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ABSTRACT

We propose a novel statistical formulation of the image-
reconstruction problem from noisy linear measurements. We derive
an extended family of MAP estimators based on the theory of
continuous-domain sparse stochastic processes. We highlight the
crucial roles of the whitening operator and of the Lévy exponent of
the innovations which controls the sparsity of the model. While our
family of estimators includes the traditional methods of Tikhonov
and total-variation (TV) regularization as particular cases, it opens
the door to a much broader class of potential functions (associated
with infinitely divisible priors) that are inherently sparse and typically
nonconvex. We also provide an algorithmic scheme—naturally
suggested by our framework—that can handle arbitrary potential
functions. Further, we consider the reconstruction of simulated MRI
data and illustrate that the designed estimators can bring significant
improvement in reconstruction performance.

Index Terms— sparse stochastic processes, statistical estimation,
sparsity-promoting regularization, nonconvex optimization.

1. INTRODUCTION

The problem of image reconstruction from integrated (or blurred)
measurements is central to modern imaging, for instance in parallel
MRI, X-ray tomography, and electron and fluorescence microscopy.
The image-reconstruction task is usually formulated as the linear
inverse problem

y = Hs+ n, (1)

where the goal is to reconstruct the unknown discrete signal s ∈ R
K

from the noisy measurements y ∈ R
M . The matrix H ∈ R

M×K ,
with M ≤ K, models the spatial response of the imaging device.
The vector n represents the measurement noise which, from here on,
is assumed to be i.i.d. Gaussian with variance σ2.

In this work, we are concerned with the statistical formulation
of the reconstruction task based on the prior knowledge of the dis-
tribution of the signal. For instance, when the signal is zero-mean
Gaussian with covariance Cs, it is well known that the MMSE solu-
tion is given by the Wiener filter. This can also be recast in terms of
the quadratic minimization problem

s∗ = argmin
s

1

2
‖y −Hs‖22 + σ2‖C−1/2

s s‖22, (2)

which provides a direct link between the Gaussian MMSE/MAP esti-
mation and the classical method of Tikhonov regularization. Observe
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that (2) imposes a constraint on the �2 norm of the auxiliary “innova-

tion” or whitened signal u = C
−1/2
s s, which is i.i.d. Gaussian with

a unit variance.
The recent trend in the field has been to move away from

quadratic regularization and to replace the second term in (2) by
some suitable �1 norm in order to promote sparse solutions [1]. A
preferred choice of regularization is R(s) = ‖Ls‖1 where L is the
discrete counterpart of gradient or Laplacian operators, with the for-
mer corresponding to total-variation regularization. A considerable
amount of effort has been put in designing efficient algorithms for
the reconstruction of signals under such sparsity constraints.

While the current formulations of sparse signal recovery are based
on solid variational principles, they are fundamentally deterministic.
The purpose of this paper is to introduce a stochastic framework
that justifies the use of nonquadratic regularization functionals by
tying them to some generative, continuous-domain signal model. The
approach builds upon the recent theory of sparse stochastic processes
which are specified as solutions of stochastic differential equations
(SDE) driven by non-Gaussian noise [2].

The main contributions of this work are as follows:

� The derivation of the prior distribution of some non-Gaussian
discrete-domain innovation sequence u = Ls based on the
modeling of the signal s = L−1w in the continuous-domain
as a sparse stochastic process. Our key finding is that the
probability density function (pdf) must be part of the extended
family of infinitely divisible distributions.

� The characterization of admissible potential functions (prior
log-likelihoods) and the specification of the corresponding
MAP estimators. We also illustrate the connection between
these statistical estimators and existing deterministic methods.

� The proposal of a generic reconstruction algorithm, based on
variable splitting, that efficiently handles the different estima-
tors, including the nonconvex ones. The technique is applied to
the reconstruction of MRI from non-uniform k-space samples.

It is noteworthy that the proposed formulation lends itself to an
analytical treatment using Fourier-domain techniques. Moreover,
it is backward compatible with the Gaussian formulation and the
traditional theory of stationary processes.

2. SPARSE STOCHASTIC PROCESSES

Our formulation is based on the assumption that s is the discretized
version of the continuous-domain stochastic process s(x), with x ∈
R

d, which is specified as the solution of a SDE.

2.1. Continuous-domain innovation model

The generic form of a linear stochastic differential equation is

Ls = w, (3)
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where w is a continuous-domain white noise (not necessarily Gaus-
sian) and L is a (multidimensional) differential operator. In the
classical theory of stationary processes, the right-hand side of (3) is
often interpreted as the innovation (unpredictable) part of the process,
while L is referred to as the whitening operator. The formal solution
(if it exists) can be written as s = L−1w, where L−1 is an appropriate
right inverse of L, which amounts to some generalized “integration”
of the innovation w. The implication is that the correlation struc-
ture of the stochastic process s is determined by the mixing operator
L−1, while its randomness and sparsity pattern is governed by the
excitation noise w.

In Gelfand’s theory of generalized stochastic processes [3], s
is observed indirectly by taking inner-products 〈s, ϕ〉 with rapidly
decreasing test functions ϕ in Schwartz class S. In that framework,
the stochastic process s is completely characterized by its characteris-

tic form P̂s(ϕ) = E
{
ej〈s,ϕ〉}, where E{·} denotes the expectation.

The powerful aspect of this characterization is that P̂s is indexed by a
generic function ϕ ∈ S rather than by a scalar (or vector) Fourier vari-
able ω. As such, it constitutes the infinite-dimensional generalization
of the characteristic function of a conventional random variable.

In a recent work, we characterized the complete class of stochas-
tic processes that are specified by (3) where L is shift-invariant and
w is part of the class of so-called Lévy noises [4]. In that context, we

have shown that P̂s(ϕ) is given by

P̂s(ϕ) = exp

(∫
Rd

f
(
L−1∗ϕ(x)

)
dx

)
, (4)

where the univariate function f(·) is the Lévy exponent of the white
noise w and L−1∗ is the adjoint of L−1. We have also proven
that a sufficient condition for the existence of the process is that
‖L−1∗ϕ‖Lp < C‖ϕ‖Lp for all ϕ ∈ Lp(R

d) and some p ≥ 1.

The particular case of Gaussian processes is recovered by taking
f(ω) = −|ω|2 and p = 2. More generally, the Lévy exponent f(ω)
can be chosen to be any conditionally positive-definite function of
order one.

2.2. Discrete-Domain Innovations

We now would like to obtain a discrete version of the innovation
model (3) by applying the discrete counterpart Ld of the whitening
operator L to the samples s[k] = s(x)|x=k of the process. The
implicit requirement is that the composition of Ld and L−1 results in
a stable, shift-invariant operator whose impulse response

LdL
−1δ(x) = βL(x) ∈ L1(R

d) (5)

is maximally localized [5]. We call βL the generalized B-spline
associated with the operator L. For instance, when L = D (derivative
operator) and Ld = Dd (finite-difference operator), then βD(x) =
rect(x− 1

2
) is a causal rectangle (polynomial B-spline of degree 0).

In matrix-vector notations, we write the discrete-domain counterpart
of the innovation model (3) as

u = Ls, (6)

where u = (u[k])k∈Ω is the discrete innovation variable (with a
slight abuse of language). A key point of our formulation is that we
can rely on (4) to derive the pdf of u.

Proposition 1. Let s be a stochastic process whose characteristic
form is given by (4). Then, u[k] = Lds(x)|x=k is stationary and
such that u[k] = (βL ∗ w)(x)|x=k where βL is defined by (5). Its

pU (x) ΦU (x)

Gaussian 1

σ0
√
2π

e−x2/2σ2
0 M1x

2 + C1

Laplace λ
2
e−λ|x| M2|x|+ C2

Student’s 1

εB(r, 1
2
)

(
1

(x/ε)2+1

)r+ 1
2

M3log(
x2+ε2

ε2
) + C3

Table 1. Some infinitely divisible distributions and the corresponding

potential functions.

first-order pdf is given by the inverse Fourier integral

pU (u) =

∫
R

exp

(∫
Rd

f
(
ωβL(−x)

)
dx

)
e−jωu dω

2π
, (7)

and is part of the family of infinitely divisible distributions.

Proposition 1 indicates that the pdf of u is completely deter-
mined by the continuous-domain innovation model via the gener-
alized B-spline βL and the Lévy exponent of the excitation noise
w. Its sparsity pattern (tail behavior of the pdf and/or presence of
a mass distribution at the origin) is primarily dependent upon f(·).
The important conceptual aspect is that the class of admissible pdfs
is restricted to the (classical) family of infinitely divisible (id) laws.

A case of special interest is f(ω) = −|ω|α with α ∈ (1, 2]. It is
not difficult to show that the corresponding characteristic function is
p̂U (ω) = e−|s0ω|α with s0 = ‖βL‖Lα . The implication is that u has
a symmetric α-stable (SαS) distribution, irrespective of L. The case
α = 2 corresponds to the only nonsparse scenario (Gaussian), while
smaller values of α give rise to much heavier-tailed distributions.
For α = 1, we obtain the Cauchy distribution (or Student with
r = 1/2) whose standardized version is pU (x) = 1

π(1+x2)
. Note

that all the members of the SαS family with α 	= 2 satisfy some
stringent criterion for compressibility [6].

2.3. MAP Estimation

The present MAP estimator is derived under the decoupling assump-
tion that u is i.i.d. In order to reconstruct the image, we seek an
estimate of s that maximizes the posterior distribution pS|Y which
depends upon the prior distribution pS , assumed to be proportional
to pU , and the Gaussian noise distribution pN . The direct application
of Bayes’ rule yields

pS|Y (s|y) ∝ pN (y −Hs)pU (u)

∝ exp

(
−‖y −Hs‖2

2σ2

) ∏
k∈Ω

pU
(
[Ls]k

)
,

where Ω is the region-of-interest (ROI) and σ2 is the variance of the
noise. We can then specify the MAP estimator of s as

sMAP = argmax
s

pS|Y (s|y)

= argmin
s

1
2
||Hs− y||22 + σ2

∑
k∈Ω

ΦU

(
[Ls]k

)
, (8)

where ΦU (x) = −log pU (x) is the potential function.

2.4. Potential Functions

Recall that, in the current Bayesian formulation, the potential function
ΦU (x) = −logpU (x) is specified by the Lévy exponent f(ω) of the
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continuous-domain innovation w. We now point out the connections
between the general estimator (8) and the standard variational meth-
ods. The three members of the id family that are of interest to the
discussion are listed in Table 1. The exact values of the constants C1,
C2, and C3 and scaling factors M1, M2, and M3 have been omitted
as they are not relevant to the optimization task.

The first quadratic potential function yields the classical Tikhonov

regularizer that produces a stabilized linear solution
(
set L = C

−1/2
s

in (2)
)
. The second potential function provides the �1-type regularizer.

Moreover, the well-known TV regularizer is obtained if the operator
L is a first-order derivative operator. Interestingly, the third log-based
potential is linked to the limit case of the �p relaxation scheme as p
tends to zero [7].

3. MINIMIZATION ALGORITHM

We now formulate the MAP estimation as the constrained optimiza-
tion

sMAP = arg min
s∈RK

(
1

2
||Hs− y||22 + σ2

∑
k∈Ω

ΦU (u[k])

)
subject to u = Ls, (9)

where Ω is the ROI of size K and L : RK → R
K is a linear operator.

Note that this reformulation is very much in line with the variable-
splitting technique that has been promoted by various authors [8, 9].
Instead of considering the constrained problem directly, we introduce
the corresponding augmented Lagrangian (AL) functional

LA(s,u,α) =
1

2
||Hs− y||22 + σ2

∑
k∈Ω

ΦU (u[k])

+ αT (Ls− u) +
μ

2
||Ls− u||22,

where α ∈ R
K denotes the Lagrange-multiplier vector and μ ∈

R is called the penalty parameter. Then, we face the equivalent
unconstrained problem

minimize
(s∈RK , u∈RK)

LA . (10)

As a replacement for the joint minimization of the AL functional
over (s,u), we apply the alternating-direction method of multipliers
(ADMM) [10] and consider minimizing LA(s,u,α) with respect
to each variable while keeping the others fixed. This is followed by
an update of the Lagrange multiplier which results in the following
scheme at iteration t:

ut+1 ← argmin
u

LA(st,u,αt) (11a)

st+1 ← argmin
s
LA(s,ut+1,αt) (11b)

αt+1 = αt + μ(Lst+1 − ut+1). (11c)

From the Lagrangian duality point of view, (11c) can be interpreted
as a maximization of the dual functional so that, as the above scheme
proceeds, feasibility is imposed [10]. Seeing that our potential func-
tions are closed and proper, we deduce Remark 1 from [10].

Remark 1. If ΦU : R → R+ is convex and the unaugmented
Lagrangian functional has a saddle point, then the constraint in (9)
is satisfied and the objective functional reaches the optimal value as
t→∞.

3.1. Minimization (11a)

The minimization is separable. Hence, (11a) reduces to performing
K scalar minimizations:

min
u[k]∈R

(
σ2ΦU (u[k]) +

μ

2
(u[k]− z[k])2

)
, ∀k ∈ Ω, (12)

where z = Ls+α/μ.

Definition 1. The proximity operator with weighting factor λ associ-
ated to the function ΦU is defined as

proxΦU
(y;λ) = argmin

x∈R

1

2
(y − x)2 + λΦU (x). (13)

Therefore, (11a) is obtained by applying proxΦU
(z; σ2

μ
) in a

component-wise fashion to z = Lst + αt/μ. The closed-form
solutions for the proximity operator are well-known for the Gaussian
and Laplace priors. They are given by

prox(·)2 (z;λ) = z(1 + 2λ)−1
(14a)

prox|·| (z;λ) = max(|z| − λ, 0)sgn(z). (14b)

While the Student proximity operator has no closed-form solution,
it can still be precomputed and stored in a look-up table (LUT).
This suggests a very fast implementation of the proximal step that
is applicable for any potential function ΦU (x). We also note that
the method remains applicable when ΦU (x) is nonconvex, with the
following caveat:

Remark 2. When ADMM converges and ΦU is nonconvex, it
converges to a local minimum, including the case where the sub-
minimization problems are solved exactly [10].

In the case of a nonconvex problem, the algorithm can potentially
get trapped in local minima in the early stages of the optimization.
It is therefore recommended to apply a deterministic continuation
method or to consider a warm start that can be obtained via solving
the problem first with Gaussian or Laplace priors. We have opted for
the latter solution and have not encountered any convergence problem
in practice.

3.2. Minimization (11b)

This step of the optimization amounts to solving a quadratic problem.
It yields a linear estimate of the form

st+1 = (HHH+ μLHL)−1

(
HHy + μLH

(
ut+1 − αt

μ

))
.

(15)
Interestingly, this part of the problem is equivalent to the Gaussian so-
lution. It can either be solved iteratively using the conjugate-gradient
method, or directly, for instance by means of FFTs when HHH has
a convolution structure, as in our series of experiments.

4. NUMERICAL RESULTS

To assess the numerical performance of the estimators, we simulated
the reconstruction of a realistic analytical brain phantom [11] from its
undersampled discrete Fourier-domain coefficients. The correspond-
ing system matrix is H = ΓF, where F is the DFT matrix and Γ
is the underlying downsampling operator. For the experiment, we
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(a) (b) (c) (d)

Fig. 1. Reconstruction of the realistic analytical brain phantom: (a) original phantom; (b) Fourier sampling pattern; (c) reconstruction using

Laplace prior, SNR = 17.83 dB; (d) reconstruction using Student’s prior, SNR = 21.33 dB.

choose L to be the gradient operator and adopt the vectorial coun-
terparts of the proximity operators. For this MRI model, we have
that

HHH = FHΨF,

where Ψ = ΓTΓ is a diagonal matrix. Moreover, L is also diagonal-
ized by the operator F, which suggests an efficient Fourier-domain
solution of (15).

As illustrated in Figure 1, we consider a phantom of size 256×
256 and a radial sampling pattern composed of 35 lines, which cor-
responds to an undersampling factor of 6.5. In the experiments, the
measurements are corrupted with a Gaussian noise with σ = 10−4.
For the Laplace estimator, we initialize the algorithm with the zero-
filled back-projected solution s0 = HHy. For the Student’s estima-
tor, we use the solution of the Laplace estimator as the initial solution.
The ε parameter of Student’s prior is set to 10−2. The regularization
weights, for both estimators, are optimized by using an oracle in order
to obtain the highest-possible SNR.

We illustrate the results in Figure 1. Observe that the image
reconstruction with the Laplace prior exhibits some artifacts and lack
of sharpness in the transition zones. The artifacts are substantially
reduced in the image estimated with the Student prior. The sparsity
constraint helps restoring the sharpness of the edges and turns out to
be particularly well-suited for this kind of piecewise-smooth image.

5. CONCLUSION

We have applied the recent theory of sparse stochastic processes to
derive a general family of MAP estimators for the reconstruction
of biomedical images. An important conceptual point is that the
potential function cannot be selected arbitrarily; moreover, the result-
ing optimization problem is generally nonconvex with the notable
exception of the Gaussian and the Laplacian priors. We have em-
phasized the advantage of using the discrete innovation as auxiliary
variable both when formulating the problem and when implementing
the algorithm. By focusing on the unconstrained equivalent prob-
lem via an augmented Lagrangian functional, we have proposed an
ADMM-based minimization scheme that can handle arbitrary poten-
tial functions. Finally, we have illustrated the suitability of this type
of sparse modeling for the reconstruction of simulated MRI data. Our
results demonstrate that the proper use of (nonconvex) sparse priors
can outperform �1-type regularizations.
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