Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Ultrasound Classification
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Unsupervised Image Classification of Medical Ultrasound Data by Multiresolution Elastic Registration

S.V. Aschkenasy, C. Jansen, R. Osterwalder, A. Linka, M. Unser, S. Marsch, P. Hunziker

Ultrasound in Medicine and Biology, vol. 32, no. 7, pp. 1047-1054, July 2006.


Thousands of medical images are saved in databases every day and the need for algorithms able to handle such data in an unsupervised manner is steadily increasing. The classification of ultrasound images is an outstandingly difficult task, due to the high noise level of these images. We present a detailed description of an algorithm based on multiscale elastic registration capable of unsupervised, landmark-free classification of cardiac ultrasound images into their respective views (apical four chamber, two chamber, parasternal long axis and short axis views). We validated the algorithm with 90 unselected, consecutive echocardiographic images recorded during daily clinical work. When the two visually very similar apical views (four chamber and two chamber) are combined into one class, we obtained a 93.0% correct classification (χ2 = 123.8, p < 0.0001, cross-validation 93.0%; χ2 = 131.1, p < 0.0001). Classification into the 4 classes reached a 90.0% correct classification (χ2 = 205.4, p < 0.0001, cross-validation 82.2%; χ2 = 165.9, p < 0.0001). (E-mail: hunzikerp@uhbs.ch)

@ARTICLE(http://bigwww.epfl.ch/publications/aschkenasy0601.html,
AUTHOR="Aschkenasy, S.V. and Jansen, C. and Osterwalder, R. and Linka,
	A. and Unser, M. and Marsch, S. and Hunziker, P.",
TITLE="Unsupervised Image Classification of Medical Ultrasound Data by
	Multiresolution Elastic Registration",
JOURNAL="Ultrasound in Medicine and Biology",
YEAR="2006",
volume="32",
number="7",
pages="1047--1054",
month="July",
note="")

© 2006 Elsevier. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Elsevier. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved