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ABSTRACT

Transcatheter arterial chemo-embolization (TACE) is a therapeutic
procedure to treat primary and metastatic liver cancer. It requires
prior delineation of the hepatic arteries on magnetic resonance an-
giography (MRA) data and identification of the vessels supplying
the tumor. Manual segmentation is extremely challenging and time
consuming, thereby increasing the risk of wrongfully identifying
the feeding vessels. We present a vascular path planning tool for
TACE procedures by automatically segmenting the hepatic arteries
on MRA. The proposed method first detects the celiac trunk from
the aorta, then localizes and tags bifurcations throughout the arte-
rial network for path planning. The algorithm is based on a multiple
hypothesis tracking approach used to propagate deformable mesh
surfaces. We validated the proposed framework on 20 liver-cancer-
patients using abdominal MRA with 20 seconds delay after contrast
injection. We show that the algorithm improves the selectivity of
the arterial segments and outperforms two state-of-the-art methods
with respect to manual segmentation, yielding mesh geometries with
a mean absolute distance of 0.61 &£ 0.10 mm for 3D mesh models.

Index Terms— Liver cancer, transcatheter arterial chemo-
embolization, vascular path planning, hepatic artery segmentation,
magnetic resonance angiography.

1. INTRODUCTION

Primary liver tumor known as hepatocellular carcinoma (HCC) is di-
agnosed in more than half a million people worldwide per year [1].
Transcatheter arterial chemo-embolization (TACE) is the preferred
therapeutic approach for treating advanced HCC. Thereby, a catheter
is inserted into a branch of the hepatic artery that supplies the tumor.
A chemotherapeutic mixture followed by (drug-eluding) beads is in-
jected into the arterioles supplying the tumor. Determining these
arterioles is vital to minimize damage of normal liver tissue and in-
crease the embolic effect and chemotherapeutic concentration in the
tumor. Vascular path planning enables the clinician to determine the
hepatic branches that supply the tumor, as well as to plan the vascular
route of the catheter, starting from the celiac artery and leading to the
subsegmental branch artery. Most clinical procedures rely on visual
determination of the blood supply based on 2D angiography which
is difficult and imprecise. The amount of data generated from 3D
angiographic imaging modalities, such as MRA makes the manual
segmentation task tedious and challenging. (Semi-)automatic meth-
ods isolating the vascular network simplify this step for clinicians by
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minimizing manual interaction and reducing inter-operator variabil-
ity in order to visualize the hepatic arteries.

Due to the hepatic vascular network’s complex structure, pre-
senting high variability with respect to size and curvature, in addi-
tion to resolution difference, noise artefacts and injection variations,
extracting liver vasculature in MRA remains challenging. Methods
based on region growing, active contours, tracking or deformable
models [2][3] ave been proposed to segment the coronary [4] or cere-
bral vessels [5]. However these approaches are difficult to adapt to
hepatic arteries due to challenges mentioned above. Particularly in
the liver, the contrast is low and arteries are small and surrounded by
tubular structures which are the main difficulties when segmenting
these arteries. Few methods have been applied to segment the liver
arteries. Existing approaches are often either sensitive to small radii
[6] or they only segment partially the hepatic arteries [7]. To the best
of our knowledge, no framework enables the extraction of hepatic
arteries in MRA images for 3D roadmapping.

We present a path planning approach for arterial procedures
based on the propagation of deformable models in MRA volumes
(after contrast agent injection to enhance blood vessels). The al-
gorithm detects and localizes bifurcations throughout the vascular
network which is a crucial step [8] in this context. Segmentation of
the vascular tree is carried out up to the third level of bifurcation,
where the catheter is typically guided in TACE procedures. Our
contributions are 1) a novel automatic pre-segmentation step that de-
tects the celiac trunk, i.e., the seeding point of the hepatic tree whose
proper initialization is key for an accurate segmentation outcome;
2) a vessel extraction step by combining an existing model to track
the vessel path [7] and an extension of the mesh propagation model
presented in [9] to segment the vessel walls; 3) the generation of the
hepatic network as a 3D mesh and the complete characterization of
the bifurcations (coordinates and level) as well as of the paths; these
contributions are at the core of the proposed framework. Validation
with respect to two state of the art methods show high accuracy in
3D vascular maps and low rates in terms of detection errors.

2. METHODS

The proposed vascular path delineation relies on a two-step ap-
proach. First, both the aorta and the celiac trunk are automatically
detected and segmented on the vesselness image (Sec. 2.1), where
the root of the hepatic artery originates from the aorta. This provides
a seed point and a direction to initialize the extraction of the hep-
atic arteries. The segmentation step consists in the tracking of the
vessel paths (Sec. 2.2) and the propagation of deformable models to
segment the vessel walls (Sec. 2.3).
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2.1. Aorta and celiac trunk segmentation

In this section we present an iterative propagation routine of tubular
deformable mesh models based on [9]. In order to adapt for the
segmentation of the aorta, the length and radius of the structure of
interest is configured. An elliptical Hough transform is applied to
the medial plane of several adjacent slices to detect the starting point
in the aorta. It is performed on the vesselness image of the MRA by
applying the filter to enhance tubular structures and reduce noise due
to surrounding structures within the image.

Using the resulting position and direction an initial (regular)
cylindrical triangular mesh is built. It is then deformed by mini-
mizing the energy (1) which attracts the model towards the edges of
the aorta. It is given by
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where ||g|| is the gradient magnitude of the image, V and T are
the number of vertices and triangles respectively, {X; };c[1,1) are the
centroids of the triangles, v and v! are the vertices of the current and
the initial mesh respectively, N (5) the neighborhood of vertex j and
R the rotation matrix aligning the initial and the current mesh. The
first term in (1) is the external energy which updates the centroids
of the triangles towards their most promising locations {X; };c[1,1]
defined by X; = x; + khn,;, where:

k = arg max{n;g(x; + jhn;) — dh’j°}, 2
J=—l,.l

20+ 1 is the size of the neighborhood along the triangle normals,
h the distance between two points along this normal, d a trade-off pa-
rameter between gradient and distance, and n; the normal at x;. The
second term in (1) is the internal energy which constrains the mesh
to preserve topology. The trade-off between mesh flexibility and sur-
face coherence is controlled by av. After the initial mesh deformation
it is iteratively propagated in two opposite directions in order to seg-
ment the walls of the aorta along it’s central axis (i.e. up to the level
of the celiac trunk). At each iteration an extremity of the current
deformed mesh is duplicated and translated in the direction of the
structure of interest to become reoriented and deformed towards the
aorta walls using (1). Each new orientation of the triangular mesh is
computed by maximizing (3), i.e., the image gradient values for all

the triangle centroids as

T
Eom’ent = Z ||9(R(X1 - p) + p)H, (3)
i=1

where the centroids {xi}ie[l,T] are rotated by R about p, which is
the center of mass of the lower extremity of the updated mesh. Pa-
rameters «, d and h were found empirically using test data different
from the validation data.

We detect the bifurcation between the aorta and the celiac trunk
by a dual thresholding on the intensity with proximity constraints to
the segmented aorta. To eliminate false positives (typically points
on the mesenteric artery) a spectral clustering is applied on the 3D
coordinates of the remaining points. The cluster corresponding to the
celiac trunk has the highest centroid as analyzed along the caudal-
cranial axis. An initial mesh of the celiac trunk is created which
constitutes the starting point of the tracking method for the hepatic
artery.

2.2. Multiple hypothesis tracking of vessel paths
2.2.1. Tracking

Once the celiac trunk is identified branch bifurcations are detected in
order to guide the propagation of the segmentation on each branch of
the hepatic artery. We apply a multiple hypothesis tracking method
similar to the one presented in [7] on the vesselness image to detect
all bifurcations in the network using a search tree algorithm. Let 3,
be the point associated to the set of parameters of a segment of the
artery at time ¢t. We compute successive segments of the artery such
that a track ranging from S up to B3 is created. A set { ,8&21 Yier of
cardinality I of possible paths of the vessel is subsequently predicted
from (. These predictions are placed uniformly (20° spacing) on a
sphere segment defined by an angle ¢ = 60° with respect to the di-
rection of the artery at 5; and a radius equal to 1.5 times the vessel
radius at 3; (Fig. 1(1)). A t-statistic score based on the local image
contrast is associated to each prediction. Finally, a pruning thresh-
old (equal to 4) is applied to these scores to remove weak predic-
tions. The remaining J points ,Bff:l) are taken as local assumptions
of the path of the artery and new spheres of predictions are created
from these points (Fig. 1(2)). After three steps the search tree is
built (Figs. 1(3), 1(4)). The created search tree is auto-evaluated in
order to choose the preferred direction originating from f;. The av-
erage score of each branch of the tree leading to the desired depth
(i.e., ['}t(ﬂ:;,) in Fig. 1(4)) is calculated and a final threshold on this
score is applied. To enhance robustness we set the final threshold to
be twice the pruning threshold. If no leaf remains, tracking of the
current artery is terminated. Otherwise, a bifurcation verification is
performed on the remaining leaves. For each detected branch the de-
formable model is oriented (cf: Section 2.3) and propagated towards
the leaf showing the highest mean score (Fig. 1(5)). A new search
tree is then built from this new point and the procedure is repeated
until the vessel curvature is too large or the structures fall outside the
vesselness image.

2.2.2. Bifurcation localization and tagging

We detect the bifurcations by performing a spectral clustering on the
spatial coordinates of the leaves ,Bﬁf::,,) from the resulting search tree.
First, the matrix S, which measures the similarity between leaves ¢

and j is calculated as

888 - 6

Sij =Sji=e ritT )
where 7; and r; are the radii of the artery at the corresponding
leaves and || - || is the Euclidean 2-norm. An eigen-decomposition of

the Laplacian matrix L = D — S is computed, where D is a diagonal
matrix defined as D;; = 3. S;;. The second smallest eigenvector
of L determines the different clusters. The first cluster is composed
of indices exhibiting negative eigenvector values, while the second
cluster is composed of indices where all values of the eigenvector are
positive. Finally, a threshold on the distance between the centroids
P; of each detected cluster is applied to identify bifurcations such
that if |P1 — P2 > 1.9%, we detect a bifurcation. This
process yields the coordinates of each bifurcation associated with
their respective level in a branch of the hepatic tree.

2.3. Mesh propagation along vessel paths

The segmentation of the hepatic walls is achieved using the propa-
gation routine described in Section 2.1 towards the targets identified
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Fig. 1: Search tree construction and evaluation. Blue: hepatic ar-
teries. Red: first level of spherical region of predictions from [;.
o
Yellow: third level of spherical region of predictions from ,B,ff; .
Black tree: branches of the search tree of depth three leading to the

identified leaves obtained after evaluation and bifurcation detection.

Green: second level of spherical region of predictions from 3

in the tracking phase. Hepatic arteries are complex structures with
different radii, curvatures and bifurcations. The propagation routine
needs to be adapted to these challenges. First, the propagation start-
ing from the celiac trunk becomes unidirectional. To compute the
length of the duplicated mesh, as well as its new orientation, the cur-
vature of the vessel and the presence of bifurcations have to be taken
into account. We propose to compute the propagation routine from
the set of points (B¢+1, Bi+2 and Bi+3, Fig. 1(5)) on the branch
of the search tree that lead to the detected leaf. At each iteration
i € [1, 3] the length of the duplicated mesh is equal to the one of the
segment [B¢+;—18:+i]. Its new orientation is expressed by the angle
~v = arccos(Bi+i—2Bt+i—1, Bi+i—1P+i) (Fig. 2). The propagation
stops when the radius is inferior to 0.9mm or the maximum number
of iterations has been reached (n=200).

( N

N

(¢) Deformation

U ~J

(b) Orientation

(a) Translation

Fig. 2: 2D view of segmentation propagation using a search tree.
Green: duplicated and translated mesh. Yellow: reoriented dupli-
cated mesh. Blue: mesh after propagation and deformation.

3. RESULTS AND DISCUSSION

The method was validated on arterial phase T1-weighted MRA im-
ages originating from 20 different patients with primary liver can-
cer. No pre-selection on image quality was made. They were ac-
quired at breath-hold 15-25 sec. after injection of a Gadolinium-

¢ ¢
(2) Construction of  (3) Construction of

based contrast agent. Image acquisition was performed in the ab-
dominal region with a resolution between 0.7 x 0.7 x 2 mm?® and
1.2 x 1.2 x 3 mm?3. For all patients, the proposed pre-segmentation
routine was able to correctly detect the celiac trunk, even with vary-
ing anatomies. Its robustness is crucial for the subsequent segmen-
tation process, which takes 10min on average on a i5 Intel PC work-
station, with 32.0 GByte of memory.

The accuracy of both the extracted vascular paths and segmented
meshes were measured. Bifurcation detection was evaluated for seg-
ments up to the third level (inclusively) to allow selective emboliza-
tion during TACE. Segmentation accuracy was compared to a man-
ual segmentation carried out by an expert clinician (gold standard),
as well as two commonly used methods for vascular segmentation.
The first is based on level-sets with vesselness enhancement, while
the second is a recent method using normal and Gumbel intensities
distributions for adapted thresholding [10]. For the former method,
centrelines were extracted using the method in [11]. These semi-
automatic vascular methods are not particularly optimized for hep-
atic arteries but are comparable to the proposed framework.

3.1. Vascular path extraction

In Table 1 accuracy measures of the vascular path extraction are pro-
vided. The larger errors in terms of mean absolute distance (MAD)
and mean square distance (MSD) obtained with the level-set-based
method are mainly due to the non-continuity of the extracted path.
One-way Anova tests were performed comparing the averages ob-
tained with the different methods. The corresponding p-values are
provided in Table 1.

3D Vessel path
MAD (mm) MSD (mm)
Level-set + vesselness 1.79£0.96 11.25+9.07
Adaptive thresholding [10]  1.43 +0.52 3.72£1.20
Proposed method 1.01+0.16 1.27+0.44
p-value 0.0081 0.0086

Table 1: 3D centreline extraction with the proposed method in com-
parison with a level-set approach and the adaptive thresholding ap-
proach from Gaussian distributions by Wang et al. [10].

Table 2 presents sensitivity, positive predictive value (PPV) and
the percentile error for the detection of bifurcation within the vascu-
lar tree. The percentile error of bifurcation is defined as % error =
%, where M B and F'B are the number of missed bifurca-
tions and false bifurcations obtained with the evaluated method re-
spectively, while 7'B is the number of true bifurcations identified by
aradiologist. We obtain an error rate of 0.77%, which is slightly be-

low the error obtained with the level-set approach with vesselness.

Bifurcation detection

Sensitivity PPV Error (%)
Level-set + vesselness 79% 67% 0.84+0.81
Proposed method 79% 69% 0.77+0.74

Table 2: Evaluation of the bifurcation detection for the level-set +
vesselness and proposed methods compared to the gold standard.
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Fig. 3: (a) and (c) are 3D automatic segmentations; (b) and (d) are
the corresponding 3D manual segmentations.

3.2. 3D mesh modeling of hepatic arterial walls

In Table 3 we show the average Hausdorff distance (HD), mean ab-
solute distance (MAD) and mean square distance (MSD) between
our segmentation results and the gold standard, as well as between
the level-set and adaptive thresholding approaches [10]. The results
show that the proposed method yields higher accuracy than both
comparative approaches. Furthermore, for the average HD we ob-
tain 3.13 & 0.88mm which is approximately the radius of the celiac
trunk. Our method yields a smooth segmentation, as shown in Fig. 3
with 3D results compared to manual delineation. In the 2D segmen-
tations showing a comparison between the manual, automatic and
the level-set approaches in Fig. 4, the level-set method gives rough
meshes with edges and presents discontinuities. Still the large slice
distances in the MRA may affect the segmentation of small struc-
tures due to partial-volume effects in the image. The p-values from
one-way Anova tests are provided in Table 3.

3D Mesh Geometry

MAD (mm) MSD (mm) HD (mm)

Level-set + vesselness  2.08 £ 1.49 20.38 £+ 18.99 15.98 £ 7.77
Adaptive thresholding [10] 1.29 +0.30 3.14£1.29 6.71+1.34
Proposed method 0.61 +0.10 0.62+0.24 3.13+0.88

p-value 3.10°° 0.0015 0.0210

Table 3: 3D mesh geometry accuracy measures for the proposed
automatic method in comparison with the level-set approach and to
an adaptive thresholding approach by Wang et al. [10].

Fig. 4: In-plane segmentation of hepatic arteries. Red: ground-truth;
Green: proposed method; Yellow: level-set-based method.

4. CONCLUSION

We propose a 3D vascular path planning method which segments
the hepatic arteries from MRA in order to assist interventional ra-
diologists in their preoperative planning phase for the treatment of
liver cancer. Our main contribution consists in proposing an auto-
matic vascular path planning method designed for MR angiography
which detects the celiac trunk and bifucations in the arterial network.
The arteries are segmented using deformable vessel models up to
the third level of the hepatic tree which is required for guidance in
TACE procedures. The proposed method yields higher accuracy for
the segmentation of both the vessel path and the 3D mesh model
compared to both vesselness and Gaussian methods, while the val-
idation to a gold standard yields low error rates. Additionally, the
method also performs well in regions with low contrast and on ves-
sels with small radius. Future work will focus on the computation of
additional physiological parameters and a more extensive validation.
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