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Periodic Splines and Gaussian Processes for the
Resolution of Linear Inverse Problems

Anaı̈s Badoual , Julien Fageot , and Michael Unser , Fellow, IEEE

Abstract—This paper deals with the resolution of inverse prob-
lems in a periodic setting or, in other terms, the reconstruction
of periodic continuous-domain signals from their noisy measure-
ments. We focus on two reconstruction paradigms: variational and
statistical. In the variational approach, the reconstructed signal is
solution to an optimization problem that establishes a tradeoff be-
tween fidelity to the data and smoothness conditions via a quadratic
regularization associated with a linear operator. In the statistical
approach, the signal is modeled as a stationary random process
defined from a Gaussian white noise and a whitening operator;
one then looks for the optimal estimator in the mean-square sense.
We give a generic form of the reconstructed signals for both ap-
proaches, allowing for a rigorous comparison of the two. We fully
characterize the conditions under which the two formulations yield
the same solution, which is a periodic spline in the case of sampling
measurements. We also show that this equivalence between the
two approaches remains valid on simulations for a broad class of
problems. This extends the practical range of applicability of the
variational method.

Index Terms—Periodic signals, variational methods, representer
theorem, Gaussian processes, MMSE estimators, splines.

I. INTRODUCTION

THIS paper deals with inverse problems: one aims at re-
covering an unknown signal from its corrupted measure-

ments. To be more specific, the motivation of this work is
the reconstruction of an unknown continuous-domain and peri-
odic signal f from its M noisy measurements ym ≈ 〈νm , f〉 =∫ 1

0 νm (t)f(t)dt for m = 1 . . . M , where the νm are measure-
ment functions. The goal is then to build an output signal fopt

that is as close as possible to f .

A. Inverse Problems in the Continuous Domain

Inverse problems are often formulated in the discrete do-
main [1]–[5]. This is motivated by the need of manipulating dig-
ital data on computers. Nevertheless, many naturally occurring
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signals depend on continuous variables (e.g., time or position).
This leads us to attempt recovering a signal fopt(t) that depends
on the continuous variable t ∈ [0, 1]. In contrast with the clas-
sical discrete setting, our search space for this reconstructed
signal is thus infinite-dimensional [6]. Moreover, we choose a
regularization based on true derivatives (as opposed to finite
differences) to impose some smoothness on the reconstructed
signal, a concept that is absent in the discrete setting.

When considering continuous-domain reconstruction meth-
ods, a majority of works, typically in machine learning, deal
with sampling measurements. The goal is then to recover f
from its (possibly noisy) values ym ≈ f(tm ) at fixed location
tm . In order to investigate a more general version of inverse
problems, we shall consider generalized measurements [7], [8].
They largely exceed the sampling case and include Fourier sam-
pling or convolution (e.g., MRI, x-ray tomography [9], [10]).
Our only requirement is that the measurements ym depend lin-
early on, and evolve continuously with, the unknown signal f
up to some additive noise, so that ym ≈ 〈νm , f〉.

B. Variational vs. Statistical Methods

In the discrete domain, two standard strategies are used to
reconstruct an input signal x from its noisy measurements
y ≈ Hx, where H models the acquisition process [5]. The first
approach is deterministic and can be tracked back to the ’60s
with Tikhonov’s seminal work [11]. The ill-posedness of the
problem usually imposes the addition of a regularizer. By con-
trast, Wiener filtering is based on the stochastic modelization of
the signals of interest and the optimal estimation of the targeted
signal x. This paper generalizes these ideas for the reconstruc-
tion of continuous signals from their discrete measurements.

In the variational setting, the reconstructed signal is a solu-
tion to an optimization problem that imposes some smoothness
conditions [12]. More precisely, the optimization problem may
take the form

fopt = arg min
f

(
M∑

m=1

(
ym − 〈νm , f〉)2 + λ‖Lf‖2

L2

)

, (1)

where L is a linear operator. The first term in (1) controls the
data fidelity. The regularization term ‖Lf‖2

L2
constrains the

function to satisfy certain smoothness properties (for this rea-
son, the variational approach is sometimes called a smoothing
approach). The parameter λ in (1) quantifies the tradeoff be-
tween the fidelity to the data and the regularization constraint.
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In the statistical setting, the signal is modeled as a random pro-
cess and is optimally reconstructed using estimation theory [13].
More precisely, one assumes that the continuous-domain signal
is the realization of a stochastic process s and that the samples
are given by ym = 〈νm , s〉 + εm , where εm is a random per-
turbation and νm a linear measurement function. In this case,
one specifies the reconstructed signal as the optimal statistical
estimator in the mean-square sense

fopt = arg min
s̃

E
[‖s − s̃(·|y)‖2

L2

]
, (2)

where the estimators t �→ s̃(t|y) are computed from the gener-
alized samples ym . The solution depends on the measurement
function νm and the stochastic models specified for s and εm . In
our case, the random process s is characterized by a linear oper-
ator L that is assumed to have a whitening effect (it transforms
s into a periodic Gaussian white noise), while the perturbation
is i.i.d. Gaussian.

C. Periodic and General Setting

The variational and statistical approaches have been exten-
sively studied for continuous-domain signals defined on the
infinitely supported real line. However, it is often assumed in
practice that the input signals are periodic. In fact, a standard
computational approach to signal processing is to extend by pe-
riodization the signals of otherwise bounded support. Periodic
signals arise also naturally in applications such as the para-
metric representation of closed curves [14]–[16]. This has moti-
vated the development of signal-processing tools and techniques
specialized to periodic signals in sampling theory, error analy-
sis, wavelets, stochastic modelization, or curve representation
[17]–[23].

In this paper, we develop the theory of the variational and
statistical approaches for periodic continuous-domain signals in
a very general context, including the following aspects:

� We consider a broad class of measurement functions, with
the only assumptions that they are linear and continuous.

� Both methods refer to an underlying linear operator L that
affects the smoothness properties of the reconstruction. We
deal with a very broad class of linear operators acting on
periodic functions.

� We consider possibly non-quadratic data fidelity terms in
the smoothing approach.

D. Related Works

The topics investigated in this paper have already received
some attention in the literature, mostly in the non-periodic set-
ting.

1) Reconstruction Over the Real Line: Optimization problems
of the form (1) appear in many fields and receive different names,
including inverse problems in image processing [5], representer
theorems in machine learning [24], or sometimes interpolation
elsewhere. Schoenberg was the first to show the connection
between (1) and spline theory [25]. Since then, this has been
extended to other operators [26], or to the interpolation of the
derivative of the signal [27], [28]. Many recent methods are

dealing with non-quadratic regularization, especially the ones
interested in the reconstruction of sparse discrete [29], [30] or
continuous signals [6], [31]–[33]. We discuss this aspect more
extensively in Section VI-B.

A statistical framework requires the specification of the noise
and of the signal stochastic model. The signal is then estimated
from its measurements. A classical measure of the quality of an
estimator is the mean-square error. This criterion is minimized
by the minimum mean-square error (MMSE) estimator [13],
[34]. The theory has been developed mostly for Gaussian pro-
cesses and in the context of sampling measurements [35]. We
are especially interested in innovation models, for which one
assumes that the signal can be whitened (i.e., transformed into
a white noise) by the application of a linear operator [36], [37].
Non-periodic models have been studied in many situations, in-
cluding the random processes associated with differential [38],
[39] or fractional operators [40]. Extensions to non-Gaussian
models are extensively studied by Unser and Tafti [41].

The statistical and variational frameworks are deeply con-
nected. It is remarkable that the solution of either problem can
be expressed as spline functions in relation with the linear op-
erator L involved in regularization (variational approach) or
whitening (statistical approach). Wahba has shown that the two
approaches are strictly equivalent in the case of stationary Gaus-
sian models [42]. This equivalence has also been recognized by
several authors since then, as shown by Berlinet and Thomas-
Agnan [35], and Unser and Blu [43]. In the non-stationary case,
this equivalence is not valid any more and the existence of con-
nections has received less attention.

2) Reconstruction of Periodic Signals: Some strong practical
concerns have motivated the need for an adaptation of the theory
to the periodic setting. Important contributions in that direction
have been proposed. Periodic splines are constructed and applied
to sampling problems by Schoenberg [44] and Golomb [45]. The
smoothing spline approach is studied in the periodic setting by
Wahba [42] for derivative operators of any order. Although the
periodic extension of the classical theory is briefly mentioned
by several authors [35], [42], [46], we are not aware of a global
treatment. Providing a general analysis in the periodic setting is
precisely what we propose in this paper.

E. Outline and Main Contributions

Section II contains the main notations and tools for periodic
functions and operators. In Section III, we state the periodic
representer theorem (Theorem 1). It fully specifies the form of
the solution in the variational approach in a very general setting.
For the specific case of sampling measurements, we show that
this solution is a periodic spline (Proposition 5). Section IV is
dedicated to the statistical approach. We introduce a class of
periodic stationary processes (the Gaussian bridges) for which
we specify the MMSE estimator in the case of generalized lin-
ear measurements (Theorem 2). We also provide a theoretical
comparison between the variational and statistical approaches
by reformulating the MMSE estimation as the solution of a
new optimization problem (Proposition 7). This highlights the
strict equivalence of the two approaches for invertible operators
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and extends known results from sampling to generalized linear
measurements. For non-invertible operators, we complete our
analysis with simulations in Section V. In particular, we give
empirical evidence of the practical relevance of the variational
approach for the reconstruction of periodic stationary signals.
We provide in Section VI a comparison between our results in
the periodic setting and the known results over the real line.
Finally, we conclude in Section VII. All the proofs have been
postponed to the Appendix sections.

II. MATHEMATICAL BACKGROUND FOR PERIODIC SIGNALS

Throughout the paper, we consider periodic functions and
random processes. Without loss of generality, the period can
always be normalized to one. Moreover, we identify a periodic
function over R with its restriction to a single period, chosen
to be T = [0, 1). We use the symbols f , s, and s̃ to specify a
function, a random process, and an estimator of s, respectively.

We call S(T ) the space of 1-periodic functions that are in-
finitely differentiable, S′(T ) the space of 1-periodic general-
ized functions (dual of S(T )), and L2(T ) the Hilbert space of
square integrable 1-periodic functions associated with the norm
‖f‖L2 = (

∫ 1
0 |f(t)|2dt)1/2 . Working with S′(T ) allows us to

deal with functions with no pointwise interpretation, such as the
Dirac comb defined by

Ш =
∑

k∈Z

δ(· − k), (3)

where δ is the Dirac impulse. The duality product between an
element f ∈ S′(T ) and a smooth function g ∈ S(T ) is denoted
by 〈f, g〉. For instance, 〈Ш, g〉 = g(0) for every g. When the
two real functions are in L2(T ), we simply have the usual
scalar product 〈f, g〉 =

∫ 1
0 f(t)g(t)dt. All these concepts are

extended to complex-valued functions in the usual manner with
the convention that 〈f, g〉 =

∫ 1
0 f(t)g(t)dt for square-integrable

functions. The complex sinusoids are denoted by ek (t) = ej2πkt

for any k ∈ Z and t ∈ T . Any periodic generalized function
f ∈ S′(T ) can be expanded as

f(t) =
∑

k∈Z

f̂ [k]ej2πkt =
∑

k∈Z

f̂ [k]ek (t), (4)

where the f̂ [k] are the Fourier coefficients of f , given by
f̂ [k] = 〈f, ek 〉. Finally, the convolution between two periodic
functions f and g is given by

(f ∗ g)(t) = 〈f, g(t − ·)〉. (5)

If f, g ∈ L2(T ), we have that (f ∗ g)(t) =
∫ 1

0 f(τ)g(t − τ)dτ .

A. Linear and Shift-Invariant Operators

Let L be a linear, shift-invariant (LSI), and continuous op-
erator from S(T ) to S′(T ). The shift invariance implies the
existence of L̂[k] ∈ C such that

Lek = L̂[k]ek , (6)

for any k ∈ Z. We call L̂[k] the frequency response of the op-
erator L; it is also given by

L̂[k] = 〈L{Ш}, ek 〉 =
∫ 1

0
L{Ш}(t)e−j2πktdt. (7)

The sequence (L̂[k]) is the Fourier series of the periodic
generalized function L{Ш}, and is therefore of slow growth [47,
Chapter VII]. This implies that L, a priori from S(T ) to S′(T ),
actually continuously mapsS(T ) into itself. This is a significant
difference with the non-periodic setting — we discuss this point
in Section VI-A. Therefore, one can extend it by duality from
S′(T ) to S′(T ). Then, for every f ∈ S′(T ), we easily obtain
from (6) that

Lf(t) =
∑

k∈Z

̂(Lf)[k]ek (t), where ̂(Lf)[k] = f̂ [k]L̂[k]. (8)

The null space of L is NL = {f ∈ S′(T ) | Lf = 0}. We shall
only consider operators whose null space is finite-dimensional,
in which case NL can only be made of linear combinations of
sinusoids at frequencies that are annihilated by L. We state this
fact in Proposition 1 and prove it in Appendix A.

Proposition 1: Let L be a continuous LSI operator. If L has
a finite-dimensional null space NL of dimension N0 , then the
null space is of the form

NL = span{ekn
}N0

n=1 , (9)

where the kn ∈ Z are distinct.

From (6) and (9), we deduce that L̂[k] = 0 if and only if k = kn

for some n ∈ [1 . . . N0 ]. In the following, we consider real-
valued operators. In that case, we have the Hermitian symmetry

L̂[−k] = L̂[k]. Moreover, ekn
∈ NL if and only if e−kn

∈ NL.
The orthogonal projection of f on the null space NL is given by

ProjNL
{f} =

N0∑

n=1

f̂ [kn ]ekn
. (10)

Let KL = Z\{kn}n∈{1...N0 }. Then, (4) can be re-expressed

as f = ProjNL
{f} +

∑
k∈KL

f̂ [k]ek and we have that

Lf(t) =
∑

k∈KL
f̂ [k]L̂[k]ek (t), which yields the Parseval

relation
∫ 1

0
|Lf(t)|2dt =

∑

k∈KL

∣
∣f̂ [k]

∣
∣2

∣
∣L̂[k]

∣
∣2 . (11)

B. Periodic L-Splines

Historically, splines are functions defined to be piecewise
polynomials [48]. A spline is hence naturally associated to
the derivative operator of a given order [49] in the sense
that, for a fixed N ≥ 1, a spline function f : R → R satisfies
Lf(t) =

∑
am δ(t − tm ) with L = DN the N th deriva-

tive. Splines have been extended to differential [50]–[53],
fractional [26], [54] or, more generally, spline-admissible
operators [41]. We adapt here this notion to the periodic setting,
where the Dirac impulse δ is replaced by the Dirac combШ.
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Fig. 1. Illustrations of periodic L-splines. Dots: nodes
(
tm , f (tm )

)
. The

spline in (a) corresponds to the periodization of an exponential B-spline (see
Fig. 1 in [52]).

Definition 1: Consider an LSI operator L with finite-
dimensional null space. We say that a function f is a periodic
L-spline if

Lf(t) =
M∑

m=1

amШ(t − tm ) (12)

for some integer M ≥ 1, weights am ∈ R, and knot locations
tm ∈ T .

Periodic L-splines play a crucial role in the variational and
statistical approaches for the resolution of inverse problems in
the periodic setting. We represent some periodic splines associ-
ated to different operators in Fig. 1.

III. PERIODIC REPRESENTER THEOREM

We now consider a continuous LSI operator L with finite-
dimensional null space NL. Let ν be the vector of the linear
measurement functions ν1 , . . . , νM . They usually are of the form
νm = δ(· − tm ) for time-domain sampling problems. Here, we
consider general linear measurements to include any kind of in-
verse problems. In this section, our goal is to recover a function f
from observed data y = (y1 , . . . , yM ) such that ym � 〈νm , f〉.
To do so, we consider the variational problem

min
f

(

F (y,ν(f)) + λ‖Lf‖2
L2

)

, (13)

where F : RM × RM → R+ is a strictly convex and continuous
function called the cost function. This function controls the
fidelity to data. A special attention will be given to the quadratic
data fidelity of the form

F (y,ν(f)) =
M∑

m=1

(ym − 〈νm , f〉)2 . (14)

We give the solution of (13) for the space of 1-periodic func-
tions in Theorem 1. To derive this solution, we first introduce
and characterize the space of functions on which (13) is well-
defined.

A. Search Space

The optimization problem (13) deals with functions such
that Lf is square-integrable, which leads us to introduce
HL = {f ∈ S′(T ) | Lf ∈ L2(T )}. Due to (11), we have that

HL =

{

f ∈ S′(T ) |
∑

k∈KL

|f̂ [k]|2 |L̂[k]|2 < +∞
}

. (15)

Similar constructions have been developed for functions over
R or for sequences by Unser et al. [32], [55]. We now identify
a natural Hilbertian structure on HL. If L : HL → L2(T ) is in-
vertible, then HL inherits the Hilbert-space structure of L2 via
the norm ‖Lf‖L2 . However, when L has a nontrivial null space,
‖Lf‖L2 is only a semi-norm, in which case there exists f �= 0
(any element of the null space of L) such that ‖Lf‖L2 = 0. To
obtain a bona fide norm, we complete the semi-norm with a spe-
cial treatment for the null-space components in Proposition 2.

Proposition 2: Let L be a continuous LSI operator whose
finite-dimensional null space is defined byNL = span{ekn

}N0
n=1 .

We fix γ2 > 0. Then, HL is a Hilbert space for the inner product

〈f, g〉HL = 〈Lf,Lg〉 + γ2
N0∑

n=1

f̂ [kn ]ĝ[kn ]. (16)

The proof is given in Appendix B. We have that
‖f‖2

HL
= ‖Lf‖2

L2
+ γ2‖ProjNL

{f}‖2
L2

, where ProjNL
{f} is

given by (10). The coefficient γ2 balances the contribution of
both terms.

B. Periodic Reproducing-Kernel Hilbert Space

Reproducing-kernel Hilbert spaces (RKHS) are Hilbert
spaces on which the evaluation maps f �→ f(t) are well-defined,
linear, and continuous. In this section, we answer the question of
when the Hilbert space HL associated to an LSI operator L with
finite-dimensional null space is a RKHS. This property is rele-
vant to us because periodic function spaces that are RKHS are
precisely the ones for which one can use measurement functions
of the form νm =Ш(· − tm ) in (13).

Definition 2: LetH ⊆ S′(T ) be a Hilbert space of 1-periodic
functions and H′ be its dual. Then, we say that H is a RKHS if
the shifted Dirac combШ(· − t0) ∈ H′ for any t0 ∈ T .

This implies that any element f of a RKHS has a pointwise
interpretation as a function t → f(t). As is well known, for any
RKHS there exists a unique function h : T × T → R such that
h(·, t0) ∈ H′ and 〈f, h(·, t0)〉 = f(t0), for every t0 ∈ T and
f ∈ H. We call h the reproducing kernel of H.

Proposition 3: Let L be a continuous LSI operator with
finite-dimensional null space. The Hilbert space HL (see (15))
is a RKHS if and only if

∑

k∈KL

1

|L̂[k]|2 < +∞. (17)

Then, the reproducing kernel for the scalar product (16) is given
by h(t, τ) = hγ (t − τ), where hγ ∈ S′(T ) is

hγ (t) =
N0∑

n=1

ekn
(t)

γ2 +
∑

k∈KL

ek (t)

|L̂[k]|2 . (18)

The proof is given in Appendix C. Note that the reproducing
kernel only depends on the difference (t − τ).
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C. Periodic Representer Theorem

Now that we have defined the search space of the optimization
problem (13), we derive the representer theorem that gives the
explicit form of its unique periodic solution.

Theorem 1: We consider the optimization problem

min
f∈HL

(

F (y,ν(f)) + λ‖Lf‖2
L2

)

, (19)

where
� F : RM × RM → R+ is strictly convex and continuous;
� L is an LSI operator with finite-dimensional null space;
� ν = (ν1 , . . . , νM ) ∈ (H′

L)M such that NL ∩Nν = {0};
� y = (y1 , . . . , yM ) ∈ RM are the observed data; and
� λ > 0 is a tuning parameter.
Then, (19) has a unique solution of the form

fRT(t) =
M∑

m=1

am ϕm (t) +
N0∑

n=1

bnekn
(t), (20)

where am , bn ∈ R, ϕm = hγ ∗ νm , and hγ is given by (18).
Moreover, the vector a = (a1 , . . . , aM ) satisfies the rela-
tion PTa = 0, with P the (M × N0) matrix with entries
[P]m,n = 〈ekn

, νm 〉.
The proof of Theorem 1 is given in Appendix D. The opti-

mal solution depends on (M + N0) coefficients, but the condi-
tion PTa = 0 implies that there are only (M + N0 − N0) = M
degrees of freedom. In the case when F is quadratic of the
form (14), the solution is made explicit in Proposition 4.

Proposition 4: Under the conditions of Theorem 1, if F is
given by (14), then the vectors a and b satisfy the linear system

(
a
b

)

=

(
G + λI P

PT 0

)−1(
y
0

)

, (21)

where P ∈ CM ×N0 is defined by [P]m,n = 〈ekn
, νm 〉 and

G ∈ RM ×M is a Gram matrix such that

[G]m 1 ,m 2 =
∫ 1

0

∫ 1

0
νm 1 (t)hγ (t − τ)νm 2 (τ)dtdτ. (22)

The proof is given in Appendix E. In the case of sampling
measurements, we show moreover in Proposition 5 that the
optimal solution is a periodic spline in the sense of Definition 1.
We recall that such measurements are valid as soon as the search
spaceHL is a RKHS, a situation that has been fully characterized
in Proposition 3.

Proposition 5: Under the conditions of Proposition 4, if
L satisfies (17) and if the measurements are of the form
νm = Ш(· − tm ), tm ∈ T , then the unique solution of (19) is a
periodic (L∗L)-spline with weights am and knots tm .

The proof is given in Appendix F.

IV. PERIODIC PROCESSES AND MMSE

In this section, we change perspective and consider the fol-
lowing statistical problem: given noisy measurements of a zero-
mean and real periodic Gaussian process, we are looking for the

optimal estimator (for the mean-square error) of the complete
process over T .

A. Non-Periodic Setting

In a non-periodic setting, it is usual to consider stochastic
models where the random process s is a solution to the stochastic
differential equation [41]

Ls = w, (23)

where L is a linear differential operator and w a continuous
domain (non-periodic) Gaussian white noise. When the null
space of the operator is nontrivial, it is necessary to add boundary
conditions such that the law of the process s is uniquely defined.

B. Gaussian Bridges

In the periodic setting, the construction of periodic Gaussian
processes has to be adapted. We first introduce the notion of
periodic Gaussian white noise, exploiting the fact that the law
of a zero-mean periodic Gaussian process s is fully characterized
by its covariance function rs(t, τ) such that

E[〈s, f〉〈s, g〉] =
∫ 1

0

∫ 1

0
f(t)rs(t, τ)g(τ)dtdτ. (24)

Definition 3: A periodic Gaussian white noise1 is a Gaussian
random process w whose covariance is rw (t, τ) =Ш(t − τ).

For any periodic real function f , the random variable 〈w, f〉 is
therefore Gaussian with mean 0 and variance ‖f‖2

L2
. Moreover,

〈w, f〉 and 〈w, g〉 are independent if and only if 〈f, g〉 = 0.
Hence, the Fourier coefficients ŵ[k] = 〈w, ek 〉 of the periodic
Gaussian white noise satisfy the following properties:

� ŵ[k] = �(ŵ[k]) + j �(ŵ[k]);
� ŵ[−k] = ŵ[k];
� �(ŵ[k]), �(ŵ[k]) ∼ N (0, 1

2 ), ∀k > 0;
� ŵ[0] ∈ R and ŵ[0] ∼ N (0, 1);
� �(ŵ[k]), �(ŵ[k]), and ŵ[0] are independent.

Put differently, for any nonzero frequency k, E[ŵ[k]2 ] = 0 and
E[ŵ[k]ŵ[k]] = 1. This means that ŵ[k], k �= 0, follows a com-
plex normal distribution with mean 0, covariance 1, and pseudo-
covariance 0 [56].

When L has a nontrivial null space, there is no hope to con-
struct a periodic process s solution of (23) with w a periodic
Gaussian white noise. Indeed, the operator L kills the null-space
frequencies, which contradicts that ŵ[kn ] �= 0 almost surely for
n = 1 . . . N0 . One should adapt (23) accordingly by giving spe-
cial treatment to the null-space frequencies. We propose here to
consider a new class of periodic Gaussian processes: the Gaus-
sian bridges. Given some operator L and γ0 > 0, we set

Lγ0 = L + γ0ProjNL
, (25)

where ProjNL
is given by (10). Note that Lγ0 = L for any γ0

when the null space of L is trivial. Moreover, we remark that

‖Lγ0 f‖2
L2

= ‖Lf‖2
L2

+ γ2
0 ‖ProjNL

{f}‖2
L2

= ‖f‖2
HL

, (26)

where ‖f‖2
HL

= 〈f, f〉HL is given in (16) (with γ = γ0).

1Without loss of generality, we only consider Gaussian white noise with
zero-mean and variance 1.
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TABLE I
GAUSSIAN BRIDGES FOR SEVERAL OPERATORS

Fig. 2. Illustration of s ∼ GB(D2 + 4π2 I, γ2
0 ) for different values of γ2

0 .

Definition 4: A Gaussian bridge is a periodic Gaussian pro-
cess s, solution to the stochastic differential equation

Lγ0 s = w, (27)

with w a periodic Gaussian white noise and Lγ0 given by (25)
for some LSI operator L with finite-dimensional null space
and γ0 > 0. We summarize this situation with the notation
s ∼ GB(L, γ2

0 ). When the null space is trivial, in which case
the parameter γ2

0 is immaterial, we write s ∼ GB(L).
The Gaussian-bridge terminology is inspired by the Brownian

bridge, the periodic version of the Brownian motion.2 Several
realizations of our Gaussian bridges for various operators are
shown in Table I for γ2

0 = 1. The influence of the parameter γ2
0

is illustrated in Fig. 2.
Proposition 6: The covariance function of the Gaussian

bridge s ∼ GB(L, γ2
0 ) is

rs(t, τ) = hγ0 (t − τ), (28)

where hγ0 is defined in (18). It implies that

E[〈s, f〉〈s, g〉] = 〈hγ0 ∗ f, g〉. (29)

In particular, we have that

E[|ŝ[k]|2 ] = ĥγ0 [k]. (30)

2Our definition differs from the classical one, in which the Brownian bridge
is zero at the origin instead of being zero-mean [57].

The proof of Proposition 6 is given in Appendix G. An important
consequence is that a Gaussian bridge is stationary since its
covariance function only depends on the difference (t − τ).

C. Measurement Model and MMSE Estimator

For this section, we restrict ourselves to operators L for which
the native space HL is a RKHS. In that case, using (30) and (18),
the Gaussian bridge s satisfies

E[‖s‖2
L2

] =
∑

k∈Z

E[|ŝ[k]|2 ] =
∑

k∈KL

1

|L̂[k]|2 +
N0∑

n=1

1
γ2

0
, (31)

which is finite according to (17). Therefore, the Gaussian bridge
s is (almost surely) square-integrable.

The observed data y are assumed to be generated as

y = 〈ν, s〉 + ε, (32)

where s ∼ GB(L, γ2
0 ) is a Gaussian bridge (see Definition 4),

ν = (ν1 , . . . , νM ) is a vector of M linear measurement func-
tions, and ε are independent random perturbations such that
ε ∼ N (0, σ2

0 I). Given y in (32), we want to find the estimator s̃
of the Gaussian bridge s, imposing that it minimizes the quantity
E[‖s − s̃‖2

2 ].
Theorem 2: Let y = (y1 , . . . , yM ) be the noisy measure-

ment vector (32) of the Gaussian bridge s ∼ GB(L, γ2
0 ), with

measurement functions νm ∈ H′
L, m = 1 . . . M . Then, the

MMSE estimator of s given the samples {ym}m∈[1...M ] is

s̃MMSE(t) =
M∑

m=1

dm ϕm (t), (33)

where ϕm = hγ0 ∗ νm with νm ∈ H′
L, d = (d1 , . . . , dM ) =

(G + σ2
0 I)

−1y, and G is the Gram matrix defined in (21).

The proof is given in Appendix H. Theorem 2 can be seen
as a generalization of the classical Wiener filtering, designed
for discrete signals, to the hybrid case where the input signal is
in a (periodic) continuous-domain and the (finite-dimensional)
measurements are discrete. A leading theme of this paper is that
the form of the MMSE estimator s̃MMSE is very close to the one
of the solution of the representer theorem fRT with λ = σ2

0 and
for a quadratic cost function. This connection is exploited in
Section IV-D.
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D. MMSE Estimation as a Representer Theorem

The MMSE estimator given in Theorem 2 can be inter-
preted as the solution of the optimization problem described
in Proposition 7.

Proposition 7: Consider an LSI operator L with finite-
dimensional null space, γ > 0, and νm ∈ H′

L for m = 1 . . . M .
We set Lγ as in (25). Then, the solution of the optimization
problem

min
f∈ HL

(
M∑

m=1

(ym − 〈f, νm 〉)2 + λ‖Lγ f‖2
L2

)

(34)

exists, is unique, and given by

fopt(t) =
M∑

m=1

dm ϕm (t), (35)

where ϕm = hγ ∗ νm and d = (d1 , . . . , dM ) = (G + λI)−1y.
In particular, the unique minimizer of (34) is the MMSE esti-
mator given in Theorem 2 for λ = σ2

0 and γ = γ0 .

The proof of Proposition 7 follows the same steps as the
ones of Theorem 1 (form of the minimizer for the periodic
representer theorem) and Proposition 4 (explicit formulas in
terms of system matrix for the vectors a and b), with significant
simplifications that are detailed in Appendix I. Proposition 7
has obvious similarities with Theorem 1, but it also adds new
elements.

� Proposition 7 gives an interpretation of the MMSE esti-
mator of a Gaussian bridge given its measurements as the
solution to an optimization problem. This problem is very
close to the periodic representer theorem (Theorem 1) for
a quadratic cost function. However, (34) differs from (19)
because the regularization also penalizes null-space fre-
quencies.

� If the null space NL is trivial, then

fRT = s̃MMSE (36)

for λ = σ2
0 . This means that Theorem 1 (smoothing ap-

proach) and 2 (statistical approach) correspond to the same
reconstruction method. This equivalence is well-known for
stationary processes on R in the case of time-domain sam-
pling measurements [42]. Our results extend this to the
periodic setting and to the case of generalized linear mea-
surements.

� If the null space is nontrivial, then Theorem 1 and
Proposition 7 yield different reconstructions. In particu-
lar, this implies that one cannot interpret the optimizer
fRT in Theorem 1 as the MMSE estimator of a Gaussian
bridge. Yet, the solutions get closer and closer as γ0 → 0.
In Section V, we investigate more deeply this situation.

V. QUALITY OF THE ESTIMATORS ON SIMULATIONS

We consider s̃γ ,λ(t|y) =
∑M

m=1 dm ϕm (t) as the linear esti-
mator of s given y, where ϕm = hγ ∗ νm , d = (G + λI)−1y,
and G is defined in Proposition 4. To simplify notations, we
shall omit y when considering s̃γ ,λ(·|y) = s̃γ ,λ. Each pair (λ, γ)
gives an estimator. In particular, if s is a Gaussian bridge,

then s̃MMSE = s̃γ0 ,σ 2
0
, according to Theorem 2. The mean-

square error (MSE) of s̃γ ,λ over N experiments is computed
as MSE = 1

N

∑N
n=1 ‖sn − (

s̃γ ,λ

)
n
‖2

L2
, where the sn are inde-

pendent realizations of s that yield a new noisy measurement
yn and

(
s̃γ ,λ

)
n

= s̃γ ,λ(·|yn ) is the estimator based on yn . We
define the normalized mean-square error (NMSE) by

NMSE =
MSE

1
N

∑N
n=1 ‖sn‖2

L2

≈ E[‖s − s̃γ ,λ‖2
L2

]
E[‖s‖2

L2
]

. (37)

In this section, we first detail the generation of Gaussian
bridges (Section V-A). We then investigate the role of the pa-
rameters λ (Section V-B) and γ2 (Section V-C) on the quality
of the estimator s̃γ ,λ. We primarily focus on time-domain sam-
pling measurements with 〈ν, s〉 = (s(t1), . . . , s(tM ))T, where
the tm are in T .

A. Generation of Gaussian Bridges

We first fix the operator L with null spaceNL of dimension N0
and γ0 > 0. Then, we generate (2Ncoef + 1) Fourier coefficients
{ŵ[k]}k∈[−N coef...N coef] of a Gaussian white noise according to
Definition 3. Finally, we compute the Gaussian bridge s as

s(t) =
∑

k∈KL
|k |≤N coef

ŵ[k]

L̂[k]
ek (t) +

N0∑

n=1

ŵ[kn ]
γ0

ekn
(t). (38)

Since N0 < ∞, (38) provides a mere approximation of the
Gaussian bridge. However, the approximation error can be made
arbitrarily small by taking Ncoef large enough. In Fig. 2, we gen-
erate s ∼ GB(D2 + 4π2I, γ2

0 ) for four values of γ2
0 . For small

values of γ2
0 , the null-space component dominates, which corre-

sponds in this case to the frequency |k| = 1. When γ2
0 increases,

the null-space component has a weaker influence.

B. Influence of λ

We evaluate the influence of the parameter λ for the case
of the invertible operator L = D + I. In this case we have that
ProjNL

= 0 (since NL = {0}), which simplifies (25). Hence,
the parameter γ2

0 is immaterial and we denote by s̃λ the es-
timator associated to λ > 0. We consider s ∼ GB(D + I) and
σ2

0 = 10−2 .
Time-Domain Sampling Measurements: We generated

N = 500 realizations of s. From each one, we extracted
M = 30 noisy measurements. We then computed 30 estima-
tors {(s̃λ

)
n
}λ∈L1 , where L1 is the set of values obtained by

uniform sampling of the interval [0.001, 0.03]. The plot of the
NMSE (approximated according to (37)) as a function of λ is
given in Fig. 3(a). The minimum error is obtained for λ � 0.01,
which corresponds to σ2

0 . This result validates the theory pre-
sented in Theorem 2. Actually, when λ is small, the estimator
interpolates the noisy measurements while, for a large λ, the
estimator tends to oversmooth the curve. The MMSE estimator
makes an optimal tradeoff between fitting the data and smooth-
ing the curve. These observations about λ retain their validity
for other operators, including noninvertible ones.
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Fig. 3. Evolution of the NMSE in terms of λ for s ∼ GB(D + I) for time
and Fourier-domain sampling measurements.

Fourier-Domain Sampling Measurements: We consider
complex exponential measurement functionals, inducing
〈ν, s〉 = (ŝ[k1 ], . . . , ŝ[kM ])T, where the km are in Z. We de-
fine Nν = {km}m=1...M , such that (−km ) ∈ Nν for every
km ∈ Nν . We consider the measurements ν = (ek1 , . . . , ekM

).
Note that these measurement functionals are complex, which
calls for a slight adaptation of the framework presented so far.3

The noise ε = (ε1 , . . . , εM ) is then also complex and satisfies
the properties:

� εm = �(εm ) + j �(εm );
� εm 1 = εm 2 , km 1 = −km 2 ;
� �(εm ), �(εm ) ∼ N (0,

σ 2
0
2 ), ∀km �= 0;

� εm ∈ R and εm ∼ N (0, σ2
0 ), km = 0;

� �(εm ), �(εm ) and εm 1 , km 1 = 0, are independent.
This means that E[|εm |2 ] = σ2

0 for every m.
We repeated the experiment done with the time-domain sam-

pling using exactly the same procedure and parameters, and
Nν = {−2,−1, 0, 1, 2}. The experimental curve of the evolu-
tion of the NMSE with λ is given in Fig. 3(b). Again, the mini-
mum is obtained for λ � 0.01 = σ2

0 . We now want to compare
this curve to the theoretical one.

For the Fourier-sampling case, we were also able to derive
the corresponding closed-form formulas for the NMSE (37).

Proposition 8: Let s be a Gaussian bridge associated with an
invertible operator L, and ym = ŝ[km ] + εm , m = 1 . . . M , with
km ∈ Nν the sampled frequencies and ε a complex Gaussian
noise with variance σ2

0 as above. Then, the MSE of the estimator
s̃λ = s̃λ(·|y) is given by

E
[‖s − s̃λ‖2

L2

]
=

M∑

m=1

ĥ[km ](λ2 + ĥ[km ]σ2
0 )

(ĥ[km ] + λ)2
+

∑

k /∈Nν

ĥ[k],

(39)
where h is the reproducing kernel of HL.

The proof is given in Appendix J. Note that ĥ[k] = 1/|L̂[k]|2
is real-valued and strictly positive for every k. From (39),
we also recover the property that the optimum is reached for
λ = σ2

0 since each of the M terms that appear in the first sum is
minimized for this value of λ.

The theoretical curve for Nν = {−2,−1, 0, 1, 2} is given in
Fig. 3(b) and is in good agreement with the experimental curve.

3One could equivalently consider cosine and sine measurements, to the cost
of heavier formulas.

We explain the slight variation (0.15% for the L2-norm over
λ ∈ [0.001, 0.03]) by the fact that (37) is only an estimation of
the theoretical NMSE.

C. Influence of γ2

In this section, we only consider noninvertible operators
since invertibility has already been addressed in Section IV-D
(see (36)). In order to evaluate the specific influence of γ, we
set λ = σ2

0 . Hence, s̃γ ,σ 2
0

= s̃γ . We generated N = 500 realiza-
tions of a Gaussian bridge s, and from each one, we extracted
M = 30 noisy measurements. We repeated this for several op-
erators L and values of γ2

0 and σ2
0 . For each case, we compared

s̃MMSE to s̃γ→0 , s̃γ→∞, and fRT in (20), seen here as an addi-
tional estimator. The corresponding NMSEs (see (37)) are given
in Table II. We make four observations.

1) In each case, the best result is obtained
with s̃MMSE, as expected. We see, moreover, that
limγ→0 E[‖s − s̃γ ‖2

L2
] � E[‖s − fRT‖2

L2
]. This is in line

with the fact that the functional (19) to minimize in Theorem 1
corresponds to (34) with γ = 0.

2) For small values of γ2
0 (i.e., 10−3 or 100), we see that

E[‖s − fRT‖2
L2

] � E[‖s − s̃MMSE‖2
L2

]. This means that the per-
formances of s̃MMSE and fRT are very similar. This is illustrated
in Fig. 4(a), where s̃MMSE and fRT do coincide. Meanwhile, we
see that limγ→∞ E[‖s − s̃γ ‖2

L2
] � E[‖s − s̃MMSE‖2

L2
]. This is

also illustrated in Fig. 4(a) for L = D. The reconstruction for
γ → +∞ significantly fails to recover the original signal s, as
the corresponding estimator tends to have zero-mean.

3) For intermediate values of γ2
0 (i.e., γ2

0 = 103 or 106

according to σ0 and the order of the operator), the mini-
mal NMSE is obtained for s̃MMSE only. We also observe that
E[‖s − fRT‖2

L2
] < limγ→∞ E[‖s − s̃γ ‖2

L2
]. This is illustrated in

Fig. 4(b) for L = D2 + 4π2I, γ2
0 = 106 and σ2

0 = 10−4 , where
we can distinguish s̃MMSE, s̃γ→∞, and fRT.

4) For large values of γ2
0 (i.e., γ2

0 = 109), we ob-
serve that limγ→∞ E[‖s − s̃γ ‖2

L2
] � E[‖s − s̃MMSE‖2

L2
] and

E[‖s − fRT‖2
L2

] > E[‖s − s̃MMSE‖2
L2

]. In fact, for large γ2
0 , the

Gaussian bridge tends to have vanishing null-space frequencies
(with (38), we have that ŝ[kn ] = ŵ[kn ]/γ0 for n = 1 . . . N0).
Meanwhile, the reconstructed signal fRT is not constrained to
attenuate null-space frequencies. The null-space part in (20) is
mainly responsible for a higher error compared to s̃MMSE. This
is highlighted in Fig. 4(c).

Observations 2), 3), and 4) suggest the existence of three
regimes. For further investigation, we present in Fig. 5 the
evolution of NMSE as a function of log γ2 for L = D and
γ2

0 = 100 , 103 , and 106 . The minimal error is always obtained
for γ2 � γ2

0 , as predicted by the theory. For the three cases,
we observe two plateaus: one for γ2 ∈ (0, v1) and the other for
γ2 ∈ (v2 ,∞), where v1 , v2 > 0. It means that, for each value of
γ2

0 , the estimators s̃γ with γ2 ∈ (0, v1) ((v2 ,∞), respectively)
are very similar and the reconstruction algorithms are practi-
cally indistinguishable. The values of v1 and v2 depend on γ2

0 .
When γ2

0 = 100 (106 , respectively), we have that γ2
0 ∈ (0, v1)

((v2 ,∞), respectively). However, γ2
0 = 103 ∈ [v1 , v2 ] belongs

to none of the plateaus.



BADOUAL et al.: PERIODIC SPLINES AND GAUSSIAN PROCESSES FOR THE RESOLUTION OF LINEAR INVERSE PROBLEMS 6055

TABLE II
COMPARISON OF NMSE FOR s̃γ→0 , fRT, s̃MMSE, AND s̃γ→∞ OVER N = 500 ITERATIONS. BOLD: OPTIMAL RESULT

Fig. 4. Illustrations of s ∼ GB(L, γ2
0 ), s̃MMSE, fRT, and s̃γ→∞ for several operators and values of γ2

0 and σ2
0 . We used M = 30 noisy measurements

y = (y1 , . . . , yM ).

Fig. 5. Evolution of NMSE according to γ for s ∼ GB(D, γ2
0 ).

Two main conclusions can be drawn from our experiments.
First, we have strong empirical evidence that

s̃γ −→
γ→0

fRT, (40)

which we conjecture to be true for any Gaussian-bridge model.
This is remarkable because it presents the reconstruction based
on the periodic representer theorem as a limit case of the statis-
tical approach. Second, we empirically see that, for reasonably
small values of γ2

0 , the estimators corresponding to γ2 ≤ γ2
0 are

practically indistinguishable from the MMSE estimator. This is
in particular valid for the representer-theorem reconstruction,
for which we then have that

fRT ≈ s̃MMSE. (41)

The variational method is theoretically suboptimal to recon-
struct Gaussian bridges. However, based on our experiments, it
is reasonable to consider this method as practically optimal for
small values of γ2

0 and λ = σ2
0 .
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VI. DISCUSSION

A. Comparison with Inverse Problems on the Real Line

It is worth noting that the periodic setting has important differ-
ences as compared to reconstruction methods over the complete
real line, which motivated and played an important role in this
paper.

� The role of the Dirac impulse δ is played by the Dirac
comb Ш in the periodic setting. It is indeed the neutral
element of the periodic convolution (5) and appears in
the definition of the periodic L-splines (Definition 1) and
RKHS (Definition 2).

� In the real-line setting, in addition to smoothness proper-
ties, functions are also characterized by their property of
decay at infinity [58]. For periodic functions, we only con-
sider the smoothness properties, which brings substantial
simplifications.

� In general, a continuous LSI operator does not preserve the
asymptotic behavior of the input function. For instance, a
test function in the space S(R) of smooth and rapidly de-
caying functions is not necessarily mapped to a rapidly
decaying function. In contrast, any continuous LSI oper-
ator maps the space of periodic test functions S(T ) onto
itself (see Section II-A). This greatly simplifies the study
of operators that act on periodic functions.

� The null space of a continuous LSI operator can differ
for the two cases. In particular, when acting on periodic
functions, the null space of the nth derivative Dn is reduced
to constant functions for every n ≥ 1. This is crucial due
to the role of the null space in Theorems 1 and 2.

� In Proposition 3, we give a necessary and sufficient con-
dition for a continuous LSI operator of finite-dimensional
null space to specify a RKHS in the sense of Definition 2.
This is significantly more complicated over the real line,
for which only partial results are known [32].

� We have seen that it is not always possible to find a periodic
solution s to the equation Ls = w, where w is a periodic
Gaussian white noise. This lead us to modify the stochastic
differential equation (see (27)) and to introduce the family
of Gaussian bridges.

� In Theorem 2, we give the MMSE estimator of the com-
plete process s, not only for the estimation of s(t0) at a
fixed time t0 . In the non-periodic setting, however, solu-
tions of stochastic differential equations are generally not
square-integrable. For instance, if s is a nontrivial station-
ary Gaussian process, then

E[‖s‖2
L2 (R) ] =

∑

k∈Z

E[‖1[k,k+1) · s‖2
L2 (R) ]

(i)
=

∑

k∈Z

E[‖1[0,1) · s‖2
L2 (R) ] = ∞, (42)

where 1[a,b) is the indicator function on [a, b) and (i) ex-
ploits stationarity. Another example is the Brownian mo-
tion, whose supremum over [0, t] grows faster than tp for
any p < 1/2 (almost surely) when t goes to infinity [59],
hence being of infinite energy. As a consequence, it is

irrelevant to consider the MMSE estimator of the com-
plete process and one ought to, for instance, restrict to
MMSE estimators of local values s(t0) of the process.

B. Comparison with TV Regularization

A recent tendency in the field of signal reconstruction is to rely
on sparsity-promoting regularization, motivated by the fact that
many real-world signals are sparse in some adequate transform
domain [41], [60], [61].

The vast majority of works focuses on the finite-dimensional
setting via �1-type regularization. However, some authors have
recently promoted the reconstruction of infinite-dimensional
sparse signals [6], [62]. The adaptation of discrete �1 meth-
ods to the continuous domain is based on the total-variation
(TV) regularization norm, for which it is possible to derive rep-
resenter theorems (see [32, Theorem 1]). A comparison between
Tikhonov and TV variational techniques is proposed in Gupta
et al. [33] for non-periodic signals. In brief, at identical mea-
surements and regularization operator L, Tikhonov regulariza-
tion favors smooth solutions restricted to a finite-dimensional
space, while TV regularization allows for adaptive and more
compressible solutions. In [33, Table I], it was shown on sim-
ulations that Tikhonov methods perform better on fractal-type
signals, while TV methods are better suited to sparse signals.
We expect similar behaviors for the periodic setting.

At the heart of the present paper is the connection between
L2-regularization and the statistical formalism of MMSE esti-
mation of Gaussian processes. A theoretical link between deter-
ministic and stochastic frameworks is much harder to provide
for sparsity-inducing priors. There is strong empirical evidence
that sparse stochastic models are intimately linked to TV-based
methods [41], but the extent to which such estimators approach
the MMSE solution is still unknown.

VII. CONCLUSION

We have presented two approaches for the reconstruction
of periodic continuous-domain signals from their corrupted dis-
crete measurements. The first approach is based on optimization
theory and culminates with the specification of a periodic repre-
senter theorem (Theorem 1). In the second approach, a signal is
modeled as a stationary periodic random process and the recon-
struction problem is transformed into an estimation problem.
Theorem 2 then gives the optimal estimator (in the mean-square
sense) for Gaussian bridges.

We have also provided theoretical and experimental compar-
isons of the two approaches and identified two main findings.
First, for invertible operators, the statistical and variational ap-
proaches are equivalent and correspond to an identical recon-
struction scheme. For noninvertible operators, however, this
equivalence is not valid anymore, but the variational method
corresponds to the statistical reconstruction when the parame-
ter γ vanishes. More importantly, for small values of γ2

0 , the
variational method is practically equivalent to the optimal sta-
tistical reconstruction. This demonstrates the efficiency of the
representer theorem for reconstructing Gaussian bridges, even
for noninvertible operators.
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APPENDIX

A. Proof of Proposition 1

The main argument is very classical in the non-periodic set-
ting. We detail it for the sake of completeness and adapt it to the
periodic case.

Let p be a function of NL. As L is shift-invariant,
p(· − t0) ∈ NL for every t0 ∈ T . Moreover, NL is closed in
S′(T ) (as any finite-dimensional linear subspace), thus the first
derivative p′ = p(1) of p is in NL as the limit of the function
1
t0

(p(· − t0) − p) ∈ NL when t0 → 0. We propagate this prop-
erty to all the derivatives of p.

We now have that NL is a finite-dimensional space of di-
mension N0 and p(k) ∈ NL, ∀k ∈ [1 . . . N0 ]. Hence, the fam-
ily of (N0 + 1) functions p, p(1) , . . . , p(N0 ) satisfies an equa-
tion of the form aN0 p

(N0 ) + · · · + a0p = 0, where ak ∈ C and
(a0 , . . . , aN0 ) �= 0. This implies that p, as solution of a differ-
ential equation with constant coefficients, is a sum of functions
of the form q(t)eμt with q a polynomial and μ ∈ C.

Finally, since we deal with 1-periodic functions, this con-
strains q to be a constant function and μ = 2πjk with k ∈ Z.
This concludes the proof.

B. Proof of Proposition 2

The linearity, Hermitian symmetry, and non-negativity
are easily obtained. We only need to verify that

‖f‖HL = 〈f, f〉 1
2
HL

= 0 ⇔ f = 0. For this, we observe that

〈f, f〉HL = 0 ⇔
∫ 1

0
|Lf(t)|2dt + γ2

N0∑

n=1

|f̂ [kn ]|2 = 0

⇔
∑

k∈KL

∣
∣f̂ [k]

∣
∣2

∣
∣L̂[k]

∣
∣2

︸ ︷︷ ︸
�=0

+γ2
N0∑

n=1

|f̂ [kn ]|2 = 0,

(43)

which implies that f̂ [k] = 0 for all k ∈ Z. Hence,
〈f, f〉HL = 0 ⇔ f = 0.

C. Proof of Proposition 3

For the proof, we set A =
∑

k∈KL

1
|L̂ [k ]|2 . The Hilbert space

HL is a RKHS if and only if Ш ∈ H′
L or, equivalently, if there

exists C > 0 such that

∀f ∈ S(T ), |〈Ш, f〉| ≤ C‖f‖HL . (44)

Assume that A < +∞. Let c be the sequence such that
c[k] = 1/L̂[k] if k ∈ KL and c[k] = 1/γ otherwise. Using the
Cauchy-Schwarz inequality, we have, for every f ∈ S(T ), that

〈Ш, f〉2 =
(∑

f̂ [k]
)2

≤
(∑

|c[k]|2
)( ∑ ∣

∣
∣
∣
f̂ [k]
c[k]

∣
∣
∣
∣

2)

= (N0/γ2 + A)‖f‖2
HL

. (45)

Hence, (44) is satisfied for C = (N0/γ2 + A)1/2 > 0. For the
converse, we define fm ∈ S(T ) such that

f̂m [k] =

{
0, if |k| > m or k = kn , n ∈ [1 . . . N0 ]

1
|L̂ [k ]|2 , otherwise.

Then, we readily observe that limm→+∞
|〈Ш,fm 〉|
‖fm ‖HL

=
√

A.

Therefore, as soon as A = +∞, 〈Ш, f〉/‖f‖HL is not bounded
in S(T ) and HL is not a RKHS.

The reproducing kernel is characterized by the relation
f(τ) = 〈h(·, τ), f〉HL for every f ∈ HL. Let R be the operator,
often called the Riesz map, such that 〈Rg, f〉HL = 〈g, f〉 for any
f ∈ HL and g ∈ H′

L. Then, h(·, τ) = R{Ш(· − τ)}. Moreover,
we have that 〈Rek , em 〉HL = δ[k − m]. In addition,

〈Rek , em 〉HL = 〈LRek ,Lem 〉 + γ2
N0∑

n=1

R̂ek [kn ]êm [kn ]

= 〈Rek ,L∗Lem 〉 + γ2
N0∑

n=1

R̂ek [kn ]δ[m − kn ]

= |L̂[m]|2R̂ek [m] + γ2
N0∑

n=1

R̂ek [kn ]δ[m − kn ].

(46)

Hence, R is characterized for k,m ∈ Z by the relation

|L̂[m]|2R̂ek [m] + γ2
N0∑

n=1

R̂ek [kn ]δ[m − kn ] = δ[k − m].

(47)
For k ∈ KL, we deduce from (47) that R̂ek [m] = 1/|L̂[k]|2
if m = k and 0 otherwise. We also deduce that, for k = kn ,
̂Rekn

[m] = 1/γ2 if m = kn and 0 otherwise. Thus, R is shift-
invariant (R̂ek [m] = 0 for every m �= k), meaning that h(t, τ)
depends only on (t − τ). Moreover, the Fourier multiplier of R,
which is also the discrete Fourier transform of hγ (t) = h(t, 0),
is R̂[k] = 1/|L̂[k]|2 if k ∈ KL and 1/γ2 if k = kn . This is equiv-
alent to (18) and concludes the proof.

D. Proof of Theorem 1

To prove Theorem 1, we first show that the optimization
problem (19) has a unique solution by convex-optimization ar-
guments. Then, we connect this solution to the abstract repre-
senter theorem (see for instance [63, Theorem 16.1]) to deduce
the form of the solution. We start with some preliminary results
for the first part.

Lemma 1: Under the condition of Theorem 1, the functional
φ : HL → R+ defined by φ(f) = F (y, 〈ν, f〉) + λ‖Lf‖2

L2
is

strictly convex and coercive, meaning that φ(f) → ∞ when
‖f‖HL → ∞.

Proof: Strict convexity: φ is convex as a sum of two con-
vex functions. For the strict convexity, we fix μ ∈ (0, 1) and
f, g ∈ HL. It is then sufficient to show that the equality

φ(μf + (1 − μ)g) = μφ(f) + (1 − μ)φ(g) (48)
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implies that f = g. The functions F (y,ν{·}) and ‖L · ‖L2 are
convex, therefore (48) together with the linearity of both ν and
L implies the two relations

F (y, μν(f) + (1 − μ)ν(g)) = μF (y, ν(f))

+ (1 − μ)F (y, ν(g))

‖μLf + (1 − μ)Lg‖2
L2

= μ‖Lf‖2
L2

+ (1 − μ)‖Lg‖2
L2

.
(49)

Now, taking advantage of the strict convexity of F (y, ·) and
‖ · ‖2

L2
, we deduce that ν(f) = ν(g) and Lf = Lg. This means,

in particular, that (f − g) is in the intersection of the null spaces
of ν and L, assumed to be trivial. Finally, f = g as expected.

Coercivity: The measurement functional ν is linear and con-
tinuous, hence there exists A > 0 such that ‖〈ν, f〉|2 ≤ A‖f‖2

HL

for any f ∈ HL. Moreover, since ν is injective and linear when
restricted to the finite-dimensional null space NL, there ex-
ists B > 0 such that ‖〈ν, p〉‖2 ≥ B‖p‖2

HL
for any p ∈ NL. Any

f ∈ HL can be decomposed uniquely as

f =
∑

k∈KL

f̂ [k]ek +
N0∑

n=1

f̂ [kn ]ekn
= g + p. (50)

In that case, we easily see that ‖g‖HL = ‖Lf‖L2 . In particular,
we deduce that

‖f‖2
HL

= ‖g‖2
HL

+ ‖p‖2
HL

≤ ‖Lf‖2
L2

+
1
B
‖〈ν, p〉‖2

≤ ‖Lf‖2
L2

+
1
B

(‖〈ν, f〉‖ + ‖〈ν, g〉‖)2

≤ ‖Lf‖2
L2

+
1
B

(
‖〈ν, f〉‖ + A1/2‖Lf‖L2

)2

≤ C
(‖Lf‖2

L2
+ ‖〈ν, f〉‖2) (51)

for C > 0 large enough. Now, consider a sequence of functions
fm ∈ HL such that ‖f‖HL → ∞. We want to show that, for m
large enough, φ(fm ) is arbitrarily large. Due to (51), for m large
enough, ‖Lfm‖L2 or ‖〈ν, fm 〉‖ are arbitrarily large. The former
implies obviously that φ(fm ) can be made as large as we want.
It is also true for the latter because φ(fm ) ≥ F (y, 〈ν, fm 〉) and
F is coercive. This means that φ(fm ) goes to infinity when
m → ∞, hence φ is coercive. �

As φ is a strictly convex and coercive functional (Lemma 1),
the optimization problem (19) has the unique solution fRT. We
denote z0 = 〈ν, fRT〉. The function fRT can be uniquely decom-
posed as

fRT =
∑

k∈KL

f̂RT[k]ek +
N0∑

n=1

f̂RT[kn ]ekn
= gRT + pRT. (52)

We recall the abstract representer theorem. This result can be
found in [33, Theorem 8] with a formulation close to ours.

Proposition 9: Let H be a Hilbert space, ν = (ν1 , . . . , νM )
be a vector of M linear and continuous measurement functionals
over H, and y0 ∈ RM . There exists a unique minimizer of the
optimization problem

min
f∈ H

‖f‖H s.t. ν = y0 , (53)

which is of the form fopt =
∑M

m=1am Rνm , where am ∈ R and
R : H′ → H is the Riesz map of H.

We consider the Hilbert space H̃L={f∈HL, ProjNL
{f}=0},

on which ‖Lf‖L2 is a Hilbertian norm. The linear measurements

νm are in the dual space H̃′
L, once restricted as linear functionals

on H̃L. The interpolation constraint is chosen as y0 = z0 −
ν(pRT). Applying Proposition 9 to this case, we deduce that
there exists a unique minimizer

hopt = arg min
h∈H̃L,ν(h)=y0

‖Lh‖L2 (54)

which is of the form hopt =
∑M

m=1 am Rνm , R being the Riesz

map between H̃′
L and H̃L. In our case, the function Rνm is given

by Rνm =
∑

k∈KL

ν̂m [k ]
|L̂ [k ]|2 ek . In particular, one easily sees from

the expression of ϕm that it satisfies

Rνm = ϕm − γ2ProjNL
{νm}. (55)

Moreover, we have that hopt = gRT. Indeed, gRT is clearly
among the functions h over which one minimizes and one can-
not have that ‖Lhopt‖L2 < ‖LgRT‖L2 (otherwise, the function
f = hopt + pRT would be a minimizer of (19) different from fRT,
which is impossible). Putting things together, we get that

fRT = gRT + pRT =
M∑

m=1

am Rνm + pRT

=
M∑

m=1

am ϕm − γ2
M∑

m=1

am ProjNL
{νm} + pRT. (56)

Since (−γ2 ∑M
m=1 am ProjNL

{νm} + pRT) is in the null space
of L, it can be developed as

∑N0
n=1 bnekn

, giving (20).
The last ingredient is to remark that am satisfies PTa = 0.

This comes from the fact that, by construction,
∑

am Rνm ∈ H̃′
L

and, by applying the Riesz map,
∑

am νm ∈ H̃L, meaning that
the projection of this element into the null space is zero. This is
precisely equivalent with the expected condition.

E. Proof of Proposition 4

We compute (19) for F the quadratic cost function. We have
that fRT =

∑M
m=1 am ϕm +

∑N0
n=1 bnekn

, as given by (20). It
then suffices to find the optimal vectors a and b. We therefore
rewrite (19) in terms of these two vectors.

From simple computations, we have, with the nota-
tions of Proposition 4, that 〈ν,

∑N0
n=1 bnekn

〉 = Pb and
〈ν,

∑M
m=1 am ϕm 〉 = Ga, where we used for the latter that

Gm 1 ,m 2 = 〈νm 1 , hγ ∗ νm 2 〉 = 〈νm 1 , ϕm 2 〉. Hence,

‖y − 〈ν, f〉‖2 = ‖y − Ga − Pb‖2 . (57)

From the definition of hγ in (18), we see that (L∗Lhγ )∗f=f

for every f whose Fourier coefficients f̂ [kn ] do vanish for ev-

ery n = 1 . . . N0 . Now, the relation P
T
a = 0 in Theorem 1

shows precisely that
∑M

n=1 am νm satisfies this property. In
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particular, we deduce that

L∗L

{
M∑

m=1

am ϕm

}

= (L∗Lhγ ) ∗
M∑

m=1

am νm =
M∑

m=1

am νm .

(58)
As a consequence, we have that

‖LfRT‖2
L2

=

〈

L∗L
M∑

m 1 =1

am 1 ϕm 1 ,

M∑

m 2 =1

am 2 ϕm 2

〉

=
M∑

m 1 =1

M∑

m 2 =1

am 1 Gm 1 ,m 2 am 2 = (Ga)Ta. (59)

Finally, one has that

‖y − 〈ν, fRT〉‖2 + λ‖LfRT‖2
L2

= ‖y − Ga − Pb‖2 + λ(Ga)Ta. (60)

By computing the partial derivatives, we find that the vectors a
and b are given by (21).

F. Proof of Proposition 5

Since νm =Ш(· − tm ), the form of the solution (20)
is fRT(t) =

∑M
m=1am hγ (t − tm ) +

∑N0
n=1bnekn

(t). We have
moreover that PTa = 0, where [P]m,n = ej2πkn tm . From (18),

we then deduce that L∗L{hγ }(t) =
∑

k∈KL
|L̂[k]|2 ek (t)

|L̂ [k ]|2 =
(Ш(t) − ProjNL

{Ш}(t)). By linearity, we get that

L∗L{fRT}(t) =
M∑

m=1

am L∗L{hγ }(t − tm )

=
M∑

m=1

amШ(t − tm ) −
M∑

m=1

am ProjNL
{Ш(· − tm )}(t)

=
M∑

m=1

amШ(t − tm ) −
N0∑

n=1

M∑

m=1

am e−j2πktm ekn

=
M∑

m=1

amШ(t − tm ) −
N0∑

n=1

[P
T
a]nekn

(61)

=
M∑

m=1

amШ(t − tm ), (62)

where we used that [P]m,n = e−j2πktm in (61) and that

P
T
a = PTa = 0 in (62). Finally, fRT is a periodic (L∗L)-spline

with weights am and knots tm .

G. Proof of Proposition 6

We start from

s =
∑

k∈ KL

ŵ[k]

L̂[k]
ek +

N0∑

n=1

ŵ[kn ]
γ0

ekn
. (63)

Our goal is to compute rs(t, τ) = E[s(t)s(τ)]. We do so by
replacing s(t) and s(τ) with (63). We develop the product and

use the relations E[ŵ[k]ŵ[�]] = E[ŵ[k]2 ] = 0, E[|ŵ[k]|2 ] = 1
for every k, � ∈ Z, k �= � to deduce that

rs(t, τ) =

(
∑

k∈KL

ek (t)e−k (τ)

|L̂[k]|2 +
1
γ2

0

N0∑

n=1

ekn
(t)e−kn

(τ)

)

.

(64)
Since ek (t)e−k (τ) = ek (t − τ), we have shown that
rs(t, τ) = hγ (t − τ), as expected. Then, we obtain (29) by in-
jecting (28) into (24). Finally, we obtain (30) by particulariz-
ing (29) with νm = ek .

H. Proof of Theorem 2

We fix a time t0 ∈ T . We first obtain the MMSE estimator for
s(t0) (estimation of s at time t0). (Note that s(t0)=〈s,Ш(·−t0)〉
is well defined becauseШ(· − t0) ∈ HL by assumption).

The linear MMSE estimator of s(t0) based on y is of the form
s̃t0 =

∑M
m=1um ym . Because s and ε are Gaussian, the linear

MMSE estimator coincides with the MMSE estimator [13]. The
orthogonality principle [Section 3.2] [13] then implies that

E[ym (s(t0) − s̃t0 )] = 0, ∀m = 1 . . . M. (65)

We know from Proposition 6 that E[〈s, f〉〈s, g〉] = 〈hγ0 ∗ f, g〉.
We use this relation to develop the different terms of (65). First,
we have that

E[ym s(t0)] = E[〈νm , s〉s(t0)] + E[εm s(t0)]

= E[〈νm , s〉〈s,Ш(· − t0)〉] + E[εm ]
︸ ︷︷ ︸

0

E[s(t0)]

= (hγ0 ∗ νm )(t0). (66)

As the estimator is of the form s̃t0 =
∑M

m=1um ym and exploit-
ing that ε and s are independent, we have that

E[〈νm , s〉yk ] = E[〈νm , s〉〈νk , s〉] + E[〈νm , s〉εk ]

= 〈hγ0 ∗ νm , νk 〉
E[εm yk ] = E[εm 〈νk , s〉] + E[εm εk ] = σ2δ[m − k].

(67)

We have therefore that

E[ym s̃t0 ] = E[〈νm , s〉s̃t0 ] + E[εm s̃t0 ]

=
M∑

k=1

ukE[〈νm , s〉yk ] +
M∑

k=1

ukE[εm yk ]

=
M∑

k=1

uk 〈hγ0 ∗ νm , νk 〉 + um σ2
0 . (68)

We remark that 〈hγ0 ∗ νm , νk 〉 = [G]m 1 ,m 2 given in (22).
Injecting (66) and (68) into (65), we have for m=1 . . . M
that (hγ0 ∗ νm )(t0) =

∑M
k=1 uk [G]m 1 ,m 2 + um σ2

0 . Hence,
u = (G + σ2

0 I)
−1c, where c = (hγ0 ∗ ν)(t0). As s̃t0 = uTy,

we finally have that s̃t0 =
∑M

m=1dm (hγ0 ∗ νm )(t0), where
d = (d1 , . . . , dM ) = (G + σ2

0 I)
−1y.
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We have now obtained the form of the MMSE estimator s̃t0

for s(t0) at a fixed time t0 . We then deduce the MMSE estimator
of the complete continuous random process s : T → R that
minimizes E[‖s − s̃‖2

L2
] among all the estimators s̃ based on y.

We fix an estimator s̃. We have that

E[‖s − s̃‖2
L2

] = E

[∫ 1

0
(s(t) − s̃(t))2dt

]

=
∫ 1

0
E[(s(t) − s̃(t))2 ]dt

≥
∫ 1

0
E[(s(t) − s̃t)2 ]dt = E[‖s − s̃MMSE‖2

L2
].

(69)

Hence, the function s̃MMSE : t → s̃t is the MMSE estimator
of the complete process s(t).

I. Proof of Proposition 7

The proof is obtained by following the arguments of
Theorem 1 (for existence, unicity, and form of the solution)
and Proposition 4 (for the explicit formula of the coefficients
dm in (35)) with the following simplifications:

First, the existence and unicity of a solution is now direct.
Indeed, the functional to minimize is ‖y − ν(f)‖2

2 + λ‖f‖2
HL

.
It is clearly coercive and strictly convex because ‖ · ‖HL is.
Second, the abstract representer theorem can now be applied
directly to the Hilbert space HL. The form of the solution is
then directly deduced. Third, the coefficients dm are found
with the arguments of Appendix E, except that there is no
term for the null-space component (coefficients bn ) in that case,
hence the system matrix is simpler.

J. Proof of Proposition 8

We know the expression of s̃λ from Proposition 7. For Fourier
sampling, the ϕm are complex exponential themselves, given by
ϕm = h ∗ ekm

= ĥ[km ]ekm
, while the Gram matrix G is diago-

nal since Gm 1 ,m 2 = 〈h ∗ ekm 1
, ekm 2

〉 = ĥ[km 1 ]δ[km 1 − km 2 ].
Hence, (35) gives that

s̃λ =
M∑

m=1

(ŝ[km ] + εm )ĥ[km ]

ĥ[km ] + λ
ekm

. (70)

After simplification, we have that

s − s̃λ =
M∑

m=1

(
λŝ[km ]

ĥ[km ] + λ
− ĥ[km ]εm

ĥ[km ] + λ

)

ekm
+

∑

k /∈Nν

ŝ[k]ek .

(71)
Exploiting the Fourier-domain independence, we deduce that

E
[‖s − s̃λ‖2

L2

]
=

M∑

m=1

λ2

(ĥ[km ] + λ)2
E

[|ŝ[km ]|2]

+
ĥ[km ]2

(ĥ[km ] + λ)2
E

[|εm |2]

+
∑

k /∈Nν

E
[|ŝ[k]|2] . (72)

From the relations E
[|ŝ[k]|2] = ĥ[k] (see (30)) and

E
[|εm |2] = σ2

0 , we finally obtain (39).
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