Supplementary Material for
“Improved Variational Denoising of Flow Fields
with Application to Phase-Contrast MRI Data”

Proof of Proposition 1. Let us first remark that in Fourier domain
F{If}(w) = fiw’,

where f is the Fourier transform of f. For the scaling invariance, we note
that the scaling operator S, : f — f(-/a) commutes with the Jacobian (up
to a multiplicative constant) as it holds that

F{I{Suf}}Hw) = laf'F(aw)iw”
= (1/a) (la|"f(aw)j(aw)")
= (1/a) F{Sa{If}}H(w).

Since the Schatten p-norms are 1-homogeneous functions, we obtain that
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where the second equality follows from a simple change of variables.
As for rotation by a matrix £, we have (R¢ is the rotation operator)
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Then, we write that
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since the Schatten norms are unitarily invariant!. Now, applying a change
of variable u = £x, with du = |det {|dx = dx, we arrive at the desired result:

TV, (Ref) = TV,(f)

Translation invariance is straight forward to show by using a change of
variable. O
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