the
reconstruction is consequently affected by bright symmetric
curves. Reconstructions look reasonable, by visual inspection,
for W ∈ (10/π, 18/π); in our implementation, W = 14.0/π
provides the most accurate results.

Moreover, we recall that the backprojector is the adjoint
(not the inverse!) operator of a forward projector. From a
computational point of view, the backprojector performs all
operations of the forward projector, but in reverse order.
Density compensation factors (DCFs) are not needed for the
backprojector, when coupled to the forward operator inside
an iterative scheme. The DCFs come into play only when the
backprojector is used for analytical tomographic reconstruc-
tion. In such case, they correspond to a discrete version of the
ramp filter, analogously to FBP.

The FRP operators are implemented in C with the fast
FFTW library [44] and the pseudocode is shown in Appendix.
The 1D functions ψ̂ and ψ are stored in precomputed LUTs
to allow for fast computations.

E. Algorithm Complexity

The cost of the FRP lies in the convolution and the call
of FFT/IFFT. Given an input image of N × N pixels, an
oversampling ratio α, a kernel width W and a number of
views M , the convolution amounts to approximately W M N
operations, whereas the overall call of FFT/IFFT corresponds
to α2 N2 log2(αN) + αM N log2(αN) (1-time FFT-2D and
M-times IFFT-1D) floating operations, that represents the
leading cost term when N is big enough.

III. ACCURACY ASSESSMENT

A. Benchmark Procedure

The accuracy of the proposed forward projectors has been
assessed with a phantom for which the analytical Radon
transform can be computed. The SL phantom [43] consists
of 10 roto-translated ellipses and, is, therefore, suited for
this task [3]. We use here a modifed version of the original
SL featuring higher contrast to improve visual perception.

The FRP-PSWF and FRP-KB are benchmarked against mul-
tiple state-of-the-art implementations of the Radon transform,
listed in the following.

The ray-driven (RT-RAY) [9] and distance-driven
(RT-DIST) [10] forward projectors are widely used and
are characterized by O(N3) complexity.

The Radon transform based on a cubic B-spline basis
(RT-BSPLINE) [12] is a very accurate projector, superior, for
instance, to implementations on pixel [8] and Kaiser-Bessel
basis [11]. It is characterized by O(N3) complexity. For its
implementation, a LUT of projected B-spline tensor products
is precomputed for each view (S = 2048) and used inside a
standard pixel-based forward projector.

The hierarchical filtered backprojection [22] treats the
reconstruction of an N × N image as the sum of shifted
reconstructions of smaller images centered at the origin.
While the image grid is recursively halved, the input
sinogram is halved in angles and pixels, since each subimage
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requires fewer projections for the reconstruction. Thanks to
this decomposition scheme, the backprojection is performed
with O(N2 log2 N) operations. We used the implementation
described in [22] and [23] to build the corresponding forward
projector (FHFP). The parameters ruling the image/sinogram
decomposition and the choice of the interpolation schemes
can strongly influence the accuracy and efficiency of this
projector. Using the performance study in [23] as guide,
we selected the best parameters for accurate results, when
studying the operator accuracy. For the computational cost
evaluation, parameters providing fastest artefact-free (at visual
inspection) forward/backprojection have instead been used.

The non-uniform fast Fourier transform allows to Fourier
transform finite-length signals to a non-uniformly sampled
frequency space. Similarly to the regridding method, it can be
used to reconstruct a signal from a non-Cartesian collection of
samples in Fourier space. Several versions exist ([45]–[48]):
the non-uniform fast Fourier transform using min-max inter-
polation represents, so far, the most accurate implementation
of this method [24]. The forward projector based on this tech-
nique (NUFFT) [25], [37] requires O(N2 log2 N) operations,
but also a significant amount of additional calculations and
memory to precompute and store shift-variant interpolators.
If NUFFT makes use of a shift-invariant kernel, the technique
does not differ from a standard regridding method. The perfor-
mance of NUFFT depends on several parameters like the type
of kernel, size of the convolution window, sampling density
of the LUT and oversampling ratio. In the comparison of the
forward projector, NUFFT is used with the setting providing
the best possible accuracy, according to the study presented
in [25]. This setting implies a shift-variant kernel of Kaiser-
Bessel, optimized on the basis of the min-max principle,
α = 2.0 and W = 7.

B. Analysis Tools

The accuracy of sinograms and reconstructed images
obtained with different forward projectors is assessed using the
following standard metrics: root mean square error (RMSE),
peak-signal-to-noise-ratio (PSNR) [49] and mean structural
similarity index (MSSIM) [50]. For the accuracy assessment
of the projectors in iterative schemes (Section IV-C), a linearly
regressed version Îregr of the reconstructed slice (I ) is used
for the metrics computation. In this way, the obtained score
is less biased by the different gray scales, characterizing I
and the reference image, O, guaranteeing fair comparisons.
Reconstruction methods exploiting total variation can, in
fact, lead to slight shrinkage of the sparse coefficients [51].
Îregr is computed in the following way:

Îregr = argmin
Iregr

∥∥Iregr − O
∥∥2

2 s.t. Iregr = a · I + b (13)

where a, b ∈ R.

C. Comparison of Forward Projectors

The accuracy assessment of the two proposed forward
projectors (FRP-PSWF, FRP-KB) is assessed against the

TABLE I

RMSE, PSNR AND MSSIM VALUES FOR SL SINOGRAMS WITH
805 VIEWS× 512 PIXELS GENERATED BY THE ALGORITHMS

LISTED IN THE FIRST COLUMN. THE REFERENCE

SINOGRAM IS REPRESENTED BY THE ANALYTICAL

RADON TRANSFORM OF SL

five operators introduced in III-A (RT-RAY, RT-DIST, FHFP,
NUFFT, RT-BSPLINE).

The results of this section are focused on the forward projec-
tion and subsequent analytical reconstruction of a SL phantom
with 512×512 pixels. These experiments were also performed
on SL phantoms with other resolutions (128×128, 256×256,
1024×1024, 2048×2048) and different number of views. The
results show that the observed trends are independent from the
phantom size and the angular sampling.

Sinograms with 805 views × 512 pixels have been com-
puted using the seven above-mentioned forward projectors
and are compared with the analytical Radon transform of the
SL phantom by means of the RMSE, PSNR and MSSIM
values (Tab. I). The figures of merit clearly show that
the FRPs perform the worst, while RT-BSPLINE provides
the most accurate sinogram. The other operators (NUFFT,
RT-RAY, RT-DIST and FHFP) are characterized by an inter-
mediate accuracy. The same accuracy trends are observed
for the backprojectors, when used as standalone modules
for the reconstruction (with a ramp filter) of the analytical
SL sinogram. The filtered adjoint RT-BSPLINE provided the
most accurate reconstruction, followed by the filtered adjoint
NUFFT, RT-RAY, RT-DIST, FHFP, FRP-PSWF and, finally,
FRP-KB.

In a second experiment, the effect of coupling the filtered
adjoint operator to the corresponding forward projector is
studied in relation to the accuracy of the forward projector
itself. Each sinogram is filtered with a standard ramp kernel
in Fourier space and reconstructed using the corresponding
backprojector. The chosen number of views 805 � 512 ∗ π/2
guarantees that these analytical reconstructions are not affected
by aliasing artefacts [3], ensuring that we are really quantifying
the accuracy of the entire projection-reconstruction process
for each operator. The results in Tab. II show metric scores
very close to each other, contrary to the trend seen in Tab. I.
RT-BSPLINE confirms its highest accuracy, but NUFFT,
RT-RAY and RT-DIST perform in a very similar way to the
FRP operators. In this case, FHFP shows the lowest accuracy.
This second experiment indicates that either the coupling
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TABLE II

RMSE, PSNR AND MSSIM VALUES FOR THE RECONSTRUCTIONS OF
THE SL SINOGRAMS WITH 805 VIEWS× 512 PIXELS

GENERATED BY THE ALGORITHMS LISTED IN THE

FIRST COLUMN. THE RECOSTRUCTIONS WERE

PERFORMED BY MEANS OF THE RAMP-FILTERED
ADJOINT OPERATOR CORRESPONDING TO EACH

SINOGRAM. THE REFERENCE IMAGE IS THE

ORIGINAL SL PHANTOM. THE SCORES
WERE COMPUTED INSIDE THE

RECONSTRUCTION CIRCLE

TABLE III

RUN TIME (IN s) REQUIRED TO GENERATE A SINOGRAM WITH

2048 PIXELS AND 800, 1600 AND 3200 VIEWS FOR THE
ALGORITHMS LISTED IN THE FIRST COLUMN. THE

USED HARDWARE IS AN INTEL(R) CORE(TM)
i7-3520M CPU 2.90GHz

forward-adjoint operator and/or the effect of a simple ramp
filter may reduce or even cancel the accuracy superiority of a
well-performing projector with respect to others of inferior
quality. Computed sinograms and reconstructed slices are
not shown because differences are not detectable by visual
inspection. The same trend was obtained when performing the
ramp filtering through convolution in real space.

Tab.III and IV report the time needed and the memory allo-
cated to create a SL sinogram with 2048 pixels and 800, 1600
and 3200 views. The used hardware is an Intel(R) Core(TM)
i7-3520M CPU 2.90GHz. The FRP-KB, FRP-PSWF, FHFP
and RT-BSPLINE operator were all implemented in C. For
the NUFFT projector, the code available on [52] has been
used, including the same FFTW library [44] as the FRP
operators. Values in Tab.III include the time required to build
the look-up-table, if required by the algorithm (all except
FHFP). FRP-KB is, on average, faster by a factor of 4.4,
11.0, 21.3 and 928 compared to FRP-PSWF, NUFFT, FHFP
and RT-BSPLINE. The computational cost for all projectors,

TABLE IV

MEMORY (IN MB) REQUIRED TO GENERATE A SINOGRAM WITH
2048 PIXELS AND RESPECTIVELY 800, 1600 AND 3200 VIEWS

FOR THE ALGORITHMS LISTED IN THE FIRST COLUMN

except RT-BSPLINE, scales similarly with the number of
views in particular for 800 and 1600 projections. Among
the Fourier-based methods, FRP-KB allocates, on average,
64% and 70% less memory than FRP-PSWF and NUFFT,
respectively. RT-BSPLINE requires, instead, more memory
than a standard pixel-based forward projector because the
precomputed LUT has to be finely sampled to guarantee
high accuracy. RT-RAY and RT-DIST are not listed in these
tables, since the implementations used for this work are
based on GPUs. However, extrapolations suggest that a single
core implementation of RT-DIST could require approximately
the same memory, but larger computational cost than FHFP.
On the other hand, RT-RAY may require more memory than
RT-DIST and longer times than RT-BSPLINE.

IV. APPLICATION TO ITERATIVE

RECONSTRUCTION ALGORITHMS

In this section, the usage of the proposed forward projection
operator inside iterative algorithms is investigated. The study
is aimed at assessing experimentally the connection between
the accuracy of the forward projectors and the quality of
the iterative reconstruction. Two completely different iterative
methods are used in the following: the separable paraboloidal
surrogate and the alternate direction method of multipliers.

A. Separable Paraboloidal Surrogate

The separable paraboloidal surrogate (SPS) [53] is an
algorithm for penalized likelihood based on Poisson statis-
tics, modeling the measurements at the detector. The SPS
globally converges to a unique minimizer, easily allows to
enforce non-negativity constraints and to exploit non-quadratic
convex penalty functions. SPS is implemented with the edge-
preserving regularization introduced in [53] and [54]. For
further details about this well-established iterative method for
tomographic reconstruction, please refer to [53].

B. Alternate Direction Method of Multipliers

The alternate direction method of multipliers (ADMM) [55]
is an iterative scheme suitable to minimize a large vari-
ety of functionals, including those with L1-norm terms.
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Thus, the ADMM can be used to solve a tomographic recon-
struction problem with total variation regularization:

x̂ = argmin
x

[
‖Ax − b‖22 + λ · TV�(x)

]
. (14)

A is the matrix representation of the forward projector, b is
the sinogram, x is the unknown object and λ ∈ R determines
the weight of the regularization; TV stands for total variation,
defined as [56]:

TV�( f ) =
∫

�

|∇ f (x)|dx = ‖∇ f (x)‖1. (15)

The problem (14) can be mapped into the minimization of the
following augmented Lagrangian [57]:

Lμ(x,u,α) = 1

2
‖Ax − b‖22+ λ

∑
k

‖uk‖1

+αT (Lx − u)+ μ
2
‖Lx − u‖22 (16)

where α are the Lagrangian multipliers, L is the gradient
operator and u is an auxiliary variable. The ADMM itera-
tively minimizes Lμ(x,u,α) by sequentially solving smaller
problems; each iteration involves two sub-optimizations with
respect to x and to u, followed by the update of α:

1) xk+1 ←− argmin
x

Lμ(x,uk,αk)

2) uk+1 ←− argmin
u

Lμ(xk+1,u,αk)

3) αk+1 ←− αk + μ(Lxk+1 − uk+1).

In step 1), the conjugate gradient (CG) method [58] is applied
to the following linear system:

(A†A+ μL†L)x = A†b+ μL†
(

uk − αk

μ

)
. (17)

The subproblem of step 2) is solved through a shrinkage
operation:

uk+1 = max

{∣∣∣∣Lxk+1 + αk

μ

∣∣∣∣−
λ

μ
, 0

}
sgn

(
Lxk+1 + αk

μ

)
.

(18)

Our implementation of the ADMM performs 4 of CG (17)
loops for the x-subproblem, whereas μ and λ are set to 1.0.
This setting provides accurate reconstructions when dealing
with the group of simulated and real data used in the following
Section. Neither trends regarding the accuracy nor the conver-
gence of the ADMM implementations change, if a different
number of CG iterations and/or different values for μ and λ
are used.

C. Experiments

SPS and ADMM have been implemented with the pro-
posed projectors (SPS/ADMM-PSWF, SPS/ADMM-KB) and
with RT-BSPLINE (SPS/ADMM-BSPLINE), since this latter
operator has shown the best accuracy in the experiments
presented in III-C.

The convergence of the iterative algorithms has been studied
through the tomographic reconstruction of a SL sinogram
with 200 views × 128 pixels. In this experiment, the number

Fig. 1. Cost function of the SPS against the number of iterations for the
three SPS implementations. The plot corresponds to the reconstruction of a
noiseless SL sinogram with 128 views × 200 pixels.

Fig. 2. Cost function of the ADMM (14) against the number of iterations for
the three ADMM implementations. The plot corresponds to the reconstruction
of a noiseless SL sinogram with 128 views × 200 pixels.

of iterations was 200. The cost function plots in Fig. 1, 2
show that, for both SPS and ADMM, the convergence is not
significantly affected by the choice of the forward operator.
The three implementations of each iterative method show a
slight mismatch only for the first 10 iterations (Fig. 1, 2).
The following reconstructions of simulated and real data
are computed by stopping the iterative algorithm when the
L2-norm of the relative difference between reconstructions
of subsequent iterations is smaller than a threshold ε = 0.01,
i.e., ||xk+1 − xk||22/||xk||22 < 0.01. Following this criterion,
the iterative procedure was usually stopped after few tens
of iterations. To check whether convergence was effectively
achieved in this way, we computed the maximum difference
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Fig. 3. SPS reconstructions of a SL sinogram with 50 views × 512 pixels and additional Gaussian noise with σ = 2.4% of the sinogram mean. (a) Phantom.
(b) Reconstr. with SPS-PSWF. (c) Reconstr. with SPS-KB. (d) Reconstr. with SPS-BSPLINE.

