Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Lp Regularization
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

An Efficient Numerical Method for General Lp Regularization in Fluorescence Molecular Tomography

J.-C. Baritaux, K. Hassler, M. Unser

IEEE Transactions on Medical Imaging, vol. 29, no. 4, pp. 1075-1087, April 2010.


Reconstruction algorithms for fluorescence tomography have to address two crucial issues : 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm that incorporates general Lp regularization (p ≥ 1). The originality of this work lies in the application of general Lp constraints to fluorescence tomography, combined with an efficient matrix-free strategy that enables the algorithm to deal with large reconstruction problems at reduced memory and computational costs. In the experimental part, we specialize the application of the algorithm to the case of sparsity promoting constraints (L1). We validate the adequacy of L1 regularization for the investigation of phenomena that are well described by a sparse model, using data acquired during phantom experiments.

@ARTICLE(http://bigwww.epfl.ch/publications/baritaux1002.html,
AUTHOR="Baritaux, J.-C. and Hassler, K. and Unser, M.",
TITLE="An Efficient Numerical Method for General $L_{p}$ Regularization
	in Fluorescence Molecular Tomography",
JOURNAL="{IEEE} Transactions on Medical Imaging",
YEAR="2010",
volume="29",
number="4",
pages="1075--1087",
month="April",
note="")

© 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved