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Abstract—We consider the reconstruction of multi-dimensional
signals from noisy samples. The problem is formulated within the
framework of the theory of continuous-domain sparse stochastic
processes. In particular, we study the fractional Laplacian as the
whitening operator specifying the correlation structure of the
model. We then derive a class of MAP estimators where the priors
are confined to the family of infinitely divisible distributions.
Finally, we provide simulations where the derived estimators are
compared against total-variation (TV) denoising.

Index Terms—Innovation models, fractional Laplacian, frac-
tals, invariance, self-similarity, sparse stochastic processes, MAP
estimation.

I. INTRODUCTION

Consider the signal denoising problem where the goal is
to estimate the unknown signal s ∈ RK from the noisy
measurement

y = s + n, (1)

where the vector n ∈ RK represents the noise that is assumed
to be i.i.d. Gaussian with variance σ2.

We consider the statistical formulation of the denoising
problem based on the prior knowledge of the distribution of
the signal and concentrate on MAP estimators. To that end,
we first specify a continuous-domain signal model by using
the theory of sparse stochastic processes [1]. The model has
two fundamental elements: an innovation process governing
the sparsity pattern and the whitening operator determining
the correlation structure of the underlying signal.

The contribution of this work is to extend our previous
line of work [2], [3] by using fractional-order Laplacians
(−∆)γ/2 with γ > 0 as our whitening operator. The unique
feature of these operators is their invariance to translation,
scaling, and rotation [4]. They also have been associated
with 1/‖ω‖γ-type power spectrum that appears in natural
images [5], [6]. In this prospective, the derived estimators
are suitable for removing noise from fractal-like images. We
perform simulations and show that the derived estimators can
improve upon TV denoising for particular images.

II. MATHEMATICAL FOUNDATIONS

We assume that the underlying signal s is the discretized
version of a stochastic process s(r) in Rd that is defined as
the solution of the stochastic differential equation

Ls = w, (2)
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Fig. 1. Continuous-domain innovation model.

where w is a continuous-domain white noise that is not
necessarily Gaussian and L is a suitable differential operator.
What (2) implies is that the formal solution (if it exists) is
given by s = L−1w. Therefore, the correlation structure of s
is determined by the mixing operator L−1, while its sparsity
pattern is characterized by w that we shall call the innovation
process (see Section II-A).

In the sequel, we restrict L to be in the subclass of fractional
Laplacians (Section II-B). Our goal is to define a general
class of self-similar processes (Section II-C) as illustrated in
Figure 1.

A. Innovation processes

We define continuous-domain innovation processes in the
framework of generalized functions of Schwartz [7]. In the
one-dimensional setting, they are the weak derivative of the
family of Lévy processes. As a member of the family of
generalized stochastic processes, w is a random generalized
function that is observed through scalar-products with test
functions ϕ in the space S of smooth and rapidly decreasing
functions. Hence, for fixed ϕ, the linear observation 〈w,ϕ〉 is
a real random variable.

The innovation process w is a stationary stochastic process
with independent value at every point. Its statistical properties
are characterized by its characteristic functional (the infinite-
dimensional generalization of the characteristic function of
random variables) P̂w(ϕ) = E[ej〈w,ϕ〉]. The characteristic
functional of w has the general form

P̂w(ϕ) = exp

(∫
Rd

f(ϕ(r))dr
)
, (3)

where f(·) is called the Lévy exponent of w. The set of
admissible Lévy exponents, and thus of innovation processes,
is described in [7].

It is important to note that Lévy exponents are also in one-
to-one correspondence with the so-called infinitely divisible
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(i.d.) distributions. Indeed, the characteristic functions of i.d.
random variables are precisely of the form ef(ω) [8]. Equiva-
lently, an innovation process is characterized by its canonical
pdf defined by pi.d. = F−1

{
ef(ω)

}
, where F denotes the

Fourier transform.

B. Fractional Laplacian operators and their inverses

As mentioned earlier, we choose L to be a member of the
class of fractional Laplacian operators (−∆)γ/2 for γ > 0.
These isotropic differential operators defined in Fourier do-
main by

F
{

(−∆)γ/2ϕ
}

(ω) = |ω|γF {ϕ} (ω),

where ϕ ∈ S.
The fractional Laplacian is a linear, self-adjoint, and con-

tinuous operator with translation-, rotation-, and scaling-
invariance properties. Its inverse operator is the Riesz potential
Iγ for γ < d and is extended for all non-integer γ > d in
Sun and Unser [4]. It has been also observed that the natural
translation-invariant inverse Iγ of the fractional Laplacian
operator can be unstable.

In accordance with this previous work, we define Iγ,p as the
unique corrected version of the inverse mapping from S to the
space Lp of functions with finite p-norm

(∫
Rd |f(r)|pdr

)1/p
.

The Lp stability comes with the cost of losing the translation-
invariance for the inverse operator.

C. Self-similar processes

We now would like to define the process s. As we consider
processes s such that (−∆)γ/2s = w is an innovation process,
one formally writes

〈s, ϕ〉 = 〈Iγ,pw,ϕ〉 = 〈w, I∗γ,pϕ〉,

where Iγ,p is the corrected inverse operator of (−∆)γ/2

defined above.
To satisfy the admissibility conditions required between the

Lévy exponent f(·) of w and the stability property of the in-
verse operator [1], one needs p = 1 for the Laplace innovations
and p = 2 for the Gaussian ones. The characteristic functional
of s is then given by

P̂s(ϕ) = exp

(∫
Rd

f
(
I∗γ,pϕ(r)

)
dr
)

. (4)

The resulting process s is called self-similar (in a stochastic
sense) because an application of a similarity transformation
such as scaling does not change its statistical behavior (up to
some possible renormalization).

III. MAP ESTIMATION

After explaining that the process s is mathematically well-
defined, we now concentrate on developing practical algo-
rithms.

fractional integration

fractional Laplacian

self-similar
process

innovation
process

sampling

whitening

self-similar
process

discrete innovation
process (i.i.d.)

observation

Gaussian noise

u

s

n

y

Monday, April 29, 2013

Fig. 2. Observation model.

A. Discrete innovation model

The discrete counterpart of innovation model (2) is obtained
by introducing the discrete version L of the operator L [9].
Since we are only given the sampled version of s in real-
world applications, one can think of formulating the discrete
innovation model by applying L to the sampled process s[k] =
s(r = k) for k being in a suitable discrete space Ω. In the case
of fractional Laplacian operator, Lγ is efficiently implemented
in Fourier domain via FFT operation. In effect, we define the
discretized version of (2) as

u = Lγs (5)

where u is called the discrete innovation process whose first-
order pdf pU is proven to be an infinitely divisible distribu-
tion [3].

As shown in [3], it is equivalent to define the discrete
counterpart (−∆)

γ/2
d of the operator (−∆)γ/2 such that

u[k] =
{

(−∆)
γ/2
d s

}
(r = k). In other terms, we have

u[k] = (βγ,p ∗ w)(r = k),

where βγ,p ∈ L1 is a polyharmonic B-spline and is the impulse
response of the operator (−∆)

γ/2
d Iγ,p. We note that the

primary statistical features of u is related to the continuous-
domain innovation process w.

Proposition 1. If pi.d. = F−1
{

ef(ω)
}

is symmetric α-stable
(in particular Gaussian case), then the same is true for pU . If
pi.d. is symmetric, unimodal with exponential decay, then the
same is true for pU .

B. MAP estimation

We now formulate the MAP estimators for the denoising
problem given in (1) under the assumption that the components
(u[k])k∈Ω are i.i.d. random variables. We then get the posterior
distribution pS|Y from the Bayes’ rule

pS|Y (s|y) ∝ pN (y − s)pU (u)

∝ exp

(
−||y − s||22

2σ2

) ∏
k∈Ω

pU (Lγs[k]).

