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Abstract
Fourier ptychography (FP) involves the acquisition of several low-resolution
intensity images of a sample under varying illumination angles. They are then
combined into a high-resolution complex-valued image by solving a phase-
retrieval problem. The objective in dynamic FP is to obtain a sequence of
high-resolution images of a moving sample. There, the application of standard
frame-by-frame reconstruction methods limits the temporal resolution due to
the large number of measurements that must be acquired for each frame. In this
work instead, we propose a neural-network-based reconstruction framework
for dynamic FP. Specifically, each reconstructed image in the sequence is the
output of a shared deep convolutional network fed with an input vector that
lies on a one-dimensional manifold that encodes time. We then optimize the
parameters of the network to fit the acquired measurements. The architecture
of the network and the constraints on the input vectors impose a spatiotemporal
regularization on the sequence of images. This enables our method to achieve
high temporal resolution without compromising the spatial resolution. The
proposed framework does not require training data. It also recovers the pupil

4 These authors contributed equally to this paper.
∗

Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1361-6420/23/064005+23$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6420/acca72
https://orcid.org/0000-0002-2611-3834
https://orcid.org/0000-0001-6231-2569
mailto:pakshal.bohra@epfl.ch
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/acca72&domain=pdf&date_stamp=2023-5-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Inverse Problems 39 (2023) 064005 P Bohra et al

function of the microscope. Through numerical experiments, we show that our
framework paves the way for high-quality ultrafast FP.

Supplementary material for this article is available online

Keywords: Fourier ptychography, dynamic imaging, regularization,
neural networks

(Some figures may appear in colour only in the online journal)

1. Introduction

In Fourier ptychography (FP) [1], hundreds of low-resolution intensity images are acquired by
illuminating the object of interest with a coherent light source with varying incidence angles.
This task is typically performed using a LED array and a microscope with a low numerical
aperture (NA) objective lens, which makes FP a low-cost and label-free imaging modality. The
collection of measurements is then algorithmically combined into a high-resolution complex-
valued image of the sample over a large field of view. Thus, FP has a high space-bandwidth
product.

Building upon the pioneering work of Zheng et al [1], the capabilities of FP have been
extended in a variety of ways by improving the optical acquisition setup. For instance, in [2,
3], the sequence of illuminations is optimized via an importance metric and neural networks,
respectively. Multiplexed FP is introduced in [4], where one illuminates the sample with mul-
tiple LEDs and is able to reduce the number of measurements. Further, optimal combinations
of LEDs are studied in [3, 5–7].

There have also been several improvements on the computational side for FP. At its core,
the reconstruction process involves the solution of a phase-retrieval (PR) problem—the recov-
ery of phase information from intensity measurements. In [1], this task is performed by using
the iterative Gerchberg–Saxton (GS) algorithm [8]. As PR is a non-convex problem, the solu-
tion obtained by GS depends on the starting point. This problem of initialization is tackled in
[9]. In [10–12], PR is formulated as a convex optimization problem with the help of a lifting
scheme. However, this elegant approach comes at the cost of a large computational burden. As
the acquired measurements are typically corrupted by noise, maximum-likelihood estimation
offers an adequate framework for one to incorporate the noise statistics [13]. The resulting
optimization problems are solved efficiently by gradient-based or higher-order methods [14,
15]. A thorough comparative study of different methods for PR can be found in [16]. In addi-
tion to solving the PR problem, algorithms that include the estimation of the pupil function of
the microscope [17] and correction of the LED positions [18, 19] have also been proposed.

While FP has matured into a versatile modality with numerous applications [20], high-
quality high-speed imaging remains a challenge. The temporal resolution in FP is inherently
limited by the large number of measurements that need to be acquired in order to reconstruct
the high-resolution image of the sample. To alleviate this problem, ad hoc acquisition setups
[5, 6, 21] have been devised. They allow one to obtain a higher temporal resolution without a
significant deterioration of the spatial resolution. Alternatively, there has been a lot of interest
in the development of sophisticated computational methods to solve the PR problem with only
a few measurements. In such ill-posed scenarios, regularization techniques can be used to
incorporate some prior knowledge about the sample of interest. These are typically applied by
formulating PR as an optimization problemwhere the cost functional consists of a data-fidelity
term and a regularization term. The data-fidelity term ensures that the solution is consistent
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with the observed data while the regularization promotes solutions with the desired properties.
For example, the popular total-variation (TV) regularization [22] favors piecewise-constant
images and has been adapted for FP in several works [23–26]. Group-sparsity-based priors
have been successfully deployed in FP as well [27]. An online plug-and-play approach for FP
has also been proposed in [28], where sophisticated denoisers such as BM3D [29] are used for
(implicit) regularization.

Over the past few years, deep-learning-based methods have yielded impressive results, out-
performing themodel-based regularizedmethods in a variety of imagingmodalities, especially
in ill-posed settings [30, 31]. In the context of FP, deep neural networks have been trained in
a supervised manner as nonlinear mappings that take the low-resolution measurements and
output the high-resolution image of interest [32–34]. Further, in [35, 36], pre-trained deep
generative priors are used to solve the PR problem. For more details regarding FP, we refer
the reader to recent comprehensive reviews [20, 37].

In dynamic FP, when it is desired to image a moving sample, the computational methods
described above must be applied in a frame-by-frame manner to obtain the sequence of high-
resolution images, without accounting for the temporal dependencies in the measurements.
Yet, one can decrease the number of measurements required per frame (thus increasing the
effective imaging speed) by exploiting the temporal correlations in the sequence of images to
be recovered. Based on this idea, the concept of low-rank FP is introduced in [38], where a
low-rank constraint is enforced on the matrix formed by stacking the (vectorized) images.

1.1. Contributions

In this work, we propose a novel computational framework for dynamic FP. Inspired by the
method developed in [39] for dynamic magnetic resonance imaging, we use a deep neural
network (deep prior) to impose a spatiotemporal regularization on the sequence of complex-
valued images to be recovered. More specifically, we parameterize each image in the sequence
as the output of a single convolutional network corresponding to some fixed latent input vec-
tor. These input vectors are chosen to lie on a one-dimensional manifold. The parameters of
the network are then optimized such that the generated images collectively fit the acquired
measurements under the action of the specified forward model. The architecture of the gener-
ative network imposes an implicit spatial prior on the images while the constraints on the input
latent vectors allow the network to associate their proximity with temporal variations in the
sequence. Our method does not require any training data. It also estimates the pupil function
together with the complex-valued images, which means it can be readily applied for differ-
ent settings. We assess the performance of our framework on simulated data with a single
measured low-resolution image per reconstructed frame and show that it paves the way for
high-quality ultrafast FP.

The paper is organized as follows. In section 2, we describe a continuous-domain physical
model for FP along with its computationally efficient discretization. We present the proposed
reconstruction framework in section 3 and the experimental results in section 4.

2. Physical model

In this section, we first formulate the physical model that relates the acquired measurements
and the sample of interest in the continuous domain. Then, we present a discretized version of
the forward model that can be implemented in a computationally efficient manner.
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Figure 1. Acquisition setup of Fourier ptychography.

2.1. Continuous-domain formulation

The optical system in FP usually involves an array of L LEDs (see figure 1), where the lth
LED illuminates the specimen with a tilted plane wave with wave vector kl ∈ R2 (l ∈ L=
{1,2, . . . ,L}) and wavelength λ> 0. In this work, we consider the case where only one LED
is turned on for each measured image. However, our framework is also compatible with more
sophisticated acquisition settings [4].

We model the sample of interest as a 2D complex object, which is a valid assumption
for thin samples. Therefore, we can represent the moving sample as a complex-valued func-
tion x : ΩX ×R⩾0 → C, where ΩX ⊂ R2 includes the region of interest of the sample. Let
{tq}Qq=1 be the uniformly-spaced timestamps, with spacing ∆t, at which we are interested
in observing the sample. We assume that the sample moves very slowly in the intervals
{Tq = [tq−∆t/2, tq+∆t/2]}Qq=1. Thus, during Tq, we can acquire multiple measurements
{yq,w : ΩY → R}Ww=1, where W⩽ L and where ΩY ⊂ R2 includes the support of the measure-
ment, of the object x(·, tq). Here, the tradeoff between the temporal resolution and the spatial
resolution can be understood in terms of ∆t and W: a small value of ∆t (high temporal resol-
ution) implies a small value of W, which yields a low spatial resolution.

Let Iq ⊂ L, where q ∈ {1,2, . . . ,Q}, be the set of LEDs that are switched on during Tq; the
cardinality of this set is |Iq|=W. Further, for w ∈ {1,2, . . . ,W}, we introduce lq,w = Iq(w) ∈
L to denote the wth entry of Iq. The measurement image yq,w is obtained when x(·, tq) is
illuminated by the lq,wth LEDwith the tilted plane wave r 7→ ej⟨klq,w ,r⟩. Asmentioned in [4, 16],
it is given by

yq,w(r) =
∣∣F−1

{
p̂(k)F

{
x(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r)
∣∣2

=
∣∣F−1

{
p̂(k)x̂(k−klq,w , tq)

}
(r)
∣∣2. (1)

Here, the operators F and F−1 denote the Fourier transform and its inverse, respectively,
k ∈ R2 is the 2D spatial frequency variable, and the quantity x̂(k, tq) denotes the Fourier
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transform of x(r, tq). The pupil function5 p̂ : R2 → C models the pupil aperture and is com-
pactly supported on a disk of radius 2π NA

λ , where NA is the numerical aperture of the system,
thus cutting off high frequencies.

2.2. Camera sampling

In practice, the camera in the acquisition setup samples yq,w on a uniform grid with stepsize
∆ and records a discrete image ỹimq,w of size6 (M×M) such that

ỹimq,w = Noise(yimq,w), (2)

where the (M×M) image yimq,w is the sampled version of yq,w given by

yimq,w[m1,m2] = yq,w
(
(m1 −M/2)∆,(m2 −M/2)∆

)
(3)

for m1 = 0, . . . ,(M− 1) and m2 = 0, . . . ,(M− 1), and the operator Noise(·) models the cor-
ruption of yimq,w by noise. Consider the quantity

uq,w(r) = F−1
{
p̂(k)F

{
x(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r). (4)

Due to the compact support of the pupil function p̂, the maximum angular frequency of uq,w
is 2π NA

λ . Note that the Fourier transform of yq,w can be written as

F {yq,w}(k) = F
{
|uq,w|2

}
(k) =

(
û∨q,w ∗ ûq,w

)
(k), (5)

where û∨q,w denotes the complex conjugate of û∨q,w which is given by û∨q,w(k) = ûq,w(−k), and
∗ denotes the convolution operation. Thus, the maximum angular frequency of yq,w is 4πNA

λ .
Consequently, the Nyquist criterion dictates that the sampling step ∆ of the camera should
satisfy

∆⩽ λ

4NA
. (6)

2.3. Discretized forward model

In this work, we obtain a discrete version ximq of x(r, tq) by sampling it on a uniform (N×N)
grid with pixel-size∆r, as

ximq [n1,n2] = x
(
(n1 −N/2)∆r,(n2 −N/2)∆r, tq

)
(7)

for n1 = 0, . . . ,(N− 1) and n2 = 0, . . . ,(N− 1). The image size is given by N= rpM, where
rp =∆/∆r ∈ N is the upsampling factor. Now, consider the 2D discrete Fourier transform
(DFT) of ximq . The corresponding pixel size in the Fourier domain (or angular frequency res-
olution) is ∆k = 2π/N∆r. Thus, we discretize the pupil function such that

p̂im[k1,k2] = p̂
(
(k1 −M/2)∆k,(k2 −M/2)∆k

)
(8)

for k1 = 0, . . . ,(M− 1) and k2 = 0, . . . ,(M− 1). Note that the choice of ∆ and ∆k ensures
that the support of the pupil function lies within the (M×M) sampling grid for p̂. Moreover,

5 The pupil function p̂ is described directly in the Fourier domain.
6 We consider square even-sized images for the sake of simplicity.
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in our discretization scheme, we assume that the wave vector klq,w can be written as klq,w =
(blq,w,1∆k,blq,w,2∆k), where blq,w,1,blq,w,2 ∈ Z.

We now introduce some additional notations to specify the discrete forward model. Let
ỹq,w ∈ RM2

, yq,w ∈ RM2
, xq ∈ CN2

, and p̂ ∈ CM2
be the vectorized versions of ỹimq,w, y

im
q,w, x

im
q ,

and p̂im, respectively. Then, letFQ,F
−1
Q ∈ CQ2×Q2

bematrices that represent the 2DDFT and its

inverse of a (Q×Q) image, respectively. Next, we define diag(p̂) ∈ CM2×M2
to be a diagonal

matrix whose entries are the values in p̂. Finally,Cklq,w is a boolean matrix that restricts an N2-
dimensional vector to an M2-dimensional vector depending on the illumination wave vector
klq,w .

Proposition 1. The discrete counterpart of (1) can be computed as

yq,w = |Hlq,wxq|2 =
∣∣∣4π2

r2p
F−1
M diag(p̂)Cklq,wFNxq

∣∣∣2. (9)

Proof. Consider the quantity

uq,w(r) = F−1
{
p̂(k)F

{
x(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r)

=

ˆ
R2

p̂(k)ej⟨k,r⟩
(ˆ

R2

x(s, tq)e−j⟨k−klq,w ,s⟩ds

)
dk. (10)

We discretize the integrals in (10) using Riemann sums. A step-size ∆k is used for the
integral with respect to k and a step-size ∆r is used for the integral with respect to s.
The samples uimq,w[m1,m2] = uq,w

(
(m1 −M/2)∆,(m2 −M/2)∆

)
for m1 = 0, . . . ,(M− 1) and

m2 = 0, . . . ,(M− 1), are then given by

uimq,w[m1,m2] = (∆k∆r)
2
M−1∑
k1=0

M−1∑
k2=0

(
p̂
(
(k1 −M/2)∆k,(k2 −M/2)∆k

)︸ ︷︷ ︸
p̂im[k1,k2]

× ej(k1−M/2)(m1−M/2)∆k∆ ej(k2−M/2)(m2−M/2)∆k∆ aq,w[k1,k2]
)
, (11)

where

aq,w[k1,k2] =
N−1∑
n1=0

N−1∑
n2=0

(
x
(
(n1 −N/2)∆r,(n2 −N/2)∆r, tq

)︸ ︷︷ ︸
ximq [n1,n2]

× e−j(k1−blq,w,1−M/2)(n1−N/2)∆k∆r e−j(k2−blq,w,2−M/2)(n2−N/2)∆k∆r

)
. (12)

The limits in the sums in (11) and (12) are dictated by the supports of p̂ and x(r, tq), respectively.
By rearranging some terms and using the fact that ∆k∆r = 2π/N, we rewrite (12) as

aq,w[k1,k2] =

(
N−1∑
n1=0

N−1∑
n2=0

ximq [n1,n2] e
−j 2πN (k1−blq,w,1−M/2)n1 e−j 2πN (k2−blq,w,2−M/2)n2

︸ ︷︷ ︸
x̂imq [k1−blq,w,1−M/2,k2−blq,w,2−M/2]

)

× ejπ (k1−blq,w,1−M/2) ejπ (k2−blq,w,2−M/2), (13)

6
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where x̂imq is the (N,N)-point DFT of ximq and the shifts in the DFT are applied in a circular
manner. On plugging (13) into (11), we get that

uimq,w[m1,m2] = (2π/N)2
M−1∑
k1=0

M−1∑
k2=0

(
p̂im[k1,k2] x̂imq [k1 − blq,w,1 −M/2,k2 − blq,w,2 −M/2]

× ej(k1−M/2)(m1−M/2)∆k∆ ej(k2−M/2)(m2−M/2)∆k∆

× ejπ (k1−blq,w,1−M/2) ejπ (k2−blq,w,2−M/2)

)
. (14)

Next, we group all the exponential terms involving k1 and k2 and use∆k∆= 2π/M to obtain
that

uimq,w[m1,m2] = (2π/N)2
(

M−1∑
k1=0

M−1∑
k2=0

p̂im[k1,k2] x̂imq [k1 − blq,w,1 −M/2,k2 − blq,w,2 −M/2]

× ej
2π
M k1m1 ej

2π
M k2m2

)
× e−jπ (m1+blq,w,1) e−jπ (m2+blq,w,2). (15)

Let gimq,w be the (M,M)-point inverse discrete Fourier transform (IDFT) of ĝimq,w[k1,k2] =
p̂im[k1,k2] x̂imq [k1 − blq,w,1 −M/2,k2 − blq,w,2 −M/2]. Then, the discrete measurements can be
expressed as

yimq,w[m1,m2] =
∣∣uimq,w[m1,m2]

∣∣2 = ∣∣(4π2/r2p) g
im
q,w[m1,m2]

∣∣2. (16)

Note that the computation of gimq,w involves taking the (N,N)-point DFT of ximq , (circularly)
shifting it according to the wave vector klq,w , restricting the shifted DFT to an (M×M) image,
performing pointwise multiplication with p̂im, and then taking the (M,M)-point IDFT. This
allows us to write (16) in vectorized form as in the right-hand side of (9).

While the discrete forward model (9) has previously been used in works such as [16], to
the best of our knowledge, a systematic derivation of (9) from the continuous model (1) has
not been presented in the literature.

3. Reconstruction framework

The goal in dynamic FP is to reconstruct the images {xq ∈ CN2}Qq=1 from the recorded meas-

urements {{ỹq,w ∈ RM2}Ww=1}
Q
q=1. We first present our neural-network-based framework for

the case of a well-characterized pupil function. Then, we describe a way to incorporate the
recovery of the pupil function into our reconstruction algorithm.

3.1. Deep spatiotemporal priors

The concept of using untrained convolutional neural networks (CNNs) as regularization for
solving inverse problems was first introduced in [40] under the name ‘deep image prior’
(DIP). There, the image of interest is represented as the output of a CNN with adjustable
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Figure 2. Spatiotemporal regularization using the generative neural network fθ .

parameters and some fixed input. It is then shown that the fitting of the network to the meas-
urements yields high-quality image reconstructions for several applications such as denois-
ing, superresolution, and inpainting. This is attributed to the observation that CNNs have a
remarkable tendency to favor natural-looking images (‘good’ solutions) over noisy ones (‘bad’
solutions). In some scenarios, DIP is deployed with early stopping as deep networks have the
capacity to fit noise. In other words, there is a point beyond which running the optimiza-
tion process for more iterations degrades the quality of the reconstruction. Thus, the architec-
ture of a CNN (and the optimization procedure) can be used as an implicit prior for natural
images.

In our reconstruction framework, we propose to use an extended version of DIP to impose
spatiotemporal regularization on the sequence of images. We parameterize each of the Q
images as the output of a single CNN fθ : RN2

z → CN2
, with adjustable parameters θ ∈ RP,

applied to some fixed input latent vector zq ∈ RN2
z , q= 1, . . . ,Q. We choose these latent vec-

tors such that they lie on a straight line, in accordance with

zq = z1 +
q− 1
Q− 1

(zQ− z1) , q= 1, . . . ,Q, (17)

where the end-points z1,zQ are fixed beforehand (for example, by drawing two samples from
some multivariate probability distribution). We then optimize the parameters of the network
to fit the measurements according to

θ∗ ∈ arg min
θ∈RP

Q∑
q=1

W∑
w=1

D
(
ỹq,w, |Hlq,wfθ(zq)|2

)
, (18)

where D : RM2 ×RM2 → R+ is the data-fidelity term and the reconstructed sequence is
{x∗q}

Q
q=1 = {fθ∗(zq)}Qq=1. The rationale behind our choice of the latent vectors is to allow

the CNN to associate the spatial proximity between them with the temporal proximity of the
images. In this manner, the architecture of the network imposes spatial regularization while
the use of a shared network for all images and the design of the latent space impose temporal
regularization. A schematic illustration of our framework is given in figure 2.

8
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Algorithm 1. Initialization of network parameters.

Input: Low-quality reconstructions {x̃q}Qq=1, latent vectors {zq}
Q
q=1, batch size BQ, tolerance ϵtol,

maximum number of iterations nmax.
Randomly initialize θ
Lbatch←+∞, i ← 0
while Lbatch > ϵtol do

Randomly sample a batchQ of size BQ from {1,2, . . . ,Q}
Compute Lbatch(θ) =

∑
q∈Q

(∥∥|x̃q| − |fθ(zq)|∥∥1
+
∥∥arg(x̃q)− arg

(
fθ(zq)

)∥∥
1

)
Update θ with gradient ∇θLbatch(θ)
i ← i + 1
if i > nmax then

Exit the while loop
end if

end while
Output: Network parameters θ

3.2. Optimization strategy

The relation between the measurements and the underlying images is nonlinear, which makes
the inverse problem very challenging. The fact that only one LED is switched on for each
measurement further adds to the difficulty. Thus, in order to avoid bad local minima while
solving the optimization problem in (18), we initialize the parameters of the network according
to

θ̃ ∈ arg min
θ∈RP

Q∑
q=1

(∥∥|x̃q| − |fθ(zq)|
∥∥
1
+
∥∥arg(x̃q)− arg

(
fθ(zq)

)∥∥
1

)
, (19)

where {x̃q}Qq=1 are low-quality reconstructions obtained via a standard frame-by-frame
method. The magnitude | · | and phase arg(·) operations in (19) are applied component-wise.
We can solve (19) using off-the-shelf minibatch stochastic gradient-descent algorithms. How-
ever, it is not desirable to run these algorithms till convergence as the network then overfits the
artifacts present in the low-quality reconstructions. Thus, in our initialization routine, which
is described in algorithm 1, we deploy early stopping by choosing suitable values for the tol-
erance ϵtol and the maximum number of iterations nmax (see section 4.2.3 for details).

After the initialization, we can solve (18) using again some minibatch stochastic gradient-
descent algorithm. In some cases (for example, when the measurements are corrupted by a
non-negligible amount of noise), running the optimization process beyond a certain number
of iterations leads to deterioration of the reconstruction quality as the network begins to overfit
the measurements. Thus, we also adopt early stopping when necessary.

For both the initialization and reconstruction tasks, we use (minibatch) stochastic gradient-
descent algorithms instead of deterministic ones. This introduces additional hyperparamet-
ers (batch sizes) that must be set appropriately. However, stochastic methods with small
batch sizes require much less memory than the deterministic ones. In fact, if the number of
frames Q is large, applying a deterministic gradient-descent method is infeasible. Further,
such stochastic methods are also more likely to escape bad local minima and thus reach better
solutions. Indeed, in our experiments, we observed that using reasonably small batch sizes
(BQ = 10) led to better reconstructions than using large batch sizes (BQ = 40).

9
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Algorithm 2. Joint recovery of dynamic sample and pupil function.

Input: Measurements {{ỹq,w}Ww=1}
Q
q=1, LED indices {{lq,w}Ww=1}

Q
q=1, latent vectors {zq}

Q
q=1, initial

network parameters θ̃, initial Zernike coefficients c̃, batch sizes {BW,BQ}, number of epochs nep.
θ← θ̃, c← c̃
nW← ⌊ WBW ⌋, nQ← ⌊

Q
BQ
⌋

for nep epochs do
for nW iterations do

Randomly sample a batchW of size BW from {1,2, . . . ,W}
for nQ iterations do

Randomly sample a batchQ of size BQ from {1,2, . . . ,Q}
Compute the loss Lbatch(θ,c) =

∑
q∈Q

∑
w∈WD

(
ỹq,w, |Hlq,w(c)fθ(zq)|2

)
Update θ with gradient ∇θLbatch(θ,c)
Update c with gradient∇cLbatch(θ,c)

end for
end for

end for
Output: Reconstructed images {fθ(zq)}Qq=1, Zernike coefficients c

3.3. Recovery of the pupil function

So far, we have assumed complete knowledge of the pupil function in our reconstruction frame-
work. However, the pupil function is typically not well-characterized in FP. Thus, similar to
the work in [17, 26], we estimate it along with the sequence of images.

Following [26], we use Zernike polynomials to represent the pupil function with only a few
parameters (�M2). These functions are orthogonal on the unit circle and are often used in
optics for modeling aberrations. We express the pupil function in polar coordinates (ρ,ϕ) as

p̂(ρ,ϕ) =

 exp

(
j
A∑

a=1
caZa

(
ρλ

2πNA ,ϕ
))

, ρ⩽ 2πNA
λ

0, otherwise,
(20)

where Za is the ath Zernike polynomial according to Noll’s sequential indices (refer to
appendix for details) and c= (ca)Aa=1 ∈ RA (A�M2) contains the Zernike coefficients. The
pupil function is discretized as in (8) by evaluating (20) on the required Cartesian grid. We
denote the vectorized discrete pupil function by p̂(c) ∈ RM2

to explicitly indicate the depend-
ence on the Zernike coefficients. Similarly, our forward model (9) is then written as

yq,w = |Hlq,w(c)xq|2 =
∣∣∣4π2

r2p
F−1
M diag(p̂(c))Cklq,wFNxq

∣∣∣2. (21)

Finally, the optimization problem for the joint recovery of the pupil function and the sequence
of images is

(θ∗,c∗) ∈ arg min
θ∈RP,c∈RA

Q∑
q=1

W∑
w=1

D
(
ỹq,w, |Hlq,w(c)fθ(zq)|2

)
, (22)

where D : RM2 ×RM2 → R+ is the data-fidelity term. We can solve (22) using a minibatch
stochastic gradient-descent algorithm coupled with early stopping if required. Our complete
reconstruction algorithm is summarized in algorithm 2.

10
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4. Numerical results

4.1. Simulated setup

We demonstrate the advantages of our reconstruction method on simulated data. We consider
an FP setup consisting of L= 100 LEDs arranged in a (10× 10) uniform grid with a spacing
of dL = 4mm. The maximum illumination NA of the LED array, which is placed at distance
h= 90.88mm from the sample, is 0.27. The LEDs emit light with wavelengthλ= 532nm. The
NA of the objective is NA= 0.1. We have chosen these values of dL,h,λ and NA based on the
experimental setup in [20]. The pupil function is defined according to (20) using the first nine
Zernike polynomials with coefficients c= (0,0.15,0.3,−0.1,0.2,0,0,0,0) ∈ R9. We take the
low-resolution measurements acquired by the camera to be of size (64× 64) with pixel-size
∆= λ

4NA = 1.33µm and we set the oversampling ratio as rp = 4. Consequently, the pixel size
for the high-resolution image is ∆r = 332.5nm and the step-size for discretizing the pupil
function is ∆k = 0.074µm−1. The LED array and the pupil function are shown in figure 3.

Our ground truth is a sequence of complex-valued images {xq ∈ C2562}100q=1 of size (256×
256)which we created from experimental phase images7. We place ourselves in the extremely
challenging ultrafast regime where only one measurement is acquired for each image in the
sequence. For each measurement, a single LED of index8 lq is randomly activated and a low-

resolution image8 yq ∈ R642 is simulated according to (21). The recorded measurement image

ỹq ∈ R642 is then generated according to

ỹq = yq+nq, (23)

where nq ∈ R642 is a realization of a zero-meanGaussian randomvector with covariancematrix

Σq ∈ R642×642 . Specifically, we consider two settings for our simulations. In the first case,Σq

is the zero matrix, which means that the recorded measurements are noiseless. In the second

case, Σq is a diagonal matrix with entries
(
([yq]m)/1000

)642
m=1

. There, (23) corresponds to a
Gaussian approximation of the Poisson noise model with a photon budget of 1000.

We show some of the frames in the ground-truth sequence and the corresponding measure-
ments for both the settings (noiseless and noisy) in figure 4. The full sequences are provided
in the supplementary material.

4.2. Implementation of the deep spatiotemporal prior

In this subsection, we describe the implementation of our reconstruction method—the deep
spatiotemporal prior (DSTP).

4.2.1. Network architecture. It has been observed that the choice of the network architecture
can greatly affect the performance of DIP [40]. Therefore, the common practice when deploy-
ing DIP (or other related schemes), is to select the architecture in an empirical trial-and-error
manner for the specific task at hand. For our experiments, inspired by [39], we adopt a con-
volutional decoder-like architecture for fθ, which, as we demonstrate in sections 4.5 and 4.6,

7 The experimental phase images are from [41] and are available at http://celltrackingchallenge.net/2d-datasets/.
8 We have dropped the index w as W= 1.
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Figure 3. Simulated FP setup. Panel (A): LED array. Panel (B): Pupil function.

yields high-quality reconstructions. It takes a low-dimensional input vector z ∈ R82 and outputs
a complex-valued (vectorized) image fθ(z) ∈ C2562 . The architectural details are described in
table 1. In particular, the complex-valued image is generated from a pair of magnitude and
phase images. The initial part of the network creates feature maps of size (128× 256× 256).
These are then fed into both the magnitude and phase branches of the network. The magnitude
branch consists of a convolutional layer followed by the pointwise differentiable rectified lin-
ear unit (DReLU) activation function, which we define as

DReLU(x) =

{
γ exp( xγ − 1), x< γ

x, otherwise,
(24)

where γ > 0 is set a priori. We use DReLU (with γ= 0.1) instead of ReLU to avoid the ‘dead-
neuron’ issue during the first few iterations of the optimization, while ensuring that the mag-
nitude is positive. Meanwhile, the phase branch consists of a convolutional layer followed by
the π tanh nonlinearity to constrain the phase to lie within the range [−π,π].

12
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Figure 4. First and second row: frames of the ground-truth sequence (amplitude and
phase). Third and fourth row: corresponding low-resolution measurements (noiseless
and noisy, normalized for visualization). The signal-to-noise ratios for the noisy meas-
urements, computed as 20 log10

∥yq∥2

∥yq−ỹq∥2
, are indicated at the bottom right corners of the

measurement images. Scale bar: 10µm.

4.2.2. Latent vectors. As mentioned in section 3.1, the latent vectors {zq ∈ R82}100q=1 are
chosen such that they lie on the straight line defined in (17). We fix the end-points z1,z100
of this line by drawing two samples from the standard multivariate normal distribution in 82

dimensions.

4.2.3. Initialization. In all our experiments, we initialize the parameters of the network using
reconstructions obtained from the GS algorithm (briefly described in section 4.3). We run
algorithm 1 using the AMSGrad solver [42] with a learning rate of 10−3, batch size BQ = 10,
tolerance ϵtol = 0.1× (BQ× 2562) and maximum number of iterations nmax = 1000. We then
freeze the tunable parameters of the batch-normalization layers. For experiments involving the
estimation of the pupil function, we initialize the Zernike coefficients as c̃= 0.

We have observed that the initialization of the network parameters has an impact on the
reconstruction quality. For example, randomly initializing the parameters does not lead to sat-
isfactory results. However, initializing the network by simply fitting it to low-quality solutions
of the GS algorithm (along with early stopping to avoid overfitting the artifacts) allows us to
obtain excellent reconstructions (see sections 4.5 and 4.6).

13
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Table 1. Architecture of the network fθ . Size of input: (1× 82). Conv: convolutional
layer with (3× 3) kernels and reflective boundary conditions. BN: batch normalization
layer. Upsampling: nearest neighbor interpolation. The amplitude and phase branches
take the same input of size (128× 256× 256) and output the magnitude and phase
images of size (1× 256× 256), respectively. DReLU is described in (24). The combin-
ation layer generates a complex-valued image from the magnitude and phase images.
This network consists of 1628 546 learnable parameters.

Layers Output shape

Reshape 1× 8× 8
2 × (Conv + BN + ReLU) 128× 8× 8
Upsampling + 2 × (Conv + BN + ReLU) 128× 16× 16
Upsampling + 2 × (Conv + BN + ReLU) 128× 32× 32
Upsampling + 2 × (Conv + BN + ReLU) 128× 64× 64
Upsampling + 2 × (Conv + BN + ReLU) 128× 128× 128
Upsampling + 2 × (Conv + BN + ReLU) 128× 256× 256

Magnitude: Conv + DReLU 1× 256× 256
Phase: Conv + π tanh 1× 256× 256

Combination: Magnitude ⊙ejPhase 1× 256× 256
Reshape 1× 2562

4.2.4. Choice of the data-fidelity term. The data-fidelity term D(·, ·) in (18) and (22) meas-
ures the discrepancy between the observed and the simulated measurements. For optimization-
based FP reconstruction, it has been experimentally shown in [16] that a cost function of the
form

D(a,b) =
1
2

∥∥√a−
√
b
∥∥2
2
, (25)

where a,b ∈ RM2
, is robust and leads to better reconstructions than the popular mean-squared-

error cost function D(a,b) = 1
2

∥∥a−b
∥∥2
2
. In particular, the cost function in (25) has a gradient

similar to that of the Poisson-likelihood-based cost function, which suggests that it can also
handle Poisson-like noise well [16]. In our framework, we use the slightly modified version
of (25) given by

D(a,b) =
1
2

∥∥√a+ ϵ1−
√
b+ ϵ1

∥∥2
2
, (26)

where 1 ∈ RM2
is a vector with all entries equal to 1 and ϵ= 10−10 helps us avoid numerical

instabilities in the computation of the gradient.

Note. The details regarding the optimization process for (18) and (22) are provided in
sections 4.5 and 4.6.

4.3. Comparisons

We compare our proposed framework to the following methods.

4.3.1. GS algorithm. The GS algorithm [8] is a classical method for phase retrieval. Assum-
ing that the Zernike coefficient vector c is known, it aims at solving the feasibility problem

14
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x∗GS,q ∈
{
x : ỹq = |Hlq(c)x|2

}
(27)

for q= 1,2, . . . ,100, by alternately updating the image plane and the object plane. We refer
the reader to [8] for more details. When the pupil function is not well-characterized, we do not
incorporate its recovery within the GS algorithm. Instead, we solve (27) assuming an idealized
pupil function with no phase aberrations that corresponds to c= 0.

4.3.2. Data-consistency estimator (DC). Based on the work in [16], we consider a data-
consistency (DC) estimator thatminimizes the (slightlymodified) ‘amplitude-based’ cost func-
tion (26). For the joint recovery of the images and pupil function, it is given by

(
x∗DC,1, . . . ,x

∗
DC,100,c

∗
DC

)
∈ arg min

x1,...,x100,c

100∑
q=1

D
(
ỹq, |Hlq(c)xq|2

)
, (28)

where D(·, ·) is defined in (26).

4.3.3. Spatially total-variation-regularized estimator (STV). In our numerical simulations, we
also consider a regularized estimator where the cost function in (28) is augmented with spatial
anisotropic TV regularization for each frame. It is given by

(
x∗STV,1, . . . ,x

∗
STV,100,c

∗
STV

)
∈ arg min

x1,...,x100,c

100∑
q=1

(
D
(
ỹq, |Hlq(c)xq|2

)
+ τamp,q

∥∥L{|xq|}∥∥1 + τphase,q
∥∥L{arg(xq)}∥∥1), (29)

where the operator L : RN → R2N computes finite differences in both the directions for the
underlying image, and {τamp,q, τphase,q}100q=1 ⊂ R+ are hyperparameters that control the strength
of the regularization.

4.3.4. Spatiotemporally total-variation-regularized estimator (STTV). Finally, we also imple-
ment a spatiotemporally-regularized estimator where the cost function in (28) is augmented
with both spatial and temporal TV regularization. It is given by

(
x∗STTV,1, . . . ,x

∗
STTV,100,c

∗
STTV

)
∈ arg min

x1,...,x100,c

100∑
q=1

(
D
(
ỹq, |Hlq(c)xq|2

)
+ τamp,s

∥∥L{|xq|}∥∥1 + τphase,s
∥∥L{arg(xq)}∥∥1)

+
99∑

q ′=1

(
τamp,t

∥∥|xq ′+1| − |xq ′ |
∥∥
1

+ τphase,t
∥∥arg(xq ′+1)− arg(xq ′)

∥∥
1

)
, (30)

where L : RN → R2N is the finite-difference operator and {τamp,s, τphase,s, τamp,t, τphase,t} ⊂ R+

are the regularization hyperparameters.

15
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Table 2. Reconstruction from noiseless measurements with a perfectly characterized
pupil function.

Method GS DC STV STTV DSTP

RSNR (dB) 17.24 9.66 17.85 18.58 28.61

Note: The bold values indicate the method with the best performance.

4.4. Evaluation metric

We quantify the performance of a method by computing the regressed signal-to-noise ratio
(RSNR) for the entire reconstructed sequence of images. Let x and x∗ denote vectorized ver-
sions of the ground truth and reconstruction, respectively. These are created by concatenating
the vectorized representations of each frame in the sequence. The RSNR is computed as

RSNR(x∗,x) =max
a∈C

20log10
‖x‖2

‖x− ax∗‖2
. (31)

We also report the SNR for the pupil functionwhenever it is jointly estimatedwith the sequence
of images. This metric is computed as

SNR
(
p̂(c), p̂(c∗)

)
= 20log10

‖p̂(c)‖2
‖p̂(c)− p̂(c∗)‖2

, (32)

where c and c∗ are the ground-truth and estimated Zernike coefficients, respectively.

4.5. Reconstruction from noiseless measurements

We now present two experiments involving noiseless measurements. In both of them, we
run the iterative algorithm for each method for a sufficient number of iterations (details
are provided below), beyond which the reconstruction does not change significantly. In
other words, we do not deploy early stopping for any method as the measurements are
noiseless.

4.5.1. Perfectly characterized pupil function. Wefirst consider an idealized setting where the
pupil function is perfectly characterized and is therefore not estimated during the reconstruc-
tion of the images of interest. In this scenario, the DC and STV estimators can be computed in
frame-by-frame manner (similar to the GS method) by decomposing the overall optimization
problems into Q= 100 smaller ones. We solve these by running AMSGrad with a learning
rate of 10−3 for 1000 iterations. In order to improve their performance, we initialize the GS,
DC, and STV methods for the timestamp tq with the reconstructed images from the previ-
ous timestamp tq−1. The GS solution is used for initializing the STTV method. We solve (30)
by using AMSGrad for 10000 epochs with a learning rate of 10−3 and a full batch size of
100. The optimal hyperparameters {τamp,q, τphase,q}100q=1 and {τamp,s, τphase,s, τamp,t, τphase,t} for
the STV and STTV methods, respectively, are chosen via a grid-search. For DSTP, the net-
work parameters are initialized with the help of the GS solution. We then solve (18) by running
the AMSGrad optimizer for 10000 epochs with a learning rate of 5× 10−5 and a batch size of
BQ = 10.

We present the RSNR values for all the methods in table 2. Further, we display some slices
of the (2D+ time) reconstructions in figure 5. The entire reconstructed sequences can be found
in the supplementary material. We observe that the proposed method significantly outperforms
the GS, DC, STV and STTV methods. Even though only one measurement is acquired per
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Figure 5. Reconstruction from noiseless measurements with a perfectly characterized
pupil function. Panel (A): XY view for the frame index q= 26. Panel (B): XT view for
the Y position indicated in panel (A) (GT, Phase, dashed line). Scale bar: 10µm.

Table 3. Joint recovery of the dynamic sample and the pupil function from noiseless
measurements.

Method GS DC STV STTV DSTP

Sequence RSNR (dB) 14.70 14.82 15.88 17.10 28.04
Pupil SNR (dB) N.A. 8.28 9.57 12.74 31.22

Note: The bold values indicate the method with the best performance.

frame, it yields a high-quality reconstruction, unlike the other methods which exhibit various
artifacts (for example, the features marked by arrows in figure 5).

4.5.2. Joint recovery of dynamic sample and pupil function. Next, we consider a setting
where the pupil function is not well-characterized and is therefore estimated jointly with the
dynamic sample in our framework and in the DC, STV and STTV methods. (We do not adapt
the GS algorithm for the recovery of the pupil function; we simply assume the idealized pupil
function c= 0.) For the DC, STV and STTV methods, the sequence of images is initialized
with theGS solution and the Zernike coefficients are initialized as c̃= 0.We solve (28) and (29)
by running the AMSGrad optimizer for 10000 epochs with a learning rate of 10−3 and a
batch size of 10. For solving (30), we run AMSGrad for 10000 epochs with a learning rate
of 10−3 and a full batch size of 100. In the STV method, we select two global hyperpara-
meters {τamp, τphase} via grid search and share them among all frames. The hyperparameters
{τamp,s, τphase,s, τamp,t, τphase,t} for the STTV method are also tuned for best performance with
the help of a grid search. In our method, we initialize the network parameters using the GS
solution and we initialize the Zernike coefficients as c̃= 0. We solve (18) by running AMS-
Grad for 10000 epochs with a learning rate of 5× 10−5 and a batch size of BQ = 10.

We present the RSNR and SNR values for the reconstructed sequence and the pupil
function, respectively, in table 3. We also show some slices of the (2D + time) reconstruc-
tions and the recovered pupil functions (phase) in figure 6, as well as the recovered Zernike
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Figure 6. Joint recovery of the dynamic sample and the pupil function from noiseless
measurements. Panel (A): XY view for the frame index q= 26. Panel (B): XT view for
the Y position indicated in panel (A) (GT, Phase, dashed line). Panel (C): phase of the
pupil function. Scale bar (for panels (A) and (B)): 10µm.

Figure 7. Recovered Zernike coefficients from noiseless measurements. The first (Noll
index = 1) Zernike mode only contributes a constant phase factor which has no effect
on the intensity measurements and thus can be ignored.

coefficients in figure 7. The full reconstructed sequences are provided in the supplementary
material. Here, the DC, STV and STTVmethods fail to recover the Zernike coefficients (i.e. the
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Table 4. Joint recovery of the dynamic sample and the pupil function from noisy
measurements.

Method GS DC STV STTV DSTP

Sequence RSNR (dB) 14.09 14.14 14.65 16.39 24.86
Pupil SNR (dB) N.A. 9.36 10.66 14.98 28.36

Note: The bold values indicate the method with the best performance.

Figure 8. Joint recovery of the dynamic sample and the pupil function from noisy meas-
urements. Panel (A): XY view for the frame index q= 26. Panel (B): XT view for the Y
position indicated in panel (A) (GT, Phase, dashed line). Panel (C): phase of the pupil
function. Scale bar (for panels (A) and (B)): 10µm.

pupil function) accurately and yield poor reconstructions of the dynamic sample. On the con-
trary, our method provides a good estimate of the pupil function along with a high-quality
reconstruction of the moving sample.

4.6. Reconstruction from noisy measurements

Finally, we consider the joint recovery of the sequence of images and the pupil function from
noisy measurements. In this case, we observe that the GS, DC and DSTPmethods require early
stopping as running the corresponding iterative algorithm beyond a point leads to overfitting
the noisy measurements. Thus, we run each method for a sufficiently large number of epochs
(=10000) and we report the reconstruction that achieves the best RSNR during these epochs.
For each method, we use the initialization, optimizer, learning rate and batch size described
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Figure 9. Recovered Zernike coefficients from noisy measurements. The first (Noll
index = 1) Zernike mode only contributes a constant phase factor which has no effect
on the intensity measurements and thus can be ignored.

in section 4.5.2. The hyperparameters for the STV and STTV methods are also tuned in the
same way as in section 4.5.2.

We summarize the quantitative results for all the methods in table 4. We display some slices
of the (2D + time) reconstructions and the estimated pupil functions (phase) in figure 8, and
we present the recovered Zernike coefficients in figure 9. The entire reconstructed sequences
are available in the supplementary material. In this setting, as shown in figure 4, the dark-
field measurements are corrupted by significant amounts of noise, which makes the recovery
problem quite challenging. Remarkably, our method still yields reconstructions of very good
quality and outperforms the DC, STV and STTV methods by a big margin.

4.7. Computational cost

In all our experiments, we used an Intel Xeon Gold 6240R (2.6GHz) CPU for the GS method
and an NVIDIAV100GPU for the DC, STV, SSTV andDSTPmethods.While DSTP achieves
substantially better reconstruction quality than the other methods, its computational cost is also
higher. For example, the run time for DSTP was around 5.5 h as opposed to 3− 30min for the
other approaches when jointly estimating the sequence and the pupil function from noiseless
measurements.

5. Conclusion

We have presented a neural-network-based framework that does not require training data for
the reconstruction of high-resolution complex-valued images of a moving sample in dynamic
FP. In our method, we have parameterized the sequence of images to be reconstructed using
a shared convolutional network with adjustable parameters. We have encoded the temporal
behavior of the sample in the input vectors of the network by constraining them to lie on a one-
dimensional manifold. In this manner, we have leveraged both the structural prior of a neural
network and the temporal regularity between consecutive frames. Further, we have incorpor-
ated the recovery of the pupil function of the microscope within our framework. Finally, with
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the help of simulations, we have shown that the proposed approach drastically improves the
quality of reconstruction over standard frame-by-frame methods.
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Appendix. Zernike polynomials

In the polar coordinates (ρ,ϕ), the Zernike polynomials are given by

Zuv(ρ,ϕ) =

{
R|u|
v (ρ)cos(|u|ϕ), u⩾ 0

R|u|
v (ρ)sin(|u|ϕ), u< 0,

(A.1)

where u ∈ Z, v ∈ N, ρ ∈ [0,1], ϕ ∈ [0,2π), and

R|u|
v (ρ) =


(v−|u|)

2∑
s=0

(−1)s (v−s)!

s!
(

(v+|u|)
2 −s

)
!
(

(v−|u|)
2 −s

)
!
ρv−2s, (v− |u|) is even,

0, (v− |u|) is odd.
(A.2)

For a ∈ Z+ \ {0}, Noll’s sequential indexing defines a mapping Zuv 7→ Za such that

a=
v(v+ 1)

2
+ |u|+


0, u> 0 ∧ bv/2c ∈ 2N
0, u< 0 ∧ bv/2c ∈ 2N+ 1
0, u⩾ 0 ∧ bv/2c ∈ 2N+ 1
0, u⩽ 0 ∧ bv/2c ∈ 2N.

(A.3)
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