Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Anisotropic Interpolation
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Anisotropic Interpolation of Sparse Generalized Image Samples

A. Bourquard, M. Unser

IEEE Transactions on Image Processing, vol. 22, no. 2, pp. 459-472, February 2013.


Practical image-acquisition systems are often modeled as a continuous-domain prefilter followed by an ideal sampler, where generalized samples are obtained after convolution with the impulse response of the device. In this paper, our goal is to interpolate images from a given subset of such samples. We express our solution in the continuous domain, considering consistent resampling as a data-fidelity constraint. To make the problem well posed and ensure edge-preserving solutions, we develop an efficient anisotropic regularization approach that is based on an improved version of the edge-enhancing anisotropic diffusion equation. Following variational principles, our reconstruction algorithm minimizes successive quadratic cost functionals. To ensure fast convergence, we solve the corresponding sequence of linear problems by using multigrid iterations that are specifically tailored to their sparse structure. We conduct illustrative experiments and discuss the potential of our approach both in terms of algorithmic design and reconstruction quality. In particular, we present results that use as little as 2% of the image samples.

@ARTICLE(http://bigwww.epfl.ch/publications/bourquard1302.html,
AUTHOR="Bourquard, A. and Unser, M.",
TITLE="Anisotropic Interpolation of Sparse Generalized Image Samples",
JOURNAL="{IEEE} Transactions on Image Processing",
YEAR="2013",
volume="22",
number="2",
pages="459--472",
month="February",
note="")

© 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved