Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Bayesian Inversion
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Bayesian Inversion for Nonlinear Imaging Models Using Deep Generative Priors

P. Bohra, T.-a. Pham, J. Dong, M. Unser

IEEE Transactions on Computational Imaging, vol. 8, pp. 1237-1249, 2022.


Most modern imaging systems incorporate a computational pipeline to infer the image of interest from acquired measurements. The Bayesian approach to solve such ill-posed inverse problems involves the characterization of the posterior distribution of the image. It depends on the model of the imaging system and on prior knowledge on the image of interest. In this work, we present a Bayesian reconstruction framework for nonlinear imaging models where we specify the prior knowledge on the image through a deep generative model. We develop a tractable posterior-sampling scheme based on the Metropolis-adjusted Langevin algorithm for the class of nonlinear inverse problems where the forward model has a neural-network-like structure. This class includes most practical imaging modalities. We introduce the notion of augmented deep generative priors in order to suitably handle the recovery of quantitative images. We illustrate the advantages of our framework by applying it to two nonlinear imaging modalities—phase retrieval and optical diffraction tomography.

@ARTICLE(http://bigwww.epfl.ch/publications/bohra2201.html,
AUTHOR="Bohra, P. and Pham, T.-a. and Dong, J. and Unser, M.",
TITLE="Bayesian Inversion for Nonlinear Imaging Models Using Deep
	Generative Priors",
JOURNAL="{IEEE} Transactions on Computational Imaging",
YEAR="2022",
volume="8",
number="",
pages="1237--1249",
month="",
note="")

© 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved