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ABSTRACT

We present a new active contour to segment cell aggregates. We
describe it by a smooth tessellation that is attracted toward the cell
membranes. Our approach relies on subdivision schemes that are
tightly linked to the theory of wavelets. The shape is encoded by
control points grouped in tiles. The smooth and continuously defined
boundary of each tile is generated by recursively applying a refine-
ment process to its control points. We deform the smooth tessella-
tion in a global manner using a ridge-based energy that we have de-
signed for that purpose. By construction, cells are segmented with-
out overlap and the tessellation structure is maintained even on dim
membranes. Leakage, which afflicts usual image-processing meth-
ods (e.g., watershed), is thus prevented. We validate our framework
on both synthetic and real microscopy images, showing that the pro-
posed method is robust to membrane gaps and to high levels of noise.

Index Terms— Active contour, C. elegans, cell aggregate,
Deslauriers-Dubuc, segmentation, subdivision, tessellation.

1. INTRODUCTION

We address the segmentation of the cell aggregates that appear in
images of several biological specimen such as C. elegans embryo
or cornea endothelium (Figures 1 and 8). This task is challenging
because of the proximity of the cells and the presence of gaps in the
membranes.

Over the past decade, automated methods were proposed for the
segmentation of cell membranes, including intensity thresholding,
morphological operations, Voronoi-based methods [1], labeling pro-
cedures [2], or watershed transform [3–7]. Those methods have three
main limitations. First, they suffer from leakage in case of dimmed
membranes. Second, they are sensitive to noise and might result in
over-segmentation. Third, it is not easy to introduce prior knowl-
edge to improve the accuracy of the segmentation [8]. Recent ap-
proaches are based on the detection of membrane patterns coupled
with graph-cut [9], or on deep learning [10]. If these methods are
better suited for incorporating prior knowledge, they do not allow
for easy and user-friendly interaction. Moreover, they may provide
non-continuous cell boundaries, which complicates the extraction
of quantitative measurements. Topology adaptive methods, such as
level sets or T-snakes [11, 12], are not required in this context as the
topological structure of the cell aggregate is generally known.

Parametric active contours—a.k.a. snakes—are popular models
for the interactive segmentation of bioimages [13–17]. They consist
in a curve that evolves from an initial position toward the bound-
ary of the object of interest through the minimization of an energy
term [16, 18]. The underlying shape has a continuous representation
in terms of basis functions [16], which facilitates the incorporation
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(a) Seed points. (b) Watershed.

(c) Five classical snakes. (d) Active tessellation, J = 0.98.

Fig. 1. Segmentation of a C. elegans embryo; Source: R. Jankele
and P. Gönczy, EPFL. (a) Seed points used for the initialization of
each method; (b) watershed method; (c) five classical snakes [16];
(d) active tessellation.

of prior knowledge. They are built to ensure continuity and smooth-
ness, which prevents leakage. They are parametrized by only a few
control points, which results in fast optimization and provides ro-
bustness to noise. However, parametric snakes are not well suited
to segment objects that are close to each other: They might yield
overlapping segmentations (Figure 1 (c)) as the snakes are optimized
independently. In the literature, only few works regarding active
contours address the segmentation of touching objects. Extension
of traditional parametric snakes to track non-occluding objects that
transiently touch each other are presented in [19, 20]. These meth-
ods could only segment cell aggregates with thick membranes or
non-touching cells. Networks of active contours were introduced
in [21, 22]. However, they involve many parameters (nodal points).

In this paper, we propose a new active contour with a geometric
representation that keeps the advantages of parametric snakes while
addressing globally the segmentation problem of cell aggregates.
The model consists in a smooth tessellation, so-called active tessel-
lation, that is globally deformed towards the cell membranes through
the minimization of a suitable ridge-based energy. The smooth tes-
sellation is encoded by a set of control points and generated through
a geometric subdivision scheme, a computer-graphics tool for rep-
resentation and modeling. By construction, the segmented tiles
are non-overlapping and the tessellation structure bridges mem-
brane gaps. After optimization, each cell of the aggregate can be
individually extracted to compute statistical descriptors.

The main contributions of this work are: 1) the construction of
a smooth tessellation to describe an active contour; 2) the derivation
of an oriented ridge-based energy functional; 3) the implementation
of the whole framework. We illustrate the benefits of the proposed
active tessellation on real biological applications in the context of
semi-interactive segmentation.
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Fig. 2. Construction of the smooth tessellation. Given seed points
(a), we first generate control points (blue crosses) grouped in tiles
(b). Then, we specify the smooth boundary of each tile with a con-
tinuous closed curve by applying a subdivision scheme to its control
points (c). Finally, we keep one of the common edges (d) to obtain
the final smooth tessellation (e).

2. CONSTRUCTION OF A SMOOTH TESSELLATION

Our active contour model is a smooth tessellation, as described in
Figure 2 (e). Its shape is parametrized by control points that are
grouped in tiles (Figure 2 (b)). Each tile is associated with a closed
curve that specifies its smooth boundary (Figure 2 (c)). This smooth
curve is generated from the control points via a subdivision scheme
(Section 2.1). The smooth tessellation is the union of the closed
curve of each tile. As two control points that belong to two adja-
cent tiles are connected by two continuous edges (Figure 2 (d)), we
keep only the edge of the largest tile (Figure 2 (e)). The remaining
edges are then optimized by fitting them to the image data via energy
optimization (Section 3).

2.1. A Tiling Made of Closed Subdivision Curves

A subdivision scheme allows one to describe a contour by an initial
set of control points which, by the iterative application of a refine-
ment rule, becomes continuous in the limit [23–26]. The smoothness
and geometric-reproduction properties of the limit curve depend on
the particular choice of the subdivision mask. We use this powerful
mathematical method to generate the closed curve of each tile.

2.1.1. Notations

We represent by p(k)[·] a (2kM)-periodic sequence of points
p(k)[m] = (p1(k)[m], p2(k)[m]), indexed by m ∈ Z, where
p1(k) and p2(k) are the coordinates. The discrete convolution of
p(k)[·] with a scalar mask h[·] is defined as (h ∗ p(k))[m] =∑
n∈Z h[m− n]p(k)[n].

2.1.2. Closed Subdivision Curves

Let p(0) be the M -periodic sequence that contains the control
points of a tile. The closed curve associated to this tile is gener-
ated as follows (Figure 3): We apply a refinement rule to p(0) to
double the number of points. We repeat this operation k times to
obtain the (2kM)-periodic sequence of subdivision points p(k).
When k →∞, the set of points converges to the continuous curve

r = (r1, r2) with r1, r2 ∈ C1. In practice, k = 6 iterations are
enough for the contour points to be sufficiently dense. The subdi-
vision points at the kth iteration (k ≥ 1) are directly obtained from
p(0) by

p(k) = h0→k ∗ p(0)↑
2k
, (1)

where ↑2k denotes an upsampling by a factor of 2k, h0→k =
h↑

2k−1 ∗ h↑2k−2 ∗ · · · ∗ h↑2 ∗ h [17], and h is the subdivision mask
whose z-transform is

H(z) = − 1
16
z−3 + 9

16
z−1 + 1 + 9

16
z − 1

16
z3. (2)

This subdivision mask corresponds to the convergent subdivision
scheme introduced by Deslauriers and Dubuc in [27], which gen-
erates C1-continuous functions and reproduces polynomials up to
degree 3 [27]. This scheme is interpolating [27, 28], which means
that the subdivision points, at each level of the process, interpolate
the limit curve r. We thus have that

r(t)|t= m
2k

= p(k)[m]. (3)

This is an advantage when user interaction is involved, as it facil-
itates the editing of the curve. Moreover, it is affine invariant, so
that the geometry of the limit curve changes in synchrony with any
affine transformation that would be applied to the initial set of con-
trol points. This is an important property that facilitates the design
of active contours.

3. AN ORIENTED RIDGE-BASED ENERGY

The energy functionalE drives the deformation of the smooth tessel-
lation. Usually, this energy is divided into an internal energy, which
ensures the smoothness of the curve, and an external energy, which is
purely data driven. In our formulation, the smoothness of the curve is
ensured by the Deslauriers-Dubuc subdivision scheme that produces
C1-continuous curve. Since we want the external term to attract the
smooth tessellation toward the cell membranes, we reduce E to a
ridge-based energy term.

To detect ridges, a common approach is to compute the Hessian
matrix U at location x = (x1, x2) as

U =

 ∂2u(x1,x2)

∂x21

∂2u(x1,x2)
∂x1∂x2

∂2u(x1,x2)
∂x2∂x1

∂2u(x1,x2)

∂x22

 , (4)

where u(x1, x2) = f(x1, x2)∗
(
g(x1)g(x2)

)
with f the input image

and g(xi) = 1

σ
√

2π
e

−(xi)
2

2σ2 for i = 1, 2. High values of the standard
deviation σ ∈ R increase the basin of attraction of the active contour.
We define the ridge strength at location x by

ξ(x) =
√
|λmin| ·

√
|λmin − λmax|, (5)

where λmin and λmax are the minimum and maximum eigenvalues
of U, respectively. On the ridge, the ridge strength is maximum and
the eigenvector vmin is normal to the ridge.

Let c be the control points of the active tessellation. They gen-
erates a set of N points ptess = ptess(c) that delineates the smooth
tessellation (Figure 3). The oriented ridge-based energy that we pro-
pose is

E(f,ptess) =− 1

N

N−1∑
m=0

ξ(ptess[m])

× |vT
min(ptess[m]) · n(ptess[m])|

‖vmin(ptess[m])‖ ‖n(ptess[m])‖ ,

(6)
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(a) p0 = c (b) Subdivision steps. (c) p6 = p6(c)

Fig. 3. Interpolating Deslauriers-Dubuc subdivision scheme. (a) Control points p0; (b) subdivision steps that converge to the continuous
curve (c) which is encoded by the five control points p0 (blue crosses).
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Fig. 4. Ridge feature. When minimizing the ridge-based energy (6),
the active tessellation (red line) tends to align with the center of the
ridge (green line).

where n(ptess[m]) is the normal vector at the mth point. The en-
ergy (6) is minimal when the vectors vmin and n are aligned and
when the tessellation lies on the ridge (Figure 4). The optimization
is computed as a function of the control points c. The optimum is
obtained as

copt = arg min
c

E(f,ptess(c)). (7)

4. IMPLEMENTATION

We implemented the proposed framework as a user-friendly plugin
for the bioimaging platform Icy [29]. 1

We initialize the active tessellation as follows: We construct a
Voronoi diagram around seed points and then apply a mask to shrink
the Voronoi tiles in the neighborhood of the cell aggregate. This
mask is obtained by constructing the convex hull of the seed points.
The vertices of the resulting tiles are the control points of the active
tessellation. Note that the seed points are manually specified through
the interface or automatically detected from a provided image of the
cells’ nuclei.

We follow a coarse-to-fine optimization strategy. We first op-
timize the active tessellation made of the few control points of the
Voronoi tiling using a Powell-like line-search method. We obtain a
rough segmentation that is less likely to be stuck in local minima.
We then double the number of control points to increase the flexi-
bility of the active tessellation and we optimize it once again. This
strategy makes our active contour less sensitive to initialization.

5. EXPERIMENTS AND VALIDATION

We perform three experiments to evaluate the performance of our
active tessellation. We first investigate its robustness with respect
to noise and dim membranes on synthetic data. Then, we illustrate
applications on real data.

1The source code and a demo of the plugin are available at
http://bigwww.epfl.ch/demo/active-tessellation/, as of October 2018.

5.1. Synthetic Data

We compare our approach in term of accuracy against the watershed
method [30] implemented by I. Arganda-Carreras and D. Legland for
the bioimage platform Fiji2. We use the Jaccard index (J) to mea-
sure the similarity between the segmentation result Ω and the corre-
sponding ground truth ΩGT. It is defined as 0 ≤ J = |Ω∩ΩGT|

|Ω∪ΩGT|
≤ 1.

In the experiments, we compute the Jaccard index for each cell and
take the average. It is this average value that we refer to as Jaccard
index in the next Sections.

We created a test image that simulates the fluorescence mi-
croscopy of a C. elegans embryo with 5 cells (Figure 5 (a)). We
use the same seed points to initialize the two methods. The initial
configuration of the active tessellation is illustrated in Figure 5 (a).
Its initial similarity with the ground truth corresponds to J = 0.64.

5.1.1. Robustness with Respect to Noise

We corrupted the test image by different levels of additive Gaussian
noise (20 realizations per level of noise, Figure 5 (d)). The signal-to-
noise ratio (SNR) corresponding to a given noise level and Jaccard
index were computed. The SNR that we use is the ratio of the mean
value of the signal and the standard deviation of the noise. The re-
sults are given in Figure 6 and illustrated in Figures 5 (e) and (f).
We observe that the active tessellation is robust with respect to noise
since it is able to give a proper segmentation outcome even for low
SNRs. On the contrary, the accuracy of the watershed method de-
grades significantly for a SNR below 2.4.

5.1.2. Robustness with Respect to Dim Membranes

We progressively dimmed the fluorescence signal on the membranes
of the test image (Figure 5 (g)). We computed the Jaccard index as a
function of the information-loss percentage. This dimming percent-
age corresponds to the ratio of the mean intensity on the membrane
of the test image over the one of the corrupted image. The resulting
plot is given in Figure 7 and we illustrate results in Figures 5 (h)
and (i). The active tessellation accurately segments the cells until
49% of information loss while the watershed method can tolerate no
more than 15% of information loss, then it quickly decreases. As this
model is only based on intensity, it leaks through dim membranes.
Due to the structure and smoothness of the active tessellation, the
proposed framework does not suffer from leakage.

5.2. Segmentation on Real Data

We applied our active tessellation on real biomedical images. These
images are challenging because of the presence of noise and gaps in
the membranes. For each segmentation, the initial configuration of

2The source code is available at https://imagej.net/Classic Watershed.
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(a) Test image. (b) Active tessellation, J = 0.98. (c) Watershed, J = 1.0.

(d) Noisy image. (e) Active tessellation, J = 0.90. (f) Watershed, J = 0.46.

(g) Image with dimmed membranes. (h) Active tessellation, J = 0.94. (i) Watershed, J = 0.44.

Fig. 5. Segmentation outcomes. (a)-(c) Test images. (a) Initial configuration of the active tessellation; (d)-(f) noisy data with SNR= 0.81;
(g)-(i) image with 23.95% of membrane information loss.

Fig. 6. Segmentation of noisy data. Evolution of the Jaccard index
as a function of the SNR. Filled area: standard deviation across the
20 realizations.

Fig. 7. Evolution of the Jaccard index as a function of the dimming
percentage.

(a) J = 0.86. (b) J = 0.95.

Fig. 8. Cell segmentation of (a) cornea endothelium; (b) C. elegans
embryo in a light-sheet fluorescence-microscopy image. Source: R.
Jankele and P. Gönczy, EPFL.

the active tessellation has 2.6 control points per cell in average. We
compute the Jaccard index of each outcome considering a manual
segmentation as ground truth. The results obtained are satisfactory
in most cases (Figures 1 and 8).

6. CONCLUSION

We have presented a new subdivision-based active contour for the
segmentation of cell aggregates. We have modeled the active con-
tour by a smooth tessellation and designed an oriented-ridge-based
energy term to efficiently attract the curve toward the membranes.
The tessellation structure prevents from overlapping segmentation
of the cells and from leakage issues. Moreover, each cell of the seg-
mentation outcome can be easily extracted as a continuous closed
curve making possible the computation of cell metrics. We have
demonstrated the robustness of our method under noisy conditions
and to dim membranes. We have also illustrated its behavior on real
bioimages.
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