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Measuring Complexity of Learning Schemes Using Hessian-Schatten Total
Variation*

Shayan Aziznejad\dagger , Joaquim Campos\dagger , and Michael Unser\dagger 

Abstract. In this paper, we introduce the Hessian-Schatten total variation (HTV)---a novel seminorm that
quantifies the total ``rugosity"" of multivariate functions. Our motivation for defining HTV is to
assess the complexity of supervised-learning schemes. We start by specifying the adequate matrix-
valued Banach spaces that are equipped with suitable classes of mixed norms. We then show that the
HTV is invariant to rotations, scalings, and translations. Additionally, its minimum value is achieved
for linear mappings, which supports the common intuition that linear regression is the least complex
learning model. Next, we present closed-form expressions of the HTV for two general classes of
functions. The first one is the class of Sobolev functions with a certain degree of regularity, for
which we show that the HTV coincides with the Hessian-Schatten seminorm that is sometimes used
as a regularizer for image reconstruction. The second one is the class of continuous and piecewise-
linear (CPWL) functions. In this case, we show that the HTV reflects the total change in slopes
between linear regions that have a common facet. Hence, it can be viewed as a convex relaxation
(\ell 1-type) of the number of linear regions (\ell 0-type) of CPWL mappings. Finally, we illustrate the
use of our proposed seminorm.
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vised learning
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1. Introduction. Given the sequence (\bfitx m, ym)\in \BbbR d\times \BbbR , m= 1, . . . ,M, of data points, the
goal of supervised learning is to construct a mapping f :\BbbR d \rightarrow \BbbR that adequately explains the
data, i.e., f(\bfitx m) \approx ym, while avoiding the problem of overfitting [24, 26, 65]. This is often
formulated as a minimization problem of the form

(1.1) min
f\in \scrF 

\Biggl( 
M\sum 

m=1

E (f(\bfitx m), ym) + \lambda \scrR (f)

\Biggr) 
,

where \scrF is the search space, E :\BbbR \times \BbbR is a loss function that quantifies data discrepancy, and
\scrR : \scrF \rightarrow \BbbR is a functional that enforces regularization. The regularization parameter \lambda > 0
adjusts the contribution of the two terms. A classical example is learning over reproducing-
kernel Hilbert spaces (RKHS), where \scrF = \scrH (\BbbR d) is an RKHS and \scrR (f) = \| f\| 2\scrH [50, 51].
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HESSIAN-SCHATTEN TOTAL VARIATION 423

The key result in this framework is the kernel representer theorem that provides a parametric
form for the learned mapping [30, 58]. This foundational result is at the heart of many kernel-
based schemes, such as support-vector machines [20, 59, 61]. Moreover, there has been an
interesting lines of work regarding the statistical optimality of kernel-based methods [13, 39,
52, 62]. A central element in these analyses is that the regularization functional \scrR (\cdot ) (in this
case, the underlying Hilbertian norm) directly controls the complexity of the learned mapping
[6, section 2.4].

Although kernel methods are supported by a sound theory, they have been outperformed
by deep neural networks (DNNs) in various areas of application [23, 34]. DNN-based methods
are the current state of the art in several image processing tasks, such as inverse problems
[29], image classification [32], and image segmentation [55]. Unlike kernel methods, DNNs
have intricate nonlinear structures and the reason for their outstanding performance is not
yet fully understood [6]. A possible approach to the comparison of DNNs is to quantify the
``complexity"" of the learned mapping. For example, neural networks with rectified linear
units (ReLU), ReLU(x) = max(x,0) [22], are known to produce continuous and piecewise-
linear (CPWL) mappings. Consequently, the number of linear regions of the input-output
mapping has been proposed as a measure of complexity in this case [25, 49]. While this is
an interesting metric to study, it has two limitations. The first is that this quantity is only
defined for CPWL functions and, consequently, only applicable to ReLU neural networks. This
prevents one from building a framework that would include neural networks with more modern
activation functions [14, 27, 40, 53]. The second limitation is that this measure is not robust,
in the sense that the input-output mapping might have many small linear regions around the
training data points and still be able to generalize well. For example, the learned mapping
can be the superposition of two CPWL functions: a dominant one with a few significant linear
regions and a much smaller residual one with many tiny regions which enables the mapping
to interpolate the training data points exactly. This phenomenon, which is called ``benign
overfitting"" [5, 38] and is observed in overparametrized models, cannot be reflected in the
aforementioned complexity measure.

In this paper, we introduce a novel family of seminorms---the Hessian-Schatten total varia-
tion (HTV)---and we propose its use as a way to quantify the complexity of learning schemes.
Our definition of the HTV is based on a second-order extension of the space of functions
with bounded variation [1]. We show that the HTV seminorm satisfies the following desirable
properties:

1. It assigns the zero value for linear regression, which is the simplest learning scheme.
2. It is invariant (up to a multiplicative factor) to simple transformations (such as linear

isometries and scaling) over the input domain.
3. It is defined for both smooth and CPWL functions. Hence, it is applicable to a broad

class of learning schemes, including ReLU neural networks and radial-basis functions.
4. It favors CPWL functions with a small number of linear regions, thus promoting a

simpler (and, hence, more interpretable) representation of the data (Occam's razor
principle).

We provide closed-form formulas for the HTV of both Sobolev and CPWL functions. For
Sobolev functions, the HTV coincides with the Hessian-Schatten seminorm, which is often
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424 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

used as a regularization term in linear inverse problems [35, 37]. For CPWL functions, the
HTV is a convex relaxation of the number of linear regions. This is analogous to the classical
\ell 0 penalty in the field of compressed sensing, where it is often replaced by its convex proxy,
the \ell 1 norm, to ensure tractability [18, 19].

1.1. Related works. The Banach space of functions with bounded Hessian was originally
introduced by Demengel [17]. This space, together with its associated seminorm, the second-
order total variation (TV), has been used in various domains of image processing [7, 28, 31].
Intuitively, the second-order TV computes the Frobenius norm of the Hessian and integrates it
over the whole domain. More recently, Bredies et al. have extended this notion to higher-order
derivatives by defining the total generalized variation and introduced its use as a regulariza-
tion functional for solving ill-posed inverse problems [9, 11]. We refer the reader to [10] for a
complete review of the higher-order TV-based methods for solving inverse problems. In our
work, we extend the second-order total variation to cover all Schatten matrix norms with ar-
bitrary parameter p\in [1,+\infty ]. In addition to this extension, we introduce the use of the HTV
seminorm as a complexity measure in analyzing supervised learning schemes. Particularly, we
were motivated by this incentive to study the CPWL family and ReLU neural networks in
more depth.

Another relevant functional is the Radon-domain total-variation seminorm [43, 46, 47, 48],
which fulfils many of the desirable properties of a good complexity measure.

1.2. Outline. The paper is organized as follows: We start section 2 with some mathe-
matical preliminaries that are essential for this paper. In section 3, we introduce the HTV
seminorm and prove its desirable properties. We then compute the HTV of two general classes
of functions (Sobolev and CPWL) in section 4. Finally, we illustrate the practical aspects of
our proposed seminorm with examples in section 5.

2. Preliminaries. Throughout the paper, we denote the input domain by \Omega \subseteq \BbbR d, and we
assume \Omega to be an open ball of radius R > 0, with the convention that the case R = +\infty 
corresponds to \Omega =\BbbR d.

2.1. Schatten matrix norms. For any p \in [1,+\infty ], the Schatten-p norm of a real-valued
matrix \bfA \in \BbbR d\times d is defined as

(2.1) \| \bfA \| Sp

\vartriangle 
=

\left\{   
\Bigl( \sum d

i=1 | \sigma i(\bfA )| p
\Bigr) 1

p

, 1\leq p <+\infty ,

maxi | \sigma i(\bfA )| , p=+\infty ,

where (\sigma 1(\bfA ), . . . , \sigma d(\bfA )) are the singular values of \bfA [8]. It is known that the dual of the
Schatten-p norm is the Schatten-q norm, where q \in [1,\infty ] is the H\"older conjugate of p such
that 1

p +
1
q = 1. This result stems from a variant of the H\"older inequality for Schatten norms.

It states that

(2.2) \langle \bfA ,\bfB \rangle \vartriangle 
=Tr

\bigl( 
\bfA T\bfB 

\bigr) 
\leq \| \bfA \| Sp

\| \bfB \| Sq

for any pair of matrices \bfA ,\bfB \in \BbbR d\times d (see [36] for a simple proof).
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HESSIAN-SCHATTEN TOTAL VARIATION 425

2.2. Total-variation norm. Schwartz's space of infinitely differentiable and compactly
supported test functions \varphi : \Omega \rightarrow \BbbR is denoted by \scrD (\Omega ). Its continuous dual \scrD \prime (\Omega ) is the
space of distributions [60]. The Banach space \scrC 0(\Omega ) is the completion of \scrD (\Omega ) with respect

to the L\infty norm \| f\| L\infty 

\vartriangle 
=sup\bfitx \in \Omega | f(\bfitx )| . The bottom line is that the space \scrC 0(\Omega ) is formed of

continuous functions f : \Omega \rightarrow \BbbR that vanish at infinity. The Riesz--Markov theorem states that
the dual of \scrC 0(\Omega ) is the space \scrM (\Omega ) = (\scrC 0(\Omega ))\prime of bounded Radon measures equipped with
the total-variation norm [56]

(2.3) \| w\| \scrM 
\vartriangle 
= sup

\varphi \in \scrD (\Omega )\setminus \{ 0\} 

\langle w,\varphi \rangle 
\| \varphi \| \infty 

.

The space\scrM (\Omega ) is a superset of the space L1(\Omega ) of absolutely integrable measurable functions
with \| f\| \scrM = \| f\| L1

for any f \in L1(\Omega ). Moreover, it contains shifted Dirac impulses with
\| \delta (\cdot  - \bfitx 0)\| \scrM = 1 for any \bfitx 0 \in \Omega . The latter can be generalized to any distribution of the
form w\bfita =

\sum 
n\in \BbbZ an\delta (\cdot  - \bfitx n) with \| w\bfita \| \scrM = \| \bfita \| \ell 1 for any \bfita = (an) \in \ell 1(\BbbZ ) and any sequence

of distinct locations (\bfitx n)\subseteq \Omega .

2.3. Matrix-valued Banach spaces. In this work, we are interested in the matrix-valued
extension of the spaces defined in section 2.2. We denote by \scrC 0(\Omega ;\BbbR d\times d) the space of continu-
ous matrix-valued functions \bfF : \Omega \rightarrow \BbbR d\times d that vanish at infinity so that lim\| \bfitx \| \rightarrow \infty \| \bfF (\bfitx )\| = 0
whenever the domain is unbounded. (Note that this definition does not depend on the choice
of the norms, because they are all equivalent in finite-dimensional vector spaces.) Any matrix-
valued function \bfF : \Omega \rightarrow \BbbR d\times d has the unique representation

(2.4) \bfF = [fi,j ] =

\left(   f1,1 \cdot \cdot \cdot f1,d
...

. . .
...

fd,1 \cdot \cdot \cdot fd,d

\right)   ,

where each entry fi,j : \Omega \rightarrow \BbbR is a scalar-valued function for i, j = 1, . . . , d. In this representa-
tion, the space \scrC 0(\Omega ;\BbbR d\times d) is the collection of matrix-valued functions of the form (2.4) with
fi,j \in \scrC 0(\Omega ).

Definition 2.1. Let q \in [1,+\infty ]. For any \bfF \in \scrC 0(\Omega ;\BbbR d\times d), the L\infty -Sq mixed norm is defined
as

(2.5) \| \bfF \| L\infty ,Sq

\vartriangle 
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(   \| f1,1\| L\infty \cdot \cdot \cdot \| f1,d\| L\infty 

...
. . .

...
\| fd,1\| L\infty \cdot \cdot \cdot \| fd,d\| L\infty 

\right)   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Sq

.

Remark 1. In Definition 2.1, the Sq-norm appears as the outer norm. We remain faithful to
this convention throughout the paper and always denote mixed norms in order of appearance,
where the first is the inner-norm and the second the outer-norm.

Following [63], we deduce that (\scrC 0(\Omega ;\BbbR d\times d),\| \cdot \| L\infty ,Sq
) is a bona fide Banach space, whose

dual is (\scrM (\Omega ,\BbbR d\times d),\| \cdot \| \scrM ,Sp
), where \scrM (\Omega ;\BbbR d\times d) is the collection of matrix-valued Radon

measures of the form

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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426 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

(2.6) \bfW = [wi,j ] =

\left(   w1,1 \cdot \cdot \cdot w1,d

...
. . .

...
wd,1 \cdot \cdot \cdot wd,d

\right)   , wi,j \in \scrM (\Omega ) \forall i, j = 1, . . . , d,

and the mixed \scrM -Sp norm is defined as

(2.7) \| \bfW \| \scrM ,Sp

\vartriangle 
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(   \| w1,1\| \scrM \cdot \cdot \cdot \| w1,d\| \scrM 

...
. . .

...
\| wd,1\| \scrM \cdot \cdot \cdot \| wd,d\| \scrM 

\right)   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Sp

.

The duality product \langle \cdot , \cdot \rangle :\scrM (\Omega ;\BbbR d\times d)\times \scrC 0(\Omega ;\BbbR d\times d)\rightarrow \BbbR is then defined as

(2.8) \langle \bfW ,\bfF \rangle \vartriangle =
d\sum 

i=1

d\sum 
j=1

\langle wi,j , fi,j\rangle .

Finally, we denote by L1(\Omega ;\BbbR d\times d), \scrD (\Omega ;\BbbR d\times d), and \scrD \prime (\Omega ;\BbbR d\times d) the matrix-valued gener-
alizations of the spaces L1(\Omega ), \scrD (\Omega ), and \scrD \prime (\Omega ), respectively. These spaces are equipped
with the natural direct-product topology. Consequently, we are allowed to use the notation
\scrD \prime (\Omega ;\BbbR d\times d), because the latter space is indeed the topological dual of \scrD (\Omega ;\BbbR d\times d).

2.4. Generalized Hessian operator. The operators \partial 2

\partial xi\partial xj
:\scrD \prime (\Omega )\rightarrow \scrD \prime (\Omega ) are viewed as

second-order weak partial derivatives. More precisely, for any i, j = 1, . . . , d and any w \in \scrD \prime (\Omega ),
the distribution \partial 2

\partial xi\partial xj
\{ w\} \in \scrD \prime (\Omega ) is defined as\biggl\langle 

\partial 2

\partial xi\partial xj
w,\varphi 

\biggr\rangle 
=

\biggl\langle 
w,

\partial 2

\partial xi\partial xj
\varphi 

\biggr\rangle 
for all test functions \varphi \in \scrD (\Omega ). This leads to the following definition of the generalized Hessian
operator over the space of distributions.

Definition 2.2. The Hessian operator H :\scrD \prime (\Omega )\rightarrow \scrD \prime (\Omega ;\BbbR d\times d) is defined as

(2.9) H\{ f\} =

\left(    
\partial 2f
\partial x2

1
\cdot \cdot \cdot \partial 2f

\partial x1\partial xd

...
. . .

...
\partial 2f

\partial xd\partial x1
\cdot \cdot \cdot \partial 2f

\partial x2
d

\right)    .

3. The Hessian-Schatten total variation. In order to properly define the HTV seminorm,
we start by introducing a novel class of mixed norms over \scrC 0(\Omega ;\BbbR d\times d).

Definition 3.1. Let q \in [1,+\infty ]. For any \bfF \in \scrC 0(\Omega ;\BbbR d\times d), the mixed Sq-L\infty norm is defined
as

(3.1) \| \bfF \| Sq,L\infty = sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| Sq
.

In section 2.3, we highlighted that the dual norm of the L\infty -Sq mixed norm is \scrM -Sp,
which is defined over matrix-valued Radon measures. In Definition 3.1, we switched the order
of application of the individual norms; however, the two norms induce the same topology over
the space \scrC 0(\Omega ;\BbbR d\times d).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HESSIAN-SCHATTEN TOTAL VARIATION 427

Theorem 3.2. Regarding the mixed norms defined in Definitions 2.1 and 3.1
1. The functional \bfF \mapsto \rightarrow \| \bfF \| Sq,L\infty is a well-defined (finite) norm over \scrC 0(\Omega ;\BbbR d\times d).
2. The L\infty -Sq and the Sq-L\infty mixed norms are equivalent, in the sense that there exist

positive constants A,B > 0 such that, for all \bfF \in \scrC 0(\Omega ;\BbbR d\times d), we have that

(3.2) A\| \bfF \| Sq,L\infty \leq \| \bfF \| L\infty ,Sq
\leq B\| \bfF \| Sq,L\infty .

3. The normed space (\scrC 0(\Omega ;\BbbR d\times d),\| \cdot \| Sq,L\infty ) is a bona fide Banach space.

The proof is available in Appendix A. Using the outcomes of Theorem 3.2 and, in partic-
ular, item 3, we are now ready to introduce the Sp-\scrM mixed norm defined over the space of
matrix-valued Radon measures.

Definition 3.3. For any matrix-valued Radon measure \bfW \in \scrM (\Omega ,\BbbR d\times d), the Sp-\scrM mixed
norm is defined as

(3.3) \| \bfW \| Sp,\scrM 
\vartriangle 
= sup

\Bigl\{ 
\langle \bfW ,\bfF \rangle :\bfF \in \scrC 0(\Omega ;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
.

Intuitively, the Sp-\scrM norm of a matrix-valued function \bfF : \Omega \rightarrow \BbbR d\times d is equal to the
total-variation norm of the function \bfitx \mapsto \rightarrow \| \bfF (\bfitx )\| Sq

. However, this intuition cannot directly
lead to a general definition, because the space \scrM (\Omega ;\BbbR d\times d) contains elements that do not have
a pointwise definition. We are therefore forced to define this norm by duality, as opposed to
the \scrM -Sp norm given in (2.7).

We also remark that, due to the dense embedding \scrD (\Omega ;\BbbR d\times d) \lhook \rightarrow \scrC 0(\Omega ;\BbbR d\times d), one can
alternatively express the Sp-\scrM norm as

(3.4) \| \bfW \| Sp,\scrM = sup
\Bigl\{ 
\langle \bfW ,\bfF \rangle :\bfF \in \scrD (\Omega ;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
,

which is well-defined for all matrix-valued distributions. However, the only elements of
\scrD \prime (\Omega ;\BbbR d\times d) of a finite Sp-\scrM norm are precisely the matrix-valued finite Radon measures.
In other words, \scrM (\Omega ,\BbbR d\times d) is the largest subspace of \scrD \prime (\Omega ;\BbbR d\times d) with a finite Sp-\scrM norm.

In what follows, we strengthen the intuition behind the Sp-\scrM norm by computing it for
two general classes of functions/distributions in \scrM (\Omega ,\BbbR d\times d) that are particularly important
in our framework: the absolutely integrable matrix-valued functions and the Dirac fence
distributions.

Definition 3.4. For any nonzero matrix \bfA \in \BbbR d\times d, any convex compact set C \subset \BbbR d1 with
d1 <d, and any measurable transformation \bfT :\BbbR d1 \rightarrow \BbbR d - d1 (not necessarily linear) such that
C \times \bfT (C)\subseteq \Omega , we define the corresponding Dirac fence \bfD \in \scrM (\Omega ;\BbbR d\times d) as

(3.5) \bfD (\bfitx 1,\bfitx 2) =\bfA 1\bfitx 1\in C\delta (\bfitx 2  - \bfT \bfitx 1\} ), \bfitx 1 \in \BbbR d1 ,\bfitx 2 \in \BbbR d - d1 , (\bfitx 1,\bfitx 2)\in \Omega .

Dirac fence distributions are natural generalizations of the Dirac impulse to nonlinear (and
bounded) manifolds [44]. More precisely, for any test function \bfF \in \scrC 0(\Omega ;\BbbR d\times d) and any Dirac
fence \bfD of the form (3.5), we have that

(3.6) \langle \bfD ,\bfF \rangle =
\int 
C
Tr
\bigl( 
\bfA T\bfF (\bfitx 1,\bfT \bfitx 1)

\bigr) 
d\bfitx 1 \in \BbbR .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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428 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

Figure 1. Illustration of a Dirac fence with d= 2 and d1 = 1.

Intuitively, this corresponds to considering a ``continuum"" of low-dimensional Dirac impulses
on the d1-dimensional compact manifold C \times \bfT (C) that is embedded in \Omega , as illustrated in
Figure 1.

Theorem 3.5. Let p\in [1,+\infty ). Then the following hold:
1. For any matrix-valued function \bfW \in L1(\Omega ,\BbbR d\times d)\subseteq \scrM (\Omega ;\BbbR d\times d), we have that

(3.7) \| \bfW \| Sp,\scrM = \| \| \bfW (\cdot )\| Sp
\| L1

=

\int 
\Omega 

\Biggl( 
d\sum 

i=1

| \sigma i (\bfW (\bfitx ))| p
\Biggr) 1

p

d\bfitx .

2. For any Dirac fence distribution \bfD of the form (3.5), we have that

(3.8) \| \bfD \| Sp,\scrM = \| \bfA \| Sp
Leb(C),

where Leb(C) denotes the Lebesgue measure of C \subseteq \BbbR d1.
3. Consider two Dirac fences \bfD 1 and \bfD 2 of the form

\bfD i(\bfitx 1,\bfitx 2) =\bfA i1\bfitx 1\in Ci
\delta (\bfitx 2  - \bfT i\bfitx 1\} ), i= 1,2,

and assume that the ``intersection"" of the two fences is of measure zero, in the sense
that C0 = \{ \bfitx 1 \in C1 \cap C2 :\bfT 1\bfitx 1 =\bfT 2\bfitx 1\} is a subset of \BbbR d1 whose Lebesgue measure is
zero. Then, we have that

(3.9) \| \bfD 1 +\bfD 2\| Sp,\scrM = \| \bfD 1\| Sp,\scrM + \| \bfD 2\| Sp,\scrM .

The proof can be found in Appendix B. We are now ready to define the HTV seminorm.
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HESSIAN-SCHATTEN TOTAL VARIATION 429

Definition 3.6. Let p \in [1,+\infty ]. The Hessian-Schatten total variation of any f \in \scrD \prime (\Omega ) is
defined as

(3.10) HTVp(f) = \| H\{ f\} \| Sp,\scrM = sup
\Bigl\{ 
\langle H\{ f\} ,\bfF \rangle :\bfF \in \scrD (\Omega ;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
,

where q \in [1,+\infty ] is the H\"older conjugate of p with 1
p +

1
q = 1.

In some cases, the HTV seminorm yields the same value for all choices of p \in [1,+\infty ].
For instance, in dimension d = 1, the HTV coincides with the second-order total-variation
(TV-2) seminorm, TV(2)(f) = \| D2\{ f\} \| \scrM , where D denotes the weak derivative operator
\scrD \prime (\BbbR )\rightarrow \scrD \prime (\BbbR ). Another interesting example (see section 4.2) is the class of CPWL functions.
In these cases, we can remove the subscript p and denote the seminorm by HTV(f) for brevity.

We now prove some desirable properties of the HTV functional. The proofs can be found
in Appendix C.

Theorem 3.7. The HTV seminorm satisfies the following properties:
1. Null space: A distribution has a vanishing HTV if and only if it can be identified as

an affine function. In other words, we have that

\scrN \mathrm{H}\mathrm{T}\mathrm{V}p
(\Omega ) =

\bigl\{ 
f \in \scrD \prime (\Omega ) : HTVp(f) = 0

\bigr\} 
=
\Bigl\{ 
\bfitx \mapsto \rightarrow \bfita T\bfitx + b : \bfita \in \BbbR d, b\in \BbbR 

\Bigr\} 
.

2. Invariance: Let \Omega =\BbbR d. For any f \in \scrD \prime (\BbbR d), we have that

HTVp (f(\cdot  - \bfitx 0)) =HTVp (f) \forall \bfitx 0 \in \BbbR d,

HTVp (f(\alpha \cdot )) = | \alpha | 2 - dHTVp (f) \forall \alpha \in \BbbR ,
HTVp (f(\bfU \cdot )) =HTVp (f) \forall \bfU \in \BbbR d\times d :Orthonormal.

4. Closed-form expressions for the HTV of special functions. Although Definition 3.6
introduces a formal way to compute the HTV of a given element f \in \scrD \prime (\Omega ), it is still very
abstract and not practical. This is the reason why we now provide closed-form expressions
for the HTV of two general classes of functions.

4.1. Sobolev functions. Let W 2
1 (\Omega ) be the Sobolev space of absolutely integrable and

twice-differentiable functions f : \Omega \rightarrow \BbbR whose first- and second-order partial derivatives are
in L1(\Omega ). We note that, for compact domains \Omega , this space contains the input-output relation
of neural networks with activation functions that are twice-differentiable almost everywhere
(e.g., sigmoid [15], Swish [53], Mish [40], GeLU [27]).

Proposition 4.1 (Sobolev compatibility). Let p \in [1,+\infty ]. Then, for any Sobolev function
f \in W 2

1 (\Omega ), we have that

HTVp(f) = \| H\{ f\} \| Sp,L1
=

\int 
\Omega 
\| H\{ f\} (\bfitx )\| Sp

d\bfitx .

Proof. This is a consequence of Theorem 3.5 since, for any f \in W 2
1 (\Omega ), the matrix-valued

function H\{ f\} : \Omega \rightarrow \BbbR d\times d :\bfitx \mapsto \rightarrow H\{ f\} (\bfitx ) is measurable and is in L1(\Omega ;\BbbR d\times d).
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430 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

Figure 2. Illustration of a CPWL function f :\BbbR 2 \rightarrow \BbbR . Left: 3D view. Right: 2D partitioning.

Remark 2. In Proposition 4.1, we only need the second-order partial derivatives to be in
L1(\Omega ). Following Poincare's inequality, this is equivalent to the Sobolev criteria for bounded
domains. However, in the case of \Omega =\BbbR d, our results are applicable to Beppo--Levi spaces [33].

Interestingly, Proposition 4.1 demonstrates that our introduced seminorm is a generaliza-
tion of the Hessian-Schatten regularization that has been used in inverse problems and image
reconstruction [35, 37].

4.2. Continuous and piecewise-linear mappings. A function f : \Omega \rightarrow \BbbR is said to be
continuous and piecewise linear if the following hold:

1. It is continuous.
2. There exists a finite partitioning \Omega = P1\sqcup P2\sqcup \cdot \cdot \cdot \sqcup PN such that, for any n= 1, . . . ,N ,

Pn is a polytope with the property that the restricted function f | Pn
is an affine mapping

of the form f | Pn
(\bfitx ) = \bfita T

n\bfitx + bn for all \bfitx \in Pn.
An example of a CPWL function is shown in Figure 2. Let us highlight that there is

an intimate link between CPWL functions and ReLU neural networks. Indeed, it has been
shown that the input-output relation of any feed forward ReLU neural network is a CPWL
function [41, 49]. Moreover, any CPWL function can be represented exactly by some ReLU
neural network whose depth is at most (\lceil log2(d+ 1)\rceil + 1) [2, Theorem 2.1].

Theorem 4.2. Let f : \Omega \rightarrow \BbbR be the CPWL function described above. For any p \in [1,+\infty ],
the corresponding HTV of f is given as

(4.1) HTVp(f) =
1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

\| \bfita n  - \bfita k\| 2Hd - 1(Pn \cap Pk),

where adjn is the set of indices k \in \{ 1, . . . ,N\} such that Pn and Pk are neighbors and Hd - 1

denotes the (d - 1)-dimensional Hausdorff measure.

The proof of Theorem 4.2 is provided in Appendix D. We conclude from (4.1) that the HTV
seminorm accounts for the change of (directional) slope in all the junctions in the partitioning.
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HESSIAN-SCHATTEN TOTAL VARIATION 431

Specifically, the HTV of a CPWL function is proportional to a weighted \ell 1 penalty on the
vector of slope changes, where the weights are proportional to the volume of the intersection
region. This can be seen as a convex relaxation of the number of linear regions. The latter has
the disadvantage that it is unable to differentiate between small and large changes of slope.
Another noteworthy observation is the invariance of the HTV of CPWL functions to the value
of p\in [1,+\infty ], which is unlike the case of Sobolev functions in Proposition 4.1. This is due to
the extreme sparsity of the Hessian of CPWL functions. In fact, the Hessian matrix is zero
everywhere except at the borders of linear regions. There, it is a Dirac fence weighted by a
rank-1 matrix. The invariance then follows from the observation that the Schatten-p norms
collapse to a single value in rank-1 matrices (i.e., their only nonzero singular value).

It is known from the literature on low-rank matrix recovery that among the Schatten
norms, only the case p = 1 is relevant for obtaining ``sparse"" elements [54]. By analogy, we
conjecture that the only member of the HTV family that favors CPWL functions is HTV1.

To demonstrate the applicability of Theorem 4.2, we now provide a closed-form expression
for the HTV of a 2-layer neural network f : \Omega \rightarrow \BbbR with ReLU activation functions and
skip connections. Let us recall that the input-output mapping of such networks admits the
representation

(4.2) f(\bfitx ) = c0 + \bfitc T1 \bfitx +

N\sum 
n=1

vnReLU
\bigl( 
\bfitw T

n\bfitx  - bn
\bigr) 

for some N \in \BbbN , \bfitw n \in \BbbR d, and vn, bn \in \BbbR for n= 1, . . . ,N .

Proposition 4.3. Let \Omega = \{ \bfitx \in \BbbR d : \| \bfitx \| 2 \leq R\} be the d-dimensional Euclidean ball of radius
R > 0. Then, the HTV of any 2-layer neural network f : \Omega \rightarrow \BbbR of the form (4.2) can be
computed as

(4.3) HTV(f) = \omega d - 1(R)

N\sum 
n=1

\gamma n| vn| \| \bfitw n\| 2,

with the weight coefficients \gamma n =
\Bigl( 
1 - b2n

\| \bfitw n\| 2
2R

2

\Bigr) d - 1

2

+
\in [0,1] for n = 1, . . . ,N , where \omega d - 1(R)

denotes the volume of the (d - 1)-dimensional sphere of radius R.

Proof. We shall proceed by induction on N . For N = 0, f is an affine mapping whose
HTV is zero. Assuming that the HTV(f) is given by (4.3), we then consider the function

(4.4) g= f + vN+1ReLU
\bigl( 
\bfitw T

N+1 \cdot  - bN+1

\bigr) 
for some arbitrary vN+1, bN+1 \in \BbbR , and \bfitw N+1 \in \BbbR d. Next, we invoke the positive homogeneity
of ReLU to obtain

(4.5) g= f + \~vReLU
\Bigl( 
\bfitu T \cdot  - \~b

\Bigr) 
,

where \~v= vN+1\| \bfitw N+1\| 2, \bfitu =\bfitw /\| \bfitw N+1\| 2, and \~b= bn/\| \bfitw N+1\| 2. There are two cases:
Case I: | \~b| \geq R. There, (g  - f) is an affine mapping over \Omega and, hence, we have that

HTV(f) =HTV(g).
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432 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

Case II: | \~b| <R. In this case, the ridge function ReLU(\bfitu T \cdot  - \~b) splits some of the linear
regions of f in two. Let us denote one of these regions by P whose gradient vector is \bfita . This
region is now divided in two: P = P1 \sqcup P2 with gradient vectors \bfita 1 = \bfita and \bfita 2 = \bfita + \~v\bfitu ,
respectively. Hence, the contribution of the ridge function in P is equal to Hd - 1(P1 \cap P2)| \~v| .
Summing this up over all relevant regions yields

(4.6) HTV(g) =HTV(f) + | \~v| Hd - 1(E), E =
\Bigl\{ 
\bfitx \in \Omega :\bfitu T\bfitx =\~b

\Bigr\} 
.

Since the domain \Omega is rotation-invariant, we can assume without loss of generality that \bfitu = \bfe 1.
Hence,

Hd - 1(E) =Hd - 1
\Bigl( 
\{ \bfitx \in \BbbR d : x1 =\~b,\| \bfitx \| 2 \leq R\} 

\Bigr) 
=Vol

\Bigl( 
\{ \bfitx \in \BbbR d - 1 : \| \bfitx \| 22 \leq R2  - \~b2\} 

\Bigr) 
=

\Biggl( 
1 - 

\~b2

R2

\Biggr) d - 1

2

\omega d - 1(R).

Combining this with (4.6) yields the announced bound.

Proposition 4.3 indicates that, for shallow neural networks, the HTV is a weighted ana-
logue of the path-norm regularizer [42], with the weights of each path depending on the
corresponding bias. This makes sense for bounded domains, because the effective influence of
each ridge (i.e., the way it changes the shape of the overall function) is inversely proportional
to its off-set. In particular, if the ridge is far out (Case I in the proof), then it simply induces
an affine term over \Omega .

Let us also highlight that for large values of R, the weight coefficients tend to 1, i.e.,
limR\rightarrow +\infty \gamma n = 1. This means that for large domains, the HTV has an effect similar to the path-
norm regularizer, which also means that it is closely linked to weight decay regularization [45].
Moreover, the path-norm regularizer is known to be equal to the Radon-domain total variation
of the input-output mapping [46]. Specifically, for shallow neural networks f : \BbbR d \rightarrow \BbbR , we
have that

(4.7) \scrR TV(2)(f) = lim
R\rightarrow +\infty 

HTV(f | \Omega )
\omega d - 1(R)

.

Although we have only established this connection for shallow neural networks, we believe the
two measures of complexity are linked for deeper architectures as well. This requires under-
standing the effect of function composition (at least, in the CPWL family) in the computation
of the HTV. The question, however, is very challenging and constitutes an interesting direction
for future research.

5. Illustrations of usage. In this section, we illustrate the behavior of the HTV seminorm
in different scenarios. The associated codes are available online1 . In our first example, we
consider the problem of learning one-dimensional mappings from noisy data. In this example,
we compare five different learning schemes:

1https://github.com/joaquimcampos/HTV-Learn
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HESSIAN-SCHATTEN TOTAL VARIATION 433

Figure 3. Comparison of five different learning schemes in the 1D setting.

1. A ReLU neural network with three hidden layers, each layer consisting of 10 neurons;
2. CPWL learning using TV-2 regularization [16];
3. CPWL learning using Lipschitz regularization [3];
4. CPWL learning using the L2 norm of the first derivative as the regularization term

(smoothing spline);
5. RKHS learning with a Gaussian reproducing kernel k(x, y) = exp( - (x  - y)2/(2\sigma 2))

whose width is \sigma = 1/4.
We set the hyperparameters of each method such that they all have a similar training loss. The
learned mappings are depicted in Figure 3, where we have also indicated their corresponding
HTV value. As can be seen, the models that have a lower HTV are simpler and visually more
satisfactory. Moreover, we observe that the neural network produces a CPWL mapping with
complexity similar to the one produced by the TV-2 regularization scheme, which is expected
to yield the mapping with the smallest HTV. This is in line with the recent results in deep-
learning theory that indicate the existence of certain implicit regularizations in the learning
of neural networks [57].

Next, we consider a 2D learning example where we take M = 3000 samples from a 2D
height map obtained from a facial dataset2 . Note that there are gaps in the training data,
which makes the fitting problem more challenging. In this case, we compare three different
learning schemes:

2https://www.turbosquid.com/3d-models/3d-male-head-model-1357522

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

9/
23

 to
 1

28
.1

78
.4

8.
12

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://www.turbosquid.com/3d-models/3d-male-head-model-1357522
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Figure 4. Learning of a 2D height map of a face from its nonuniform samples.

1. A ReLU neural network with four hidden layers, each layer consisting of 125 hidden
neurons (the neural network has been explicitly regularized using the weight decay
scheme with the parameter \mu = 1e - 6);

2. RKHS learning with a Gaussian radial-basis function whose width is \sigma = 0.196 and
regularization parameter is \lambda = 1e - 3;

3. the framework of learning 2D functions with HTV regularization with the parameter
\lambda = 1e - 2 [12].

We tune the hyperparameters of each framework (including the width of the neural network)
to have a similar training error. The results are depicted in Figure 4. Similarly to the previous
case, this example illustrates the property that the HTV favors simple and intuitive models
that are visually more adequate.

Finally, we study the role of hyperparameters in the complexity of the final learned map-
ping in the 2D dataset. To that end, we plot in Figure 5 the HTVp (for three different values
of p) of the mapping learned by the RBF scheme versus the regularization parameter \lambda and
the kernel width \sigma . As expected, sharper kernels and lower values of \lambda correspond to a higher
HTV in the output.

Analogously, we have plotted in Figure 6 the HTV of the neural network used in Figure 4
versus the weight decay parameter \mu . The result suggests that the two metrics follow the
same trend.

6. Conclusion. In this paper, we have introduced the Hessian-Schatten total-variation
(HTV) seminorm and proposed its use as a complexity measure for the study of learning
schemes. Our notion of complexity is very general and can be applied to different scenarios.
We have proven that the HTV enjoys the properties that are expected of a good complexity
measure, such as invariance to simple transformations and zero penalization of linear regres-
sors. We then computed the HTV of two general classes of functions. In each case, we derived
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Figure 5. The HTV of the learned kernel estimator versus the regularization weight \lambda (left) and the kernel
width \sigma (right) in the 2D face example.

10 6 10 5 10 4

2

4

6

8

10

12

HT
V

Figure 6. The HTV of the learned neural network versus the weight decay parameter \mu in the 2D face
example.

simple formulas for the HTV that allowed us to interpret its underlying behavior. Finally, we
have provided some illustrative examples of usage for the comparison of learning algorithms.
Future research directions could be to use this notion of complexity to study learning schemes,
in particular their generalization power.
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Appendix A. Proof of Theorem 3.2.

Proof. It is known that all norms are equivalent in finite-dimensional vector spaces. Con-
sequently, there exist positive constants c1, c2 > 0 such that

\forall \bfA = [ai,j ]\in \BbbR d\times d, c1\| \bfA \| \mathrm{s}\mathrm{u}\mathrm{m} \leq \| \bfA \| Sq
\leq c2\| \bfA \| \mathrm{s}\mathrm{u}\mathrm{m},

where \| \bfA \| \mathrm{s}\mathrm{u}\mathrm{m} =
\sum d

i=1

\sum d
j=1 | ai,j | . This immediately yields that

(A.1) c1

d\sum 
i=1

d\sum 
j=1

\| fi,j\| L\infty \leq \| \bfF \| L\infty ,Sq
\leq c2

d\sum 
i=1

d\sum 
j=1

\| fi,j\| L\infty ,

as well as that

(A.2) c1 sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m} \leq \| \bfF \| Sq,L\infty \leq c2 sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m},

for all \bfF \in \scrC 0(\Omega ;\BbbR d\times d). On the one hand, we have that

(A.3) sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m} = sup
\bfitx \in \Omega 

\left(  d\sum 
i,j=1

| fi,j(\bfitx )| 

\right)  \leq 
d\sum 

i,j=1

sup
\bfitx \in \Omega 

| fi,j(\bfitx )| =
d\sum 

i,j=1

\| fi,j\| L\infty .

Combining (A.1), (A.2), and (A.3), we then deduce that

(A.4) \| \bfF \| Sq,L\infty \leq c2 sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m} \leq c2

d\sum 
i,j=1

\| fi,j\| L\infty \leq c2
c1
\| \bfF \| L\infty ,Sq

.

On the other hand, using \| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m} \geq | fi,j(\bfitx )| for all i, j = 1, . . . , d, we obtain that

\| fi,j\| L\infty = sup
\bfitx \in \Omega 

| fi,j(\bfitx )| \leq sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m} \forall i, j = 1, . . . , d.

Summing over all i, j = 1, . . . , d then gives that

(A.5)

d\sum 
i=1

d\sum 
j=1

\| fi,j\| L\infty \leq d2 sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m}.

Combining (A.1), (A.2), and (A.5), we obtain that

(A.6) \| \bfF \| L\infty ,Sq
\leq c2

d\sum 
i=1

d\sum 
j=1

\| fi,j\| L\infty \leq c2d
2 sup
\bfitx \in \Omega 

\| \bfF (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m} \leq c2
c1
d2\| \bfF \| Sq,L\infty .

Finally, the inequalities (A.4) and (A.6) yield (3.2) with A = c1
c2

and B = c2
c1
d2 (item 2).

Further, it guarantees that the functional \bfF \mapsto \rightarrow \| \bfF \| Sq,L\infty is well-defined (finite) for all \bfF \in 
\scrC 0(\Omega ,\BbbR d\times d). It is then easy to verify the remaining norm properties (positivity, homogeneity,
and the triangle inequality) of \| \cdot \| Sq,L\infty (item 1). As for item 3, we note that the norm
equivalence implies that both norms induce the same topology over \scrC 0(\Omega ;\BbbR d\times d). Hence,
(\scrC 0(\Omega ;\BbbR d\times d),\| \cdot \| Sq,L\infty ) is a bona fide Banach space.
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Appendix B. Proof of Theorem 3.5.

Proof. Item 1. We first show that the right-hand side of (3.7) is well-defined and admits
a finite value. First, note that \| \bfW (\cdot )\| Sp

is the composition of the measurable function \bfW :
\Omega \rightarrow \BbbR d\times d and the Schatten-p norm \| \cdot \| Sp

: \BbbR d\times d \rightarrow \BbbR that is continuous and, consequently,
measurable. This implies that \| \bfW (\cdot )\| Sp

is also a measurable function and, hence, its L1 norm
is well-defined. The last step is to show that the L1 norm is finite. From the norm-equivalence
property of finite-dimensional vector spaces, we deduce the existence of b > 0 such that, for
any \bfA = [ai,j ]\in \BbbR d\times d, we have that

(B.1) \| \bfA \| Sp
\leq b\| \bfA \| \mathrm{s}\mathrm{u}\mathrm{m},

where \| \bfA \| \mathrm{s}\mathrm{u}\mathrm{m} =
\sum d

i=1

\sum d
j=1 | ai,j | . This implies that

\| \| \bfW (\cdot )\| Sp
\| L1

=

\int 
\Omega 
\| \bfW (\bfitx )\| Sp

d\bfitx \leq b

\int 
\Omega 
\| \bfW (\bfitx )\| \mathrm{s}\mathrm{u}\mathrm{m} d\bfitx 

(\mathrm{i})
= b

d\sum 
i=1

d\sum 
j=1

\| wi,j\| L1
<+\infty ,

where we have used Fubini's theorem to deduce (i). Now, one readily verifies that

\langle \bfW ,\bfF \rangle =
d\sum 

i,j=1

\langle wi,j , fi,j\rangle =
d\sum 

i,j=1

\int 
\Omega 
wi,j(\bfitx )fi,j(\bfitx )d\bfitx =

\int 
\Omega 

\left(  d\sum 
i,j=1

wi,j(\bfitx )fi,j(\bfitx )

\right)  d\bfitx ,

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i,j=1

wi,j(\bfitx )fi,j(\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| d\bfitx 
(\mathrm{i})

\leq 
\int 
\Omega 
\| \bfW (\bfitx )\| Sp

\| \bfF (\bfitx )\| Sq
d\bfitx 

(\mathrm{i}\mathrm{i})

\leq \| \| \bfW (\cdot )\| Sp
\| L1

\| \bfF \| Sq,L\infty ,

where we have used the H\"older inequality for Schatten norms (see (2.2)) in (i) and the one
for Lp norms in (ii). We conclude that

(B.2) \| \bfW \| Sp,\scrM \leq \| \| \bfW (\cdot )\| Sp
\| L1

.

To show the equality, we need to prove that, for any \epsilon > 0, there exists an element \bfF \epsilon \in 
\scrC 0(\Omega ;\BbbR d\times d) with \| \bfF \epsilon \| Sq,L\infty = 1 such that

(B.3) \langle \bfW ,\bfF \epsilon \rangle \geq \| \| \bfW (\cdot )\| Sp
\| L1

 - \epsilon .

Consider the function \bfF : \Omega \rightarrow \BbbR d\times d with

(B.4) \bfF (\bfitx ) =

\Biggl\{ 
\mathrm{J}Sp,\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\bfW (\bfitx ))

\| \bfW (\bfitx )\| Sp
, \bfW (\bfitx ) \not = \bfzero ,

0 otherwise,

where JSp,\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} :\BbbR d\times d \rightarrow \BbbR is the sparse duality mapping that maps \bfA \in \BbbR d\times d to its minimum
rank (Sp, Sq)-conjugate (see [4] for the definition and the proof of well-definedness)3 . We
first note that \bfF is a measurable function. Indeed, from [4], we know that JSp,\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} is a
measurable mapping over \BbbR d\times d. Hence, its composition with the measurable function \bfW is

3This function coincides with the usual duality mapping for p \in (1,+\infty ), and the rank constraint is only
needed for the special case p= 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

9/
23

 to
 1

28
.1

78
.4

8.
12

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



438 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

also measurable. Moreover, norms are continuous (and, so, Borel-measurable) functionals.

Therefore, we have that \bfF (\bfitx ) = 1\bfW \not =\bfzero 
\mathrm{J}Sp,\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\bfW (\bfitx ))

\| \bfW (\bfitx )\| Sp
is also Borel-measurable. Knowing the

measurability of \bfF , we observe that\int 
\Omega 
Tr(\bfW T (\bfitx )\bfF (\bfitx ))d\bfitx =

\int 
\Omega 
\| \bfW (\bfitx )\| Sp

d\bfitx = \| \| \bfW (\cdot )\| Sp
\| L1

.(B.5)

We also note that \| \bfF \| Sq,L\infty = 1. The final step is to use Lusin's theorem (see [21, Theorem
7.10]) to find an \epsilon -approximation \bfF \epsilon \in \scrC 0(\Omega ;\BbbR d\times d) of \bfF on the unit Sq-L\infty ball so that\bigm| \bigm| \bigm| \bigm| \int 

\Omega 
Tr(\bfW T (\bfitx )\bfF (\bfitx ))d\bfitx  - 

\int 
\Omega 
Tr(\bfW T (\bfitx )\bfF \epsilon (\bfitx ))d\bfitx 

\bigm| \bigm| \bigm| \bigm| \leq \epsilon .(B.6)

Now, combining (B.6) with (B.5), we deduce (B.3), which completes the proof.
Item 2. We first recall that the application of a distribution \bfD of the form (3.5) to any

element \bfF \in \scrC 0(\Omega ;\BbbR d\times d) can be computed as

(B.7) \langle \bfD ,\bfF \rangle =
\int 
C
Tr
\bigl( 
\bfA T\bfF (\bfitx ,T\bfitx )

\bigr) 
d\bfitx .

Using H\"older's inequality, for any \bfF \in \scrC 0(\Omega ;\BbbR d\times d) with \| \bfF \| Sq,L\infty = 1, we obtain that\int 
C
Tr
\bigl( 
\bfA T\bfF (\bfitx ,T\bfitx )

\bigr) 
d\bfitx \leq 

\int 
C
\| \bfA \| Sp

\| \bfF (\bfitx ,T\bfitx )\| Sq
d\bfitx 

\leq \| \bfA \| Sp

\int 
C
1d\bfitx = \| \bfA \| S1

Leb(C),

which implies that \| \bfD \| Sp,\scrM \leq \| \bfA \| Sp
Leb(C). To verify the equality, we consider an element

\bfF \in \scrC 0(\Omega ;\BbbR d\times d) whose restriction on C is the constant matrix \bfA \ast = \| \bfA \|  - 1
Sp

JSp,\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\bfA ).
Item 3. Following the assumption that Leb(C0) = 0, for any \epsilon > 0, there exists a measurable

set E \subseteq \BbbR d1 with Leb(E) = \epsilon /2 such that C0 \subseteq E. From the construction, we deduce that
the sets C1\setminus E and C2\setminus E are separable; hence, there exists a function \bfF \epsilon \in \scrC 0(\Omega ;\BbbR d\times d) with
\| \bfF \epsilon \| Sq,L\infty = 1 such that

\bfF \epsilon (\bfitx 1,\bfT i\bfitx 1) =\bfA \ast 
i \forall \bfitx 1 \in Ci\setminus C0, i= 1,2,

where \bfA \ast 
i = \| \bfA i\|  - 1

Sp
JSp,\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\bfA i), i= 1,2. This implies that, for i= 1,2, we have

\langle \bfD i,\bfF \epsilon \rangle =
\int 
Ci

Tr
\bigl( 
\bfA T

i \bfF \epsilon (\bfitx 1,\bfT i\bfitx 1)
\bigr) 
d\bfitx 1

=

\int 
C0

Tr
\bigl( 
\bfA T

i \bfF \epsilon (\bfitx 1,\bfT i\bfitx 1)
\bigr) 
d\bfitx 1 +

\int 
Ci\setminus C0

Tr
\bigl( 
\bfA T

i \bfA 
\ast 
i

\bigr) 
d\bfitx 1

\geq  - Leb(C0)\| \bfA i\| Sp
+Leb(Ci\setminus C0)\| \bfA i\| Sp

\geq \| \bfA i\| Sp
(Leb(Ci) - \epsilon ).

Hence, for any \epsilon > 0, we have that

\| \bfD 1 +\bfD 2\| Sp,\scrM \geq \langle \bfD 1 +\bfD 2,\bfF \epsilon \rangle 
\geq \| \bfA 1\| Sp

Leb(C1) + \| \bfA 2\| Sp
Leb(C2) - \epsilon (\| \bfA 1\| Sp

+ \| \bfA 2\| Sp
).

By letting \epsilon \rightarrow 0, we deduce that \| \bfD 1 +\bfD 2\| Sp,\scrM \geq \| \bfD 1\| Sp,\scrM + \| \bfD 2\| Sp,\scrM , which, together
with the triangle inequality, yields the announced equality.
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HESSIAN-SCHATTEN TOTAL VARIATION 439

Appendix C. Proof of Theorem 3.7.

Proof. Item 1. Starting from H\{ f\} = \bfzero , we deduce that \partial 2f
\partial x2

i
= 0 for i= 1, . . . , d. Following

Proposition 6.1 in [64], we deduce that the null space of \partial 2

\partial x2
1
can only contain (multivariate)

polynomials. Using this, we infer that any p in the null space of \partial 2

\partial x2
1
is of the form p(\bfitx ) =

a1x1+q1(\bfitx ) for some a1 \in \BbbR and some multivariate polynomial q1 that does not depend on x1.
Finally, one verifies by induction that q1(\bfitx ) =

\sum d
i=2 aixi + q0(\bfitx ), where q0 is a multivariate

polynomial that does not depend on any of its variables and so is constant, i.e., q0(\bfitx ) = b for
some b \in \BbbR . We conclude the proof by remarking that any affine mapping is indeed in the
null space of H.

Item 2. By invoking that H\{ f(\cdot  - \bfitx 0)\} =H\{ f\} (\cdot  - \bfitx 0), we immediately deduce that

HTV(f(\cdot  - \bfitx 0)) = sup
\Bigl\{ 
\langle H\{ f\} (\cdot  - \bfitx 0),\bfF \rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
= sup

\Bigl\{ 
\langle H\{ f\} ,\bfF (\cdot +\bfitx 0)\rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
=HTV(f).

Similarly, following the chain rule, we obtain that H\{ f(\alpha \cdot )\} = \alpha 2H\{ f\} (\alpha \cdot ). This yields that

HTV(f(\alpha \cdot )) = \alpha 2 sup
\Bigl\{ 
\langle H\{ f\} (\alpha \cdot ),\bfF \rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
= \alpha 2 sup

\Bigl\{ 
\langle H\{ f\} , \alpha  - d\bfF (\alpha  - 1\cdot )\rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
= | \alpha | 2 - d sup

\Bigl\{ 
\langle H\{ f\} ,\bfF (\cdot )\rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
= | \alpha | 2 - dHTV(f).

As for the last invariance property, we use the formula for the Hessian of a rotated function

H\{ f(\bfU \cdot )\} =\bfU TH\{ f\} (\bfU \cdot )\bfU .

This implies that

HTV(f(\bfU \cdot )) = sup
\Bigl\{ 
\langle \bfU TH\{ f\} (\bfU \cdot )\bfU ,\bfF \rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
= sup

\Bigl\{ 
\langle H\{ f\} (\bfU \cdot ),\bfU \bfF (\cdot )\bfU T \rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
= sup

\Bigl\{ 
\langle H\{ f\} ,\bfU \bfF (\bfU T \cdot )\bfU T \rangle :\bfF \in \scrD (\BbbR d;\BbbR d\times d),\| \bfF \| Sq,L\infty = 1

\Bigr\} 
=HTV(f),

where the last equality follows from the invariance of Schatten norms under orthogonal trans-
formations (as exploited, for example, in [35, 37]).

Appendix D. Proof of Theorem 4.2. Let f : \BbbR d \rightarrow \BbbR be a CPWL function with linear
regions Pn \subseteq \Omega and affine parameters \bfita n \in \BbbR d and bn \in \BbbR for n= 1, . . . ,N . We first compute
the gradient of f .
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440 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

Lemma D.1. The gradient of a CPWL function f : \Omega \rightarrow \BbbR as described above can be
expressed as

(D.1) \bfnabla f(\bfitx ) =

N\sum 
n=1

\bfita n1Pn
(\bfitx )

for almost every \bfitx \in \Omega .

Proof. The interior of Pn is denoted by Un, with n = 1, . . . ,N . We then note that
\Omega \setminus (

\bigcup N
n=1Un) is a set of measure zero. Hence, it is sufficient to show that \bfnabla f(\bfitx ) = \bfita n

for any \bfitx 0 = (x0,1, . . . , x0,d)\in Un. We define the functions gi :\BbbR \rightarrow \BbbR as

gi(x) = f(x0,1, . . . , x0,i - 1, x, x0,i+1, . . . , x0,d).

Following the definition of CPWL mappings, gi is a linear spline (i.e., a 1D continuous and
piecewise-linear function). Hence, it is locally linear and can be expressed as gi(x) = an,ix+
(
\sum 

j \not =i an,jx0,j + b) in an open neighborhood of x0,i. Moreover, it is clear that an,i = g\prime i(x0,i) =
\partial f
\partial xi

(\bfitx 0). Hence,

\bfnabla f(\bfitx 0) =

\biggl( 
\partial f

\partial x1
(\bfitx 0), . . . ,

\partial f

\partial xd
(\bfitx 0)

\biggr) 
= (an,1, . . . , an,d) = \bfita n.

Proof of Theorem 4.2. We start by introducing some notions that are required in the proof.
For each n= 1, . . . ,N and k \in adjn, we denote the intersection of Pn and Pk by Ln,k = Pn\cap Pk,
which is itself a convex polytope with codimension (d  - 1), in the sense that it lies on a
hyperplane Hn,k = \{ \bfitx \in \BbbR d : \bfitu T

n,k\bfitx + \beta n,k = 0\} for some normal vector \bfitu n,k = (un,k,i) \in \BbbR d

with \| \bfitu n,k\| 2 = 1 and some shift value \beta n,k \in \BbbR . We adopt the convention that \bfitu n,k refers to
the outward normal vector, so that \bfitu T

n,k\bfitx + \beta n,k \leq 0 for all \bfitx \in Pn. We divide the proof in
four steps:

\bfS \bft \bfe \bfp \bfone : \bfT \bfr \bfa \bfn \bfs \bff \bfo \bfr \bfm \bfa \bft \bfi \bfo \bfn \bft \bfo \bft \bfh \bfe \bfg \bfe \bfn \bfe \bfr \bfa \bfl \bfp \bfo \bfs \bfi \bft \bfi \bfo \bfn . First, without any loss of generality,
we assume that all entries of \bfitu n,k for all n = 1, . . . ,N and k \in adjn are nonzero. Consider a
unitary matrix \bfV \in \BbbR d\times d such that [\bfV \bfitu n,k]i \not = 0 for all n= 1, . . . ,N , k \in adjn, and i= 1, . . . , d.
We remark that the function g = f(\bfV \cdot ) is CPWL with linear regions \~Pn = \bfV TPn and affine
parameters \~\bfita n = \bfV T\bfita n and \~bn = bn for n = 1, . . . ,N . Now, if (4.1) holds for g, then we can
invoke the invariance properties of the HTV (see Theorem 3.7) to deduce that

HTVp(f) =HTVp (g)

=
1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

\| \~\bfita n  - \~\bfita k\| 2Hd - 1( \~Pn \cap \~Pk)

=
1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

\| \bfV T (\bfita n  - \bfita k)\| 2Hd - 1(\bfV T (Pn \cap Pk))

=
1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

\| \bfita n  - \bfita k\| 2Hd - 1(Pn \cap Pk),
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HESSIAN-SCHATTEN TOTAL VARIATION 441

where the last equality is due to the invariance of the Hausdorff measure and the \ell 2 norm to
orthonormal transformations.

\bfS \bft \bfe \bfp \bftwo : \bfC \bfa \bfl \bfc \bfu \bfl \bfa \bft \bfi \bfo \bfn \bfo \bff \bft \bfh \bfe \bfH \bfe \bfs \bfs \bfi \bfa \bfn \bfd \bfi \bfs \bft \bfr \bfi \bfb \bfu \bft \bfi \bfo \bfn . From now on, we assume that all
entries of un,k are nonzero, with

un,k,i = 0, n= 0, . . . ,N, k \in adjn, i= 1, . . . , d.

This allows us to view Hn,k as the graph of the affine mapping Tn,k :\BbbR d - 1 \rightarrow \BbbR , with

Tn,k(x1, . . . , xd - 1) = \beta n,k  - 
\sum d - 1

i=1 un,k,ixi
un,k,d

,

and to define Cn,k = \{ \bfitx \in \BbbR d - 1 : (\bfitx , Tn,k\bfitx ) \in Ln,k\} \subseteq \Omega as the preimage of Ln,k over Tn,k.
We also remark that, due to this affine projection, the (d - 1)-dimensional Hausdorff measure
of Ln,k and the Lebesgue measure of Cn,k are related by the coefficient un,k,d. Indeed, we

have that Hd - 1(Ln,k) =
\mathrm{L}\mathrm{e}\mathrm{b}(Cn,k)
| un,k,d| . Using these notions, we now compute the matrix-valued

distribution H\{ f\} \in \scrM (\Omega ;\BbbR d\times d). We first note that, for all n= 0, . . . ,N and i= 1, . . . , d, we
have that

(D.2)
\partial 1Pn

\partial xi
(\bfitx ) =

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

 - sgn(un,k,i)\delta 

\biggl( 
xi +

\sum 
j \not =i un,k,jxj + \beta n,k

un,k,i

\biggr) 
1Ln,k

(\bfitx ).

Using the relation \delta (\alpha \cdot ) = | \alpha |  - 1\delta (\cdot ) for all \alpha \in \BbbR , we obtain that

(D.3)
\partial 1Pn

\partial xi
(\bfitx ) =

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

 - un,k,i
| un,k,d| 

\delta (xd  - Tn,k\bfitx 1)1Ln,k
(\bfitx ),

where \bfitx 1 = (x1, . . . , xd - 1)\in \BbbR d - 1. Following the definition of Cn,k, we immediately get that

(D.4) \delta (xd  - Tn,k\bfitx 1)1Ln,k
(\bfitx ) = \delta (xd  - Tn,k\bfitx 2)1Cn,k

(\bfitx 1),

which leads to

(D.5)
\partial 1Pn

\partial xi
(\bfitx ) =

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

 - un,k,i
| un,k,d| 

\delta (xd  - Tn,k\bfitx 1)1Cn,k
(\bfitx 1).

Combining (D.5) with Lemma D.1, we then deduce that

\partial 2f

\partial xi\partial xj
(\bfitx ) =

N\sum 
n=1

an,j
\partial 1Pn

\partial xi
(\bfitx )

=

N\sum 
n=1

an,j
\sum 

k\in \mathrm{a}\mathrm{d}\mathrm{j}n

 - un,k,i
| un,k,d| 

\delta (xd  - Tn,k\bfitx 1)1Cn,k
(\bfitx 1).

Now, since Ln,k = Pn \cap Pk and \bfitu n,k = ( - \bfitu k,n), we can rewrite the second-order partial
derivatives as

\partial 2f

\partial xi\partial xj
(\bfitx ) =

1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

(ak,j  - an,j)
un,k,i
| un,k,d| 

\delta (xd  - Tn,k\bfitx 1)1Cn,k
(\bfitx 1).
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442 S. AZIZNEJAD, J. CAMPOS, AND M. UNSER

Putting it in matrix form, we conclude that the Hessian is a sum of disjoint Dirac fences, as in

H\{ f\} (\bfitx ) =
\biggl[ 

\partial 2f

\partial xi\partial xj
(\bfitx )

\biggr] 
=

1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

\biggl[ 
(ak,j  - an,j)

un,k,i
| un,k,d| 

\biggr] 
\delta (xd  - Tn,k\bfitx 1)1Cn,k

(\bfitx 1).(D.6)

\bfS \bft \bfe \bfp \bfthree : \bfC \bfo \bfm \bfp \bfu \bft \bfa \bft \bfi \bfo \bfn \bfo \bff \bft \bfh \bfe \bfH \bfT \bfV . By invoking item 3 of Theorem 3.5, we deduce
that

HTVp(f) = \| H\{ f\} \| Sp,\scrM 

=
1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ (ak,j  - an,j)
un,k,i
| un,k,d| 

\biggr] 
\delta (xd  - Tn,k\bfitx 1)1Cn,k

(\bfitx 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
Sp,\scrM 

=
1

2

N\sum 
n=1

\sum 
k\in \mathrm{a}\mathrm{d}\mathrm{j}n

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ (ak,j  - an,j)
un,k,i
| un,k,d| 

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
Sp

Leb(Cn,k),(D.7)

where the last equality results from item 2 of Theorem 3.5.
Finally, we use the continuity of f to deduce that, for any pair of points \bfitp 1,\bfitp 2 \in Hn,k, we
have that

\bfita T
n\bfitp i + bn = \bfita T

k \bfitp i + bk, i= 1,2.

Subtracting the above equalities for i= 1 and i= 2, we obtain that

\bfita T
n (\bfitp 1  - \bfitp 2) = \bfita T

k (\bfitp 1  - \bfitp 2).

However, (\bfitp 1  - \bfitp 2) is orthogonal to \bfitu n,k. Hence, the vector (\bfita k  - \bfita n) points in the direction
of \bfitu n,k. This implies that the matrix\biggl[ 

(ak,j  - an,j)
un,k,i
| un,k,d| 

\biggr] 
= | un,k,d|  - 1\bfitu n,k(\bfita k  - \bfita n)

T =
\| \bfita k  - \bfita n\| 2
| un,k,d| 

\bfitu n,k\bfitu 
T
n,k

is rank-1 and symmetric. Hence, for any p \in [1,+\infty ], its Schatten-p norm is equal to the
absolute value of its trace. The replacement of this in (D.7) and the use of Hd - 1(Ln,k) =
\mathrm{L}\mathrm{e}\mathrm{b}(Cn,k)
| un,k,d| yields the announced expression (4.1).
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