We define the potential function ΦU (x) = − log pU (x).
Then, the MAP estimator sMAP = arg maxs pS|Y (s|y) is
given by,

sMAP = arg min
s

1

2
‖y − s‖22 + σ2

∑
k∈Ω

ΦU (u[k])

subject to u = Lγs. (6)
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By using the previous definitions and the inverse Fourier
transform, we arrive at

ΦU (x) = − log

(∫
R

exp

(∫
Rd

f(βγ,p(r)ω)dr + jωx

)
dω

2π

)
.

(7)
We now characterize the asymptotical form of ΦU using the

Lévy exponent of the underlying innovation process.

Theorem 1. There exist constants A1, A2, A3, B1, B2 and B3

depending on the parameter of the considered innovation such
that

� If f(ω) = −σ2
0ω

2 (Gaussian case),

ΦU (x) = A1x
2 +B1

� If f(ω) = −s|ω|α (α-stable case),

ΦU (x) ∼ A2 log(|x|) +B2

� If f(ω) = log
(

λ2

λ2+ω2

)
(Laplace case),

ΦU (x) ∼ A3|x|+B3

where f ∼ g denotes that f − g → 0.

Since the computation of the exact potential function (7)
is challenging in the case of Laplacian innovation, we use its
simplified asymptotic form ΦU (x) = A3|x| + B3. Note that
the constants in Theorem 1 are irrelevant for the optimization
task.

IV. NUMERICAL EXAMPLES

We perform a simple simulation that compares the esti-
mation performance of different estimators specified by our
formalism. Particulary, we concentrate on denoising of a
natural texture-type and a biological image that are shown
in Figure 3. We consider two innovation processes (Gaussian
and Laplacian). We also consider two different whitening
operators: fractional Laplacian and the discrete gradient. For
the latter case, we note that one obtains Tikhonov and TV
denoising.

In the experiments, the noise-free images are degraded
with various levels of AWGN where the noise variance σ2 is
specified to match some given input SNR. For denoising, we
use FISTA [10] for 250 iterations without any stopping criteria.
The multiplicative factors are optimized for all the estimators
by using an oracle to obtain the highest-possible SNR. This
optimization is done in a joint way for the γ parameter of the
fractional Laplacian operator. The denoising results (output
SNR in dB) are reported in Table I.

The results reported in Table I illustrate that the self-
similarity assumption is well-suited for the particular images
considered. For the clouds, it is coherent with the fact that the
self-similar processes present a fractal-type statistical behavior.
Moreover, the stem cells image is seemed to be appropriate
for our model as corroborated by the results. For both images,
it is observed that the performance of the self-similar models
outperform TV denoising.

a) Clouds

Monday, April 29, 2013

b) Stem Cells

Thursday, February 14, 2013

Fig. 3. Images used in the experiments.
TABLE I

DENOISING PERFORMANCE OF DIFFERENT MAP ESTIMATORS.
Input SNR (dB) 0 10 20 30
Estimator Clouds
Gaussian (discrete gradient) 20.44 24.68 29.93 35.31
Gaussian (fractional Laplacian) 21.01 25.70 31.41 36.45
Laplace (discrete gradient) 19.77 24.03 29.29 34.93
Laplace (fractional Laplacian) 20.22 25.29 31.16 36.75
Estimator Stem cells
Gaussian (discrete gradient) 11.16 15.85 22.13 30.40
Gaussian (fractional Laplacian) 11.57 16.82 23.51 31.32
Laplace (discrete gradient) 11.12 16.09 22.63 30.74
Laplace (fractional Laplacian) 11.20 16.70 23.52 31.30

V. CONCLUSION

The purpose of this work has been to drive MAP esti-
mators that are suitable for reconstructing self-similar multi-
dimensional signals from noisy samples. Our experiments
showed that these estimators can outperform TV denoising
for certain type of images.
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