Fig. 4. ADMM reconstructions of a SL sinogram with 50 views × 512 pixels and additional Gaussian noise with σ = 2.4% of the sinogram mean.
(a) Phantom. (b) Reconstr. with ADMM-PSWF. (c) Reconstr. with ADMM-KB. (d) Reconstr. with ADMM-BSPLINE.

Fig. 5. SPS reconstructions of the sinogram (300 views × 2560 pixels) of a modern seed specimen. FBP-FULL is the FBP reconstruction of the fully
sampled sinogram with 1441 views × 2560 pixels Sample courtesy: S. Smith, University of Michigan. (a) Reconstr. with FBP-FULL. (b) Reconstr. with
SPS-PSWF. (c) Reconstr. with SPS-KB. (d) Reconstr. with SPS-BSPLINE.

TABLE V

RMSE, PSNR AND MSSIM VALUES FOR THE SPS RECONSTRUCTIONS

OF THE SL SINOGRAM SHOWN IN FIG.3. THE SCORES ARE

COMPUTED INSIDE THE RECONSTRUCTION CIRCLE

between the reconstruction obtained with the aforementioned
criterion and the one computed after 200 iterations (procedure
suggested in [25]): for both SPS and ADMM and for all
projectors, the maximum difference was always under 2%.

In the first experiment, an underconstrained SL sinogram
with 50 views × 512 pixels has been used. Gaussian noise
with σ = 2.4% of the sinogram mean has been added.

TABLE VI

RMSE, PSNR AND MSSIM VALUES FOR THE ADMM
RECONSTRUCTIONS OF THE SL SINOGRAM SHOWN

IN FIG.4. THE SCORES ARE COMPUTED INSIDE
THE RECONSTRUCTION CIRCLE

This σ fairly reproduces the noise level affecting the real data
used in the following experiments. The reconstructed slices
in Fig. 3, 4 show no difference at visual inspection and the
metric scores (Tab. V, VI) confirm that the image quality is
comparable for all SPS and ADMM implementations.

For the next two experiments, real data acquired at
the TOMCAT beamline of the Swiss Light Source at the
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Fig. 6. ADMM reconstructions of the sinogram (300 views × 2560 pixels) of a modern seed specimen. FBP-FULL is the FBP reconstruction of the
fully sampled sinogram with 1441 views × 2560 pixels Sample courtesy: S. Smith, University of Michigan. (a) Reconstr. with FBP-FULL. (b) Reconstr.
with ADMM-PSWF. (c) Reconstr. with ADMM-KB. (d) Reconstr. with ADMM-BSPLINE.

Fig. 7. SPS reconstructions of the sinogram (272 views × 2016 pixels) of mouse lung tissue. FBP-FULL is the FBP reconstruction of the fully
sampled sinogram with 901 views × 2016 pixels. Sample courtesy: Lovric [59]. (a) Reconstr. with FBP-FULL. (b) Reconstr. with SPS-PSWF. (c) Reconstr.
with SPS-KB. (d) Reconstr. with SPS-BSPLINE.

Fig. 8. ADMM reconstructions of the sinogram (272 views × 2016 pixels) of mouse lung tissue. FBP-FULL is the FBP reconstruction
of the fully sampled sinogram with 901 views × 2016 pixels. Sample courtesy: Lovric [59]. (a) Reconstr. with FBP-FULL. (b) Reconstr.
with ADMM-PSWF. (c) Reconstr. with ADMM-KB. (d) Reconstr. with ADMM-BSPLINE.

