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ABSTRACT

We propose a novel multiresolution-multigrid based signal
reconstruction method from arbitrarily spaced samples. The
signal is reconstructed on a uniform grid using B-splines
basis functions. The computation of spline weights is for-
mulated as a variational problem. Specifically, we minimize
a cost that is a weighted sum of two terms: (i) the sum of
squared errors at the specified points; (ii) a quadratic func-
tional that penalizes the lack of smoothness. The problem is
equivalent to solving a very large system of linear equations,
with the dimension equal to the number of grid points. We
develop a computationally efficient multiresolution-multigrid
scheme for solving the system. We demonstrate the method
with image reconstruction from contour points.

1. INTRODUCTION

The problem of signal reconstruction from irregularly spaced
samples occurs frequently in signal and image processing.
Examples include shape reconstruction, landmark interpo-
lation, image recovery from the contours etc. For our part,
we are motivated by the problem of reconstructing 3D echocar-
diograms from series of 2D hand-held acquisitions spanning
the volume of interest [1].

The difficulty with this kind of reconstruction, especially
when the data is sparse, is that the problem is ill-posed.
Therefore, to get a meaningful reconstruction, one usually
needs to introduce some regularization constraint. An ele-
gant analytical solution is provided by the method of thin
plate splines which produces a continuously-defined solu-
tion that minimizes a Laplacian-related semi-norm [2]. In
other words, the problem is set up such as to find a com-
promise between fitting the data well and penalizing recon-
structions that are not smooth enough. The solution is ex-
pressed as a linear combination of shifted radial basis func-
tions positioned at the location of the data points [2, 3, 4].
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The optimal weights are determined as solution of a linear
system of equations.

While thin plate splines and radial basis functions (RBF)
are undoubtedly among the preferred techniques for deal-
ing with non-uniform interpolation in multiple dimensions
[5, 6], they tend to break down numerically when there are
too many data points; say, M > 100. The main diffi-
culty is that the linear system to be solved is ill-conditioned.
Moreover, the matrix is not sparse. Hence, solving the sys-
tem soon becomes overly expensive; the complexity is in
O(M3), where M is the number of sample points. Various
solutions have been proposed for reducing this complexity
and improving the numerical behavior [7], but there is still
a long way to go for making them practical. Another funda-
mental limitation is that computing the weights is only part
of the effort. Indeed, the solution has to be resampled nu-
merically if it is to be displayed on a regular grid; this will
cost an additional O(MN), where N is the number of grid
points.

In 1D, the situation is not as dramatic because the opti-
mal solution can be expressed in terms of non-uniform B-
splines which are compactly supported as opposed to the
RBFs which are not; this is the key for obtaining an efficient
solution [8]. Unfortunately, this is not possible in higher di-
mensions; i.e., there are no compactly supported functions
that reproduce spline-related RBFs.

In this paper, we circumvent the above mentioned dif-
ficulties by searching for the solution of the regularized re-
construction problem in the space of uniform spline where
the basis functions are now attached to the reconstruction
grid, as opposed to the data points. In other words, we are
proposing to discretize thin plate splines using uniform B-
splines with a degree that is matched to the underlying semi-
norm. In this way, we have at least the guarantee that the
solution in 1D coincides with the theoretical one, provided
that the sample points are on the reconstruction grid. This
helps to say qualitatively that the solution in general will not
be very different from the exact analytical one.

The proposed approach has many advantages over us-
ing RBFs. First, the linear system for getting the B-spline
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coefficients is well-conditioned. Second, the system ma-
trix is sparse resulting in much faster computation. Third,
the formulation lends itself quite naturally to an efficient
multiresolution and multigrid implementation, as shown in
Section 3. This reduces the complexity of solving the lin-
ear system to O(N), where N is the number of grid points.
Fourth, after solving the linear system, there is no expen-
sive resampling step as in RBF reconstruction. With linear
B-splines, the resampling is free, while for cubic splines, it
can be achieved by simple FIR post-filtering [9]. Finally, we
should note that unlike other purely discrete variational for-
mulations of the image reconstruction problem [10, 11, 12],
we get a solution that is defined in the continuous domain
with all the corresponding advantages.

The present algorithm offers a lot of a user-flexibility.
The number and location of the data points can be arbitrary
without any incidence on computational speed. One can re-
duce measurement noise by imposing more or less smooth-
ness on the solution (regularization). One can also recon-
struct the image at any desired resolution (step h); the solu-
tion will converge to the analytical one (RBF) as h gets suf-
ficiently small—the rate is given by the order of the spline.

2. PROBLEM FORMULATION AND SOLUTION

The method described here is applicable to any number of
dimension. For notational convenience, we present it for
2D. Given a set of noisy measurements {fi} of the image at
sampling locations {xi, yi}, the problem is to find a uniform
spline S(x, y)of the form

S(x, y)=

Ny−1∑
l=0

Nx−1∑
k=0

ck,lβ
n(x/hx − k)βn(y/hy − l)

(1)

such that ∑
i

|S(xi, yi)− fi|2 + λM(S(x, y)) (2)

is minimized. Here βn(x) is the B-spline of degree n [9],
and M(.)is a regularization functional that penalizes non-
smooth solutions; typically, the L2-norm of some deriva-
tives (gradient or Laplacian). The weighting factor λ allows
a trade-off between the smoothness and the reconstruction
error at the specified points.

We now introduce the corresponding matrix formulation
for an image reconstructed on an Nx ×Ny grid. The goal is
to search for the coefficient vector

c = [c0,0 · · · cNx−1,0 · · · cNx−1,Ny−1]
T

such that (2) is minimized. Defining BNxl+k(x, y)= βn(x/hx−
k)βn(y/hy − l), the solution

c = [c0,0 · · · cNx−1,0 · · · cNx−1,Ny−1]
T

is given by,

[S + λR P]c = b (3)

where
{S}j,k =

∑
i

Bj(xi, yi)Bk(xi, yi),

{b}j =
∑

i

Bj(xi, yi)fi,

and where R is a circulant matrix with a 2D filter P (mask)
that depends on the type of regularization.

For the simplest nontrivial case—i.e. for the linear splines,—
the matrix S is block-band diagonal of width three, and each
block is band-diagonal with width three. In this case it is ap-
propriate to use the following regularization:

M1(S(x, y))=

∫ ∫ [∣∣∣∣∂S(x, y)

∂x

∣∣∣∣
2

+

∣∣∣∣∂S(x, y)

∂y

∣∣∣∣
2
]

dxdy

The regularization filter turns out to be

P(z1, z2)= −
(

hy

hx

)
B3(z1)

2(z2)−
(

hx

hy

)
2(z1)B

3(z2)

where (z)is the first-order difference operator and Bn(z)=∑
k βn(k)z−k. For cubic splines, the matrix S is block-

band diagonal of width seven, and each block is band-diagonal
with width seven. In this case, it is appropriate to use

M2(S(x, y))=

∫ ∫ (
∂2S(x, y)

∂x2
+

∂2S(x, y)

∂y2

)2

dxdy

as regularization. The regularization filter becomes

P(z1, z2) =

(
hy

h3
x

)
B7(z1)B

3(z2)
4(z2)

+

(
1

hxhy

)
2(z1)B

5(z1)
2(z2)B

5(z2)

+

(
hx

h3
y

)
B7(z2)β

3(z1)
4(z1)

3. RECONSTRUCTION ALGORITHM

3.1. Multiresolution Strategy

The system of linear equations (3) is typically very large but
sparse. Since the dimension of the system depends upon the
resolution of reconstruction, one naturally thinks of mul-
tiresolution.

Let the width of the reconstructed image along x and y
be equal to L, and let the finest grid spacings be hx = hy =
h = L/2n . Then Nx = Ny = N = 2n + 1. At any coarser
resolution, the grid spacing will be 2ih with 0< i < n. Let

A ici = bi (4)
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be the linear system to be solved at resolution i. The idea is
to solve cn−1 exactly and to interpolate the solution to the
next finer scale using the two-scale relation for B-spline [9].
Specifically, the refinement filters for the linear and cubic
splines are U1(z)= (z+ 2+ z−1)/2and U3(z)= [U1(z)]2,
respectively. This serves as intialization for the computation
of cn−2 and so on. Eventually, c0 gives the reconstruction
at the required resolution.

For this multiresoltution strategy, the matrix A i = Si +
λR Pi has to be computed for all the resolutions. At first
sight, it appears that the sample matrix Si has to be com-
puted for each resolution level i, going back to the sample
points each time. This suggest a computational cost for Si

that is proportional to the number of sample points irrespec-
tive of the reconstruction grid size. This obviously not good
news when number of sample points is large.

Because of the special structure of the problem and an
appropriate selection of basis functions, we can prove that
the matrices A i and the vectors bi are related as follows.

A i+1 = U T
i A iU i (5)

bi+1 = U T
i bi (6)

where U i is a (2n−i + 1)×(2n−i−1 + 1)matrix that corre-
sponds to upsampling and filtering with the binomial filter
U1(z)or U3(z). two-scale filter. Hence, what we need to
compute from the sample points is only the matrix at the
finest resolution A 0. Thanks to this strategy, the computa-
tion of all the matrices becomes quite affordable.

3.2. Multigrid Iteration

In the described multiresolution, the solution at each resolu-
tion level is obtained iteratively by refinement of the intial-
ization from the coarser level. The refinement can be done
using iterative techniques such as Jacobi or Gauss-Siedel.
However, when the dimension is large, convergence of such
iterators may not be sufficient, even with intialization from
the coarser resolution, and hence the reconstruction cannot
be completed within affordable time. Therefore we adopt a
multigrid strategy [13] as described below.

Multigrid iteration is obtained by using classical itera-
tors as building blocks. We will first describe the classical
iterative scheme and then the multigrid iteration. Let c(k)

i be
the intialization for the resolution level i. Then it is refined
as follows:

c(k+1)
i = c(k)

i + ωÂ −1
i (bi − A ic

(k)
i ) (7)

where Â −1
i denotes the approximate inverse and ω is a damp-

ing factor. If Â i is the diagonal of A i, the iterator is called
damped-Jacobi and when it is the lower triangular of A i,
the iterator is called damped Gauss-Seidel. Both implemen-
tation have same computational complexity. See [13] for a
comprehensive treatment of such iterators.

It is important to be note here that such iterators have a
smoothing effect on the error. Let e(k)

i be the error after the
kth iteration. The larger k, the smoother the error, and for
sufficiently large k, there will not be significant improve-
ment in the error anymore. Since the error is smooth after
a few relaxations, it can be represented at lower dimension;
i.e. on a coarser grid. The advantage is twofold. First, it is
computationally efficient to iterate in lower dimension. Sec-
ond, a smooth error becomes somewhat bumpier at a coarser
resolution. Hence, relaxation on the coarser grid further re-
duces the error. Afterwards one can interpolate the result
and use it for correction on the finer grid. This reduces the
error significantly. At the same time, in most of the cases,
there will be some amount of non-smooth error introduced
in the correction procedure. Hence it is customary to do
a few relaxations after coarse-grid correction. The overall
scheme is computationally more effective than relaxation at
the finest grid. However, when the dimension of the system
at the coarser grid is large, relaxation will also stall there.
Since the problem here is exactly the same as the original
one, one can think of appyling the same three-step proce-
dure recursively. See [14, 13]. It can be proven that since
the system is positive definite and because of the relation
(5), this recursive iteration converges [13].

3.3. Computational Issues

Considering the size of the system in a typical reconstruc-
tion problem, the implementation has to meet stringent com-
putational constraints in order to make the method practical.
It is important to precompute the matrices A 1, . . . ,A n−1

using relation (5) and by exploiting the sparsity and sym-
metry of A i and the special structure of U i. In that case,
for the 2D multiresolution scheme described in this section,
the computational cost of computing the matrices for all res-
olution will be in O(2n ×2n)= O(NPixel), where NPixel
is the number of grid points. For example, in the case of
linear splines, it is possible to compute the matrices with
around 20(2n × 2n)multiplications. The matrices are ac-
tually non-symmetric if symmetric boundary conditions are
used. However, it is possible to work with equivalent mod-
ified matrices that are symmetric. This modification has to
be incorporated in the sparse computation involved in (5).
This is important in order to keep the total memory require-
ment affordable. Since the matrices are very large, efficient
representation of the matrices is also important.

4. EXPERIMENTS

Figure 1 gives experimental results for the recconstruction
of an image using linear spline. The subsampling was done
by thresholding the gradient magnitude retaining 30 percent
of the samples. The reconstructed image size is 257× 257
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(a) Original Image (b) Subsampled Image

(c) Reconstructed Image

Fig. 1. Image reconstruction from gradient points

and the time taken for recconstruction was 0.5 seconds in
Macintosh G4 system, which is quite impressive given the
size of the underlying system of equations. Empirically, we
find that our algorithm is capable of computing the solution
in O(NPixel)operations. This is orders of magnitude better
than the traditional RBFs methods (thin plate splines). The
key point here is that the cost is independent of the number
of initial sample points.

5. CONCLUSION

We have developed a variational method for signal recon-
struction from irregularly spaced samples on a uniform spline
grid. The method allows trade-off between smoothness and
reconstruction error (parameter λ), which is particularly use-
ful in the presence of noise. In addition, due its efficient
multiresolution and multigrid implementation, it also allows
trade-off between computational complexity and reconstruc-
tion accuracy (grid size h).
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