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ABSTRACT

We present a numerical framework for Fluorescence Diffuse Optical
Tomography (fDOT) that combines a forward model together with
an iterative reconstruction procedure. Using rapid linear solvers, we
derived an efficient reconstruction strategy for quadratic regulariz-
ers. The method outperforms traditional reconstruction approaches.
Starting from quadradic regularization, we then extend the frame-
work to more general Lp constraints. We present reconstruction
experiments that confirm the superiority of non-quadratic sparsity
promoting regularization.

Index Terms— fDOT, finite elements, conjugate gradient, spar-
sity

1. INTRODUCTION

In fDOT near-infrared light is used to probe tissue for fluorescent
markers. The goal is to recover the distribution of the markers. In
the range of wavelength employed, scattering is the dominating phe-
nomenon, and light propagation in tissue can be modeled by a diffu-
sion process [1], [2]. Since we are dealing with fluorescence, there
are two light fields involved : an excitation light field, denoted by v,
and an emission light field denoted by u. Both are affected by scat-
tering, and therefore satisfy a diffusion equation. The physical quan-
tities of interest u and v are fluence rates, which correspond to the
average amount of light energy locally flowing through an infinites-
imal sphere. Mathematically this light propagation model translates
into the following system of equations satisfied by u and v :

8
<

:

−∇ · (D∇v) + µa v = 0 in Ω
v + a n ·∇v = vex on ∂Ωex

v + a n ·∇v = 0 on ∂Ω\∂Ωex

(1)


−∇ · (D∇u) + µa u = c · v in Ω
u + a n ·∇u = 0 on ∂Ω

(2)

with the corresponding notation :
Ω domain,
∂Ω boundary of the domain,
∂Ωex subset of the boundary where the excitation laser is pointed,
vex fluence of the excitation laser on the boundary,
D diffusion coefficient,
µa absorption coefficient,
c fluorophore distribution (to be recovered).

To make practical measurements, an excitation laser is shone on
the object, and fluorescence light is collected using a camera. Hence,
we have access only to boundary measurements. The geometry in
this work is trans-illumination, meaning that the laser lights one side
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of the object, while the camera records the opposite side. Addition-
ally a sweep is performed around the studied object, resulting in sev-
eral excitation and emission light fields. Nx denotes the number of
measurements composing a full sweep. uk, vk and mk, k = 1..Nx

are respectively the light fields and measurement results associated
to each measurement in the sweep.

In this paper we propose a new Finite Elements based recon-
struction algorithm for fDOT. The main contributions are :

- the development and implementation of an integrated model-
ing/reconstruction framework.

- an implicit description of the system; instead of assembling
and storing a system matrix as is common practice in the
field, our reconstruction procedure performs only those for-
ward model computations needed at every iteration. This,
combined with the fact that the forward model is implemented
as a sparse linear system of equations, yields a gain in perfor-
mance, and scalability compared to a direct method.

- the use of sparsity constraints for reconstruction.

After presenting our reconstruction strategy in Section 2, this
paper details the numerical method that we propose. Sections 3
and 4 are devoted to the discretization and minimization schemes
employed for quadratic regularizors, whereas Section 5 treats the
case of sparsity constraints. In Section 6 we present results obtained
with quadratic and ”sparse” regularization. Finally, in Section 7, we
discuss the computational cost of our strategy compared to a direct
methods that use a pre-computed system matrix.

2. RECONSTRUCTION

In order to recover the concentration of fluorophore c, we employ
a variational approach. Our estimate of the fluorophore concentra-
tion is found by minimizing a criterion. We consider the following
families of functionals parametrized by p ∈ [1, +∞[ :

Ip(c) =
1
2

NxX

k=1

Z

∂Ωk

(uk(x) − mk(x))2dσ(x) +
λ
2

Z

Ω

|c(x)|pdx

Jp(c) =
1
2

NxX

k=1

Z

∂Ωk

(uk(x) − mk(x))2dσ(x) +
λ
2

Z

Ω

‖∇c(x)‖p
2dx

where σ(x) is the surface measure on the boundary. They differ in
the regularization criterion used. We use one or the other depending
on the type of feature we want to promote in the estimated solution.
Of particular interest are the two cases p = 2 and p = 1. For
p = 2 the functionals are quadratic; thus the minimization process is
linear, which is interesting from the computational point of view. For
p = 1 we obtain so-called ”sparsity” constraints after discretization.
Note that J1(c) corresponds to TV-regularization. In that case the
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minimization process is not linear, but we can use a sequence of
quadratic functionals to approach the minimum, as we will see in
Section 5. In the next section we explain the discretization process.

3. DISCRETIZATION

So far we have described the problem in a continuous framework.
However, for computational purposes, we need to discretize both
the propagation equations, and the functionals. To that end, we will
use the Finite Elements Method (FEM) [3]. We start by defining
a mesh of the physical domain which consists of N nodes. The
fluence rates uk, k = 1..Nx and fluorophore concentration c are
discretized on that mesh, although we could use distinct meshes for
c (reconstruction) and the uks (forward model). Following the FEM,
the functions uk, mk, k = 1..Nx and c are approximated using
polynomial interpolation by the functions uk

h, mk
h, k = 1..Nx and

ch defined as :

uk
h(x) =

NX

j=1

uk,jφj(x) ≈ uk(x), k = 1..Nx

mk
h(x) =

NX

j=1

mk,jφj(x) ≈ mk(x), k = 1..Nx

ch(x) =
NX

j=1

cjφj(x) ≈ c(x)

In these expressions, the φjs are our interpolation functions. For this
work we used linear interpolation on a triangular mesh (pyramid-like
functions) so that the number of interpolation functions is N , the
same as the number of nodes in the mesh. Thus, the quantities of in-
terest uk

h, mk
h, k = 1..Nx and ch are uniquely specified by the vec-

tors uk = (uk,1, . . . , uk,N )T and mk = (mk,1, . . . , mk,N )T , k =
1..Nx, and c = (c1, . . . , cN )T respectively.

Now, we define the matrices that enter the computations :

Li,j =

Z

Ω

∇φi(x) ·∇φj(x) + κφi(x)φj(x)dx

+
1
a

Z

∂Ω

φi(x)φj(x)dσ,

Si,j =

Z

Ω

φi(x)φj(x)dx,

(Mk)i,j =

Z

∂Ωk

φi(x)φj(x)dσ,

(Sk)i,j =

Z

Ω

φi(x)vk(x)φj(x)dx,

Gi,j =

Z

Ω

∇φi(x) ·∇φj(x)dx,

where i = 1..N, j = 1..N, k = 1..Nx.

3.1. Propagation equations

The Finite Elements Method ensures that we get a numerical approx-
imation of the solution of equation (2) by solving the linear system
Luk = Skc for uk. Here we made the assumption that the object is
homogeneous and we defined κ = µa/D. Besides, we assumed that
the excitation light fields vk, k = 1..Nx are available. Indeed, these
can be aptly approximated using the FEM as well.

3.2. Quadratic functionals

Let us proceed with the discretization of the quadratic functionals
I2(c) and J2(c). We will do it explicitly for I2(c). By replacing c
and u in the functional with their approximations ch and uh we get :

I2(ch) =
1
2

NxX

k=1

Z

∂Ωk

(uk
h(x) − mk

h(x))2dσ(x) +
λ
2

Z

Ω

(ch(x))2dx

=
1
2

NxX

k=1

n
uT

k Mkuk − 2uT
k Mkmk + mT

k Mkmk

o
+
λ
2
cT Sc

where we made use of the matrices defined above. By using the fact
that we have Luk = Skc we obtain :

I2(c) =
1
2

NxX

k=1

n
cT ST

k L−T MkL
−1Skc − 2cT ST

k L−T Mkmk

o

+
λ
2
cT Sc + cste

=
1
2
cT

 
NxX

k=1

ST
k L−T MkL

−1Sk + λS

!
c

−
 

NxX

k=1

SkL
−1Mkmk

!T

c (3)

Finally we define A1 =
NxX

k=1

ST
k L−T MkL

−1Sk + λS and b =

NxX

k=1

SkL
−1Mkmk, and rewrite equation (3) in the lighter form

I2(c) = 1
2c

T A1c − bT c. A similar derivation yields J2(c) =

1
2c

T A2c − bT c, with A2 =
NxX

k=1

ST
k L−T MkL

−1Sk + λG. Next,

we propose a minimization scheme for these quadratic functionals.

4. CONJUGATE GRADIENT ALGORITHM

It is important to notice that the matrices A1 and A2 are symmet-
ric definite positive. As a consequence, we can apply the conju-
gate gradient algorithm (CG) to perform the minimization. To be
specific, we will write the algorithm applied to the minimization of
J2(c) = 1

2c
T A2c − bT c for instance. c0 given (initial guess)

Compute r0 = b − A2c0, w1 = r0 and α1 =
rT
0 w1

wT
1 A2w1

For n=1,2,3,...
rn = rn−1 − αnA2wn, if ‖rn‖

‖b‖ <tol, stop.

βn = − rT
nA2wn

wT
n A2wn

wn+1 = rn + βnwn

αn+1 =
rT

nwn+1

wT
n+1A2wn+1

cn+1 = cn + αn+1wn+1

end

In this algorithm, we repeatedly have to perform matrix-vector
products with the matrix A2. That is, given a vector v, we have to
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evaluate :

A2v =
NxX

k=1

ST
k L−T MkL

−1Skv + λGv

This expression involves multiplications by L−1. A feature of our al-
gorithm is that we do not evaluate these products explicitly. Instead,
we compute x = L−1y by solving the linear system Lx = y also
using CG. Because L is a sparse symmetric definite positive matrix,
we can show that this algorithm is faster than storing L−1 (which is
a full matrix) and computing L−1y explicitly.

5. SPARSITY

We now tackle the case p = 1. We focus on the functional J1(c), but
a similar reasoning can be made on I1(c), as well as more generally
on Ip(c) and Jp(c). First, we approximate the regularization term in
J1(c) using Gauss quadrature :

Z

Ω

‖∇c(x)‖2 dx ≈
X

e∈E

ωe ‖∇c(xe)‖2

where E is the set of elements, xe, e ∈ E are fixed quadrature
points and ωe, e ∈ E are quadrature weights. Second, we write
∇ch(x) = D(x)c, with

D(x) =

„
∂x1φ1(x) · · · ∂x1φN (x)
∂x2φ1(x) · · · ∂x2φN (x)

«

Combining both, J1(c) is discretized as follows :

J1(c) =
1
2

NxX

k=1

‚‚L−1Skc − mk

‚‚2

Mk
+
λ
2

X

e∈E

ωe ‖D(xe)c‖2

Among all the possible ways to evaluate the minimum of J1(c)
we chose the iterative reweighted least-squares algorithm [4]. It is
an empirical algorithm, and the intuitive idea behind it is simply to
rewrite

X

e∈E

ωe ‖D(xe)c‖2 =
X

e∈E

ωe ‖D(xe)c‖−1
2 ‖D(xe)c‖2

2

Thus, if the n-th iterate c(n) lies close to the minimum, we have :
X

e∈E

ωe

‚‚‚D(xe)c
(n)
‚‚‚

2
≈
X

e∈E

ωe

‚‚‚D(xe)c
(n−1)

‚‚‚
−1

2

‚‚‚D(xe)c
(n)
‚‚‚

2

2

Thanks to this weighting procedure we are back with a quadratic
functional to minimize, which is readily done using the tools out-
lined in the previous section. Note that the number of quadrature
points per element must be adapted to the interpolation scheme used
(in our case, one point per element of the triangular mesh).

6. RESULTS

The numerical framework presented above has been implemented
and tested in 2D. Here, we present results obtained for a homo-
geneous disk geometry (µa = 0.035cm−1 and µs = 1.55cm−1).
Measurements were generated by simulation, and poisson noise was
added. Simulated intensities were adjusted to match the intensities
of real measurements so as to obtain a realistic noise level of the
poisson noise. The diffusion and absorption constants were assumed

to be known, but no other a priori knowledge was incorporated in
the reconstruction algorithm. The measurement geometry is the one
described in the introduction, i.e. trans-illumination. Recall that
we only have access to measurements on one side of the boundary.
The mesh used in these results is a triangulation composed of 435
elements. Figure 1 presents results for two extended sources. The
results obtained with TV (cases (d) and (f)) are more accurate than
with quadratic regularization (cases (c) and (e)). When the regular-
ization parameter is set to a high value, the quadratic algorithm tends
to locate the sources close to the boundary of the domain. Another
problem of the quadratic regularization is that the source intensities
are underestimated. These issues are overcome by the sparsity con-
straints. We also notice that the ”sparse” algorithm is less sensitive
to the regularization parameter. Although (c) is a worse initial guess
that (e), the TV algorithm is still able to recover position and inten-
sity of the sources. Also note that pure sparsity (case (b)) performs
as well as TV in that particular case.

7. COMPUTATIONAL COST

Here we compare the cost of the proposed linear method (for
quadratic regularizor) to the cost of a direct method. We consider
a 2D problem with n discretization cells per direction, resulting in
a total of n2 unknowns. Since we have a problem of size n2, CG
needs at most n2 iterations to minimize the functional (remember
that the size of the implicit system matrix is n2). At every iteration,
CG has to evaluate a matrix-vector multiplication which requires to
solve two linear systems involving the matrix L as we saw in Section
4. The matrix L derives from the discretization of the PDE (2); it
is possible to prove that CG solves the corresponding linear system
in O(n3) for a 2D problem with n2 unknowns. Overall, the cost
of the algorithm is O(n2) iterations each with cost O(n3), which
yields O(n5). If we express the cost in terms of the total number of
unknowns N = n2 we obtain O(N5/2). On the other hand, the cost
of a direct method (commonly used) is O(N3), so we already see a
gain. For real life 3D problems the gain is even more important. The
same analysis yields O(N7/3) for the proposed method compared
to O(N3) for a direct method.

8. CONCLUSION

We have demonstrated an efficient FEM strategy for fDOT that can
adapt to a wide spectrum of regularization policies. Due to its re-
duced computational demands, it is potentially applicable to larger
size problems than what can be afforded using conventional direct
algorithms. This is especially valuable for 3D applications. Future
work include the validation of that technique using actual phantom
data, and the implementation of a full 3D system.
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(a) Ground truth (c) Quadratic (J2(c), λ = 10−3) (e) Quadratic (J2(c), λ = 10−5)
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(b) Sparse (I1(c), λ = 10−5) (d) TV (J1(c), λ = 10−3) (f) TV (J1(c), λ = 10−5)

Fig. 1. Reconstruction of two fluorescent sources

!"4