TABLE VII

RMSE, PSNR AND MSSIM VALUES FOR THE SPS RECONSTRUCTIONS

OF THE SINOGRAM OF THE MODERN SEED SPECIMEN SHOWN

IN FIG.5. THE SCORES ARE COMPUTED INSIDE

THE RECONSTRUCTION CIRCLE

Paul Scherrer Institut have been used. In the first case,
a sinogram with 1441 views × 2560 pixels of a modern seed
acquired in full tomography (i.e., the sample support
is entirely in the FOV) has been downsampled to
300 views to create an underconstrained version of the
original dataset. The effective detector pixel size is 2.9μm.

TABLE VIII

RMSE, PSNR AND MSSIM VALUES FOR THE ADMM
RECONSTRUCTIONS OF THE SINOGRAM OF THE

MODERN SEED SPECIMEN SHOWN IN FIG.6. THE

SCORES ARE COMPUTED INSIDE THE
RECONSTRUCTION CIRCLE

Fig. 5, 6 show the FBP reconstruction with Parzen filter of
the original sinogram (FBP-FULL), followed by either the
SPS (Fig.5) or the ADMM (Fig.6) reconstructions of the
underconstrained dataset. FBP-FULL is used as reference
image to compute the scores in Tab.VII, VIII. The iterative
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TABLE IX

RMSE, PSNR AND MSSIM VALUES FOR THE SPS RECONSTRUCTIONS OF
THE SINOGRAM OF THE MOUSE LUNG TISSUE SHOWN IN FIG.7. THE

SCORES ARE COMPUTED INSIDE THE RECONSTRUCTION CIRCLE

TABLE X

RMSE, PSNR AND MSSIM VALUES FOR THE ADMM
RECONSTRUCTIONS OF THE SINOGRAM OF THE

MOUSE LUNG TISSUE SHOWN IN FIG.8. THE

SCORES ARE COMPUTED INSIDE THE
RECONSTRUCTION CIRCLE

reconstructions show again no evident differences at visual
inspection except a slight blurring in the SPS-BSPLINE and
ADMM-BSPLINE case. This image quality degradation is
also reflected in the higher RMSE and lower MSSIM values
for the implementations with RT-BSPLINE (Tab. VII, VIII).

In the second case, mouse lung tissue data acquired in
interior tomography configuration (i.e. the sample support
extends beyond the FOV) have been chosen. The original
sinogram, consisting of 901 views × 2016 pixels, has been
downsampled to 272 views. The effective detector pixel size
is 2.9μm. Metric scores are computed against FBP-FULL as
in the previous case. The SPS (Fig.7) and ADMM (Fig.8)
reconstructions present no visible difference and the image
quality assessed through the figures of merit (Tab. IX, X) lead
to the same conclusion.

V. DISCUSSION AND CONCLUSION

A novel application of the regridding method as forward
projector with O(N2 log2 N) complexity for CT reconstruc-
tion has been presented. Forward regridding projectors (FRPs)
with standard (α = 2.0, FRP-PSWF) and minimal oversam-
pling (α = 1.125, FRP-KB) have been studied.

The computational efficiency and accuracy of the proposed
operators have been systematically compared with multiple
state-of-the-art implementations of the Radon transform: a ray-
and distance-driven projector (RT-RAY, RT-DIST), a Radon
transform based on a cubic B-spline basis (RT-BSPLINE),
a fast hierarchical forward projector (FHFP) and a Radon
transform based on the non-uniform fast Fourier transform
with min-max interpolation (NUFFT). Among the algorithms
with O(N2 log2 N) complexity, FRP-KB is on average faster
by a factor of 4, 11 and 21 with respect to FRP-PSWF,
NUFFT and FHFP. Compared to pixel-based projectors like
RT-BSPLINE, the speed increase achieved with FRP-KB is

significantly larger (up to 3 orders of magnitude). Memory
allocation for FRP-KB is reduced by 64% and 70% compared
to the Fourier-based projectors FRP-PSWF and NUFFT. The
accuracy of the FRP operators is slightly inferior compared to
the other implementations of the Radon transform, although
differences in the computed sinograms are barely visible upon
visual inspection. We have shown that this lower accuracy
becomes negligible when each sinogram is reconstructed with
the related ramp-filtered backprojector, indicating that other
aspects involved in the reconstruction process (e.g. filtering)
have a stronger influence on the accuracy of the obtained
results.

In a second step, the proposed forward regridding operators
(FRP-PSWF and FRP-KB) have been integrated inside two
different iterative schemes, (the separable paraboloidal surro-
gate, SPS, and the alternate direction method of multipliers,
ADMM) to asses their performance for the reconstruction
of simulated and real underconstrained tomographic datasets.
These iterative algorithms have been benchmarked against the
same iterative schemes implemented with RT-BSPLINE,
the most accurate projector among those tested in this study.
The results show that, despite the inferior accuracy of the
fast operators based on the regridding method, both SPS/
ADMM-PSWF and SPS/ADMM-KB have a similar conver-
gence rate and provide comparable image quality as SPS/
ADMM-BSPLINE. This result suggests that the minimization
of the cost function in the tomographic reconstruction process
is not strongly influenced by the chosen forward projector.

To conclude, we show that the proposed forward regrid-
ding projector with minimal oversampling (FRP-KB), thanks
to its high computational efficiency, is an interesting
new operator able to substantially speed up any iterative
tomographic reconstruction algorithm, while preserving the
results accuracy achieved with more sophisticated operators.
Its low computational cost and reduced memory requirements
make the proposed projector, so far developed for the parallel
beam case, very appealing for addressing problems charac-
terized by more complex geometries, usually very demanding
especially from the memory point of view.

APPENDIX

C-LIKE PSEUDOCODE OF THE FRP

The following pseudocode refers to an implementation of
FRP, where the convolution LUT is sampled with nearest
neighbour scheme. The notation is the same as introduced
in section II. In addition, l = W/2 is the half width of the
convolving kernel. The subscript p stands for “padded”. The
parentheses �· · · � correspond to the floor operator, �· · · � to
the ceil operator and �· · · � to the round operator. Although
the pseudocode refers to our C implementation of the FRP,
there are a couple of functions (the slicing operator “:” and
the memory allocating function “zeros”), that are characteristic
of high-level programming languages like Matlab or Python,
and are used to express some passages in a more concise form.

1) compute Ip ←− zeropad(I) up to G rows and columns

2) pre-removal of the interpolation kernel
for i = 0, ... ,G − 1 do:
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for j = 0, ... ,G − 1 do:

I (m)p [i, j ] ←− Ip[i, j ]
ψ[g2i ]ψ[g2 j ] ;

endfor
endfor

3) compute Î (m)p ←− F FT 2
(

I (m)p

)
;

4) initialize Ŝp = zeros(M,G);

5) do interpolation in the Fourier space:
for i = 0, ... ,M − 1 do:

for k = 0, ... ,G/2 − 1 do:
kx = k cos(θ [i ])+ G/2
ky = k sin(θ [i ])+ G/2
akx = �kx − l� , bkx = �kx + l�
aky = �ky − l� , bky = �ky + l�
for k1 = akx , ..., bkx do:
ψ̂ x = ψ̂ [g1 · �|kx − k1|�]
for k2 = aky , ..., bky do:
ψ̂ y = ψ̂

[
g1 · �|ky − k2|�

]
ψ̂ x,y = ψ̂ x · ψ̂ y

Ŝp[i, k] + = Î (m)p [k1, k2] · ψ̂ x,y

Ŝp[i,G − k] + = Î (m)p [G − k1,G − k2] · ψ̂ x,y
end for on Cartesian index k2

end for on Cartesian index k1
Ŝp[i, k] = Ŝp[i, k] · e−π ikG

Ŝp[i,G − k] = Ŝp[i,G − k] · eπ ikG

end for loop on radial variable k
Sp[i, :] = I F FT 1(Ŝp[i, :])

end for loop on angular index i

6) crop padded sinogram: S = Sp[:, i1 : i2]
where i1 = �(G − N)/2� i2 = i1+ N

7) return S.
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