
PET REBINNING WITH REGULARIZED DENSITY SPLINES

Aleix Boquet-Pujadas†, Pol del Aguila Pla†‡, and Michael Unser†
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ABSTRACT

PET reconstruction algorithms have long relied on sinogram
rebinning. However, as detectors grow smaller in a recent
wave of cutting-edge scanners, individual sensors no longer
accrue hundreds of photons. Instead, most detect a single
photon or none at all, effectively turning sinogram data into
point-cloud measurements. The highly heterogeneous sensi-
tivity of these scanners is another issue. We approach sino-
gram rebinning in the face of these challenges with a density-
estimation framework that promotes knot sparsity in an un-
derlying spline basis.

Index Terms— Positron emission tomography, Poisson
process, Density estimation, Hessian-Schatten norm.

1. INTRODUCTION

Modern small-animal PET devices achieve sub-mm detail.
The race for higher and higher resolution has led experimental
scanners to the half-millimeter mark through the use of crys-
tal scintillators with pitches as small as 0.32 mm, 0.43 mm,
or 0.5 mm [1–3]. Silicon-based sensors appear ready to take
over now, promising pixel arrays at the 100 µm scale [4].
However, the efficiency of these new scanners does not scale
in cubic proportion to their pitch. The resulting sinograms
are therefore much sparser than those acquired in standard
PET, with the vast majority of lines of response (LOR) accru-
ing either a single photon or none at all. In addition, the di-
verse geometries of new scanner architectures and the physics
behind their stopping power [4] give rise to sensitivity maps
with highly heterogeneous detection probabilities (Figure 1).
These two peculiarities hinder the applicability of common
PET reconstruction pipelines to these new scanners.

One concept to revise in light of these challenges is re-
binning. PET algorithms have long relied on rebinning to by-
pass the computational burden of direct reconstruction meth-
ods when forward models grow prohibitively large [5]. For
instance, the potential size of sinogram spaces in state-of-the-
art scanners (1015 possible LORs for the scanner in Figure 1)
can preclude some computations in approaches that rely on
the popular method of ordered subset expectation maximiza-
tion. For these reasons, rebinning continues to be used in
commercial scanners, in medical studies, and in new proto-
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Fig. 1. a) Irregular sensitivity µ(θ) over a 2D sinogram (θ = (r, θ))
of a state-of-the-art experimental PET scanner made of silicon detec-
tors [4]. The simulated scanner is rectangular. It has a field of view
of 34 mm, and detectors with a pitch of 100 µm. b) Sinogram of
the image in Figure 4. c) Histogram of the data sampled from (b)
with sensitivity (a). The total number of counts is 5 · 105.

type scanners [1, 6]. Rebinning has also been incorporated
into time-of-flight PET systems [7]. List-mode processing is
another very common alternative.

In the spirit of physical collimators, rebinning techniques
interpolate 3D LOR data onto equally spaced 2D slices with
the aim to leverage reconstruction algorithms originally de-
veloped for 2D tomography [5, 8]. In the process, each 2D
sinogram is cast on a uniform grid to reproduce the set of par-
allel rays necessary for the filtered back-projection (FBP) al-
gorithm or for some fast iterative methods. The sensitivity of
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the scanner is addressed during preprocessing via pointwise
division of a reference scan.

With the marked decrease of the ratio of photons per pixel
in new scanners, however, function interpolation becomes
less adequate. In a regime of point-cloud measurements,
we argue that rebinning is instead better regarded from the
perspective of density estimation, in consideration of the
randomness underlying the photon-emission process. More-
over, there is a need for a robust approach to compensate for
the scanner sensitivity when the values of the corresponding
maps span a whole order of magnitude (Figure 1).

Our aim is to offer a rebinning method with enough flexi-
bility to adapt to new scanner designs in the face of big, sparse
data. We propose a density-estimation framework based on a
regularized optimization problem. It promotes knot sparsity
in an underlying spline representation and considers the sensi-
tivity as a weighting measure. The results are probability den-
sities with the computational advantage of the small support
of B-splines [9]. Our method is applicable to other density-
estimation problems, as well as to traditional PET scanners if
quantization were accounted for [10]. It can be used for the
usual 3D to 2D rebinning, but also for 2D to 2D and 3D to
3D—e.g., when 3D parallel reconstruction is feasible.

2. HESSIAN-SCHATTEN DENSITY SPLINES

We define the density of interest ρ : Θ ⊂ Rd → R≥0 in
sinogram space (Figure 1b) as the extension

ρ(θ; c) = exp

(∑
n∈N

cnΛ(θ − n)

)
(1)

of a logspline of degree 1 (c.f. [11]) to a d-dimensional pe-
riodic domain, where θ ∈ Θ refers to a specific LOR in the
sinogram. The exponential guarantees non-negativity. Ex-
pression (1) is parameterized by a set of coefficients c ∈
C =

∏
k=1 RNk indexed on a uniform unit grid, n ∈ N =∏d

k=1{0, 1, . . . , Nk − 1}. The underlying linear B-spline is
defined as

Λ(θ) =

d∏
k=1

max (1− |θk mod (Nk − 1)| , 0) . (2)

The density ρ is not directly accessible because it is exper-
imentally obscured by the sensitivity map µ : Θ → R≥0,
which characterizes the probability of detecting an event
within a LOR as determined by the stopping power of the
scanner (Figure 1a). We therefore formulate the probability
density of observing a LOR as

ρobs(θ; c) = I−1ρ(θ; c)µ(θ), (3)

where I =
∫
Θ
ρ(θ)µ(θ)dθ. Note that choosing µ is equiva-

lent to choosing a measure and that this avoids the point-wise
division typical of other weighted estimation methods.

103 104 105 106

−110

−100

−90

−80

−70

MSE [dB] vs Number of detected events

Histogram
KDE
RDS

Fig. 2. MSE of the estimate of the sinogram for a weight-aware
histogram and a KDE estimates with automatic bin and bandwidth
selection, compared to RDS with α = 5 on a (200 × 168) grid.
Note that the MSE values are low because the density values are
necessarily bound to a relatively small range.

To formulate an optimization problem, we proceed by
defining a data-fidelity term based on the likelihood of ob-
serving a set {θm}Mm=1 of independent samples from the
observed density ρobs(θ). We express this likelihood as

L(c) = I−M
M∏

m=1

ρ(θm; c)µ(θm), (4)

where we consider that the samples θm have been scaled to
the uniform grid N . We also want to enforce some a priori
behavior through the regularization term

R(c) =
∑
n∈N

d∑
k=1

|σk (H{log ρ}(n)) | , (5)

which approximates the Schatten 1-norm [12] of the Hessian
(H) of the logarithm of the density, via its eigenvalues σk on
the grid. The aim is to automatically sparsify the knots of the
underlying linear spline. Together, (4) and (5) combine into
a minimization problem for the optimal spline coefficients,
with solution

c∗ := argmin
c∈C

{αR(c)− log (L(c))} . (6)

The log-likelihood is twice continuously differentiable and
negative-definite, and the regularization term is convex, mak-
ing the cost functional in (6) strictly convex. The optimization
is done using an accelerated proximal gradient algorithm [13]
that combines the gradient of the negative log-likelihood with
the proximal operator of the regularization term [12]. The lat-
ter is computed using an inner dual scheme with 20 iterations.
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Fig. 3. Sinograms for weight-aware histogram and KDE compared to our RDS method with 5 · 105 detections. The corresponding object in
the image domain is shown in the rightmost pane of Figure 4.

The Lipschitz constant of the outer algorithm is updated at ev-
ery iteration. Hereafter, we refer to the framework described
in this section as regularized density splines (RDS).

3. EMPIRICAL RESULTS AND DISCUSSION

We tested RDS against two other weighted-density estimation
techniques in the context of an experimental PET scanner.
These were kernel density estimation (KDE) and histogram
estimation. The bandwidths of both methods were adjusted
using Scott’s rule and the maximum among the Freedman-
Diaconis’ and Sturges’ estimators, respectively. The kernel
was chosen to be Gaussian for KDE.

To obtain an experimental µ, we assessed the sensitiv-
ity of the scanner in the sinogram domain. Measurements
showed that the chance of detection of LORs varied by an or-
der of magnitude as a function of their angle and distance to
the center (Figure 1a). This heterogeneity had a sizeable ef-
fect on the resulting sinograms, which displayed zones with
fewer photons than those of an ideal projection under a con-
stant sensitivity (Figure 1c). In addition, only 0.01% of the
LORs accrued more than one detection, thereby justifying the
use of a density-estimation approach.

We chose a sum of Gaussians as the target radiotracer dis-
tribution in the image domain (Figure 4, rightmost pane). This
is in favor of KDE, as Gaussianity is preserved over the dis-
tance upon projection onto the sinogram domain (Figure 3,
rightmost pane). This distribution also leads to a sinogram
that is visually interpretable, yet rich enough to test the adap-
tiveness of the algorithms. We simulated the scanner acquisi-
tion for different lengths of time spanning 4 orders of magni-
tude and, thus, for numbers of detections over a proportional
range (Figure 2). The resulting point clouds in sinogram do-
main (Figure 1c) were then fed into the three methods.

RDS outperformed the two other methods over the full
range tested, except at the minimum value of ≈ 102 detec-
tions, where the Gaussian kernel in KDE likely made up for
the lack of data. For a number of detections relevant to real
PET scans (105 and higher), the improvement amounted to a

full order of magnitude. At these levels, the histogram method
reached an accuracy comparable to that of KDE.

The regularization parameter α of the RDS method was
kept constant across experiments after having been adjusted at
the experimentally relevant mark of 5 · 105 detections; there,
the best parameter among three values, corresponding to three
orders of magnitude, was selected. This low sensitivity to
α likely reflects a sparsifying effect of the Hessian-Schatten
norm in our context of linear splines. (We recall that the other
two estimation techniques auto-adjust their bandwidths.) An-
other advantage of our method is its favorable computation
time. For 5 · 105 points, the evaluation of the density on a
(200 × 168) parallel grid took 1 ms for RDS compared to
10 min for KDE and 40 ms for the histogram. RDS took 10 s
to optimize whereas the other methods were setup in 20 ms.
The comparison was on CPU, but we expect a bigger advan-
tage on GPU as RDS is more amenable to parallelization.

Our qualitative assessment of the estimated sinograms
(Figure 3) is that RDS is able to adapt to regions with dif-
ferent underlying variance—of the simulated Gaussians—
while compensating for the lack of data in regions of less
sensitivity. Conversely, KDE over-smoothed some regions
and had a reduced accuracy on their boundaries, whereas
histogram-based estimation struggled to properly correct for
the sensitivity. The improvement in sinogram domain shown
by RDS translated into better mean-square errors (MSEs) in
the image domain upon reconstruction with the FBP algo-
rithm (Figure 4). Similar improvements were found for a
Derenzo phantom (Figure 5), where RDS also reduced the
streak artifacts introduced by the FBP. Comparatively better
results were found using iterative algorithms because the arti-
facts introduced by RDS are more naturally compensated by
edge-preserving regularization schemes than those of the two
competing approaches (data not shown). All implementations
in this report were based on NumPy and SciPy.

4. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical simulation study for which no ethical approval
was required.
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Fig. 4. FBP reconstruction for the rebinned sinograms of Figure 3.
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Fig. 5. FBP reconstruction of a simulated Derenzo phantom.
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