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ABSTRACT 

Traditional snakes suffer from slow convergence speed (many control points) and difficult to adjust weighting factors for 
internal energy terms. We propose an alternative formulation using cubic B-splines, where the knot spacing is variable and 
controlled by the user. A larger knot spacing allows to reduce the number of parameters, which increases optimization speeds. 
It also eliminates the need for internal energies, which improves user interactivity. The optimization procedure is embedded 
into a multi-resolution image representation, where the number of snake points is adapted to the image grid spacing by 
correctly adjusting the spline knot spacing. Hence, the proposed method provides a multi-scale approach in both the image 
and parametric contour domain. Our technique provides fast optimization of the initial snake curve and leads to more stable 
algorithms in noisy imaging environments. Several biomedical examples of applications are included to illustrate the 
versatility of the method. 

1. INTRODUCTION 

The original snake by Kass et. al. [l] is the solution of a functional minimization. While it provides an elegant mathematical 
formulation, it has two main drawbacks: 1) a large number of control points subject to optimization, and, 2) an explicit 
formulation of the smoothness constraint, which requires the specification of weighting factors - these are often difficult to 
determine a priori. The associated problems of slow convergence speed, non-intuitive user-interaction because of weight 
factors, the necessity of representing the contour as a finite set of disconnected points, and the difficulty of obtaining reliable 
high order derivatives of a discrete curve have been tackled in a number of publications [2, 3, 4, 51. For instance, Amini et. al. 
[2] proposed a dynamic programming strategy for the optimization, thus guaranteeing convergence, enabling the integration 
of hard constraints, and bypassing local minima. Several authors were able to improve convergence speed by using different 
types of greedy optimization algorithms [3, 41. A way to overcome the difficulties of the proper choosing of the weight 
parameters is described in [5]. Here, the internal forces are controlled by approximating the contour by curvature arcs that 
compensate for the normal forces. 
An alternative approach to snakes, which also circumvents some of the problems, is to use a parametric B-spline 
representation of the curve. Menet et. al. [6] introduced the concept of B-spline snakes, emphasizing the advantages of local 
control, compact representation, and the possibility to include corners. They also showed that B-spline snakes could offer 
improved convergence speed and stability. While internal curve energies were still used in [6], Flickner et. al. [7] recognized 
that the inherent smoothness built into the spline model combined with a fewer number of control points no longer requires 
the introduction of internal energies. Hence, a fast spline rendering algorithm based on fast Bezier curve rendering makes an 
optimization process at interactive speeds possible. The property of implicitly built-in smoothness into the B-spline has also 
been successfully exploited in [S], who proposed a multi-stage model for the optimization. Hence, the B-snake is mainly 
characterized by the following points: 1) few parameters, and 2) smoothness implicitly built into the model. In addition, the 
B-snake approach naturally permits the local control of the curve by controlling individual control points. 
In this work, we propose to take advantage of some of the smoothness properties of the B-splines, thus improving 
optimization speed and user interactivity. Our main contributions are as follows: First, we show that the cubic B-spline is the 
optimal solution for cost functions involving a smoothness constraint that is based on the second derivative of the curve. 
Second, we introduce a scale parameter for the B-splines, which allows us to control the smoothness of the snake implicitly, 
thus eliminating the regularization term used in the traditional snake implementation. The proposed formulation eliminates the 
need for curve-internal energies and also allows the easy introduction of external hard-constraint points. Since increasing the 
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scale of the spline is related to reducing the number of node points, this kind of approach tends to simplify the optimization 
process. Third, we improve the speed and robustness of the optimization by making use of a multi-resolution technique 
(image pyramid). We employ a centered cubic spline pyramid which features improved PSNR values with respect to standard 
pyramid constructions [9]. The original image array is orthogonally projected onto a sequence of coarser spline spaces with a 
dyadic scale progression m = 2’ ; this yields a series of images where the resolution is decreased by a factor of two from one 
level to the next. Accordingly, the resolution of the snake curve can be decreased by the same amount, which will provide 
faster computation speeds without compromising the approximation quality. 
The paper is organized as follows. In Section 2, we start with a theoretical analysis that provides strong arguments in favor of 
the B-spline model. In Section 3, we justify our simplification of the conventional model, which is to impose smoothness 
constraints implicitly through the knot spacing of the spline rather than by regularization, and provide the mathematical 
formulas for the parametric B-spline snake. We also discuss some of the implementation issues; in particular, the specification 
of external forces. In Section 4, we consider optimization strategies and describe our multi-resolution approach. In Section 5, 
we test the performance of the proposed method. Finally, in Section 6, we present several examples for semi-automatic 
contour detection in biomedical image sequences. 

2. SNAKES REVISITED: A FUNCTIONAL FORMULATION 

The purpose of this section is to justify the use of splines for solving snake problems. In order to develop a mathematical 
model, we will consider a simple configuration where the contour to be detected can be represented by a single function. Even 
though this corresponds to a somewhat restricted situation (a general curve requires one function per coordinate dimension), it 
will provide us with important mathematical insights that are directly transposable to the more general case, which will be 
treated in Section 3. The present functional model may offer an interesting alternative to dynamic programming techniques, 
which are traditionally used in this context [ 10, 111. 
The basic problem is to detect a contour described by a function y. = f (x) in the x-y plane. Instead of an explicit definition, 
the unconstrained contour curve y is specified in terms of the minimum of a potential function 
V(X> Y> 

V(x, Y> = g(y - f(x); 4 (1) 

with the condition that g(z; x) 2 g(o; x), & . For notational simplicity, we assume that f(x) is defined over the entire real 
line. 

2.1 Regularized solution - cubic splines are optimal 

The basic problem is to approximate f (x) by a snake curve s(x) that is constrained to be smooth. For this purpose, we 
consider the following optimization problem 

S.(x)=ar~~~v(k,s(k))+~~ $ i 1 2dx (2) 

which constitutes a one-dimensional cost function similar to the one introduced by Kass et al. [ 11. This criterion involves two 
distinct terms. The first is the so-called data term, which forces the solution to be close to the minimum of the potential 
function V(x, y) . Note that V(x, y) is evaluated at the discrete location x = k and y = s(k) to accommodate for the 
discrete nature of the input data (external force). The second term expresses a smoothness constraint, which will tend to 
privilege solutions that have a low average curvature. The amount of smoothness of the solution is controlled by the 
regularization factor 2 ; it typically reflects our a priori knowledge. We are assuming that the problem is well defined in the 
sense that a solution exists. Note that this solution is a snake function S(X) that is continuously defined over R, even though 
our data are discrete. 
In order to be able to find the solution, we now present our key result, and show that the optimal snake is indeed a spline. 

Theorem 1: The solution of problem (2) is a cubic spline with knots at the integers. 
Note that the solution is not necessarily unique because we did not impose any particular constraint on V(x,y) (e.g., 
convexity). However, an optimal snake curve is uniquely defined by its values at the knot points s”(k), k E 2, or, 
equivalently, by the sequence of its B-spline coefficients (cf. Section 2.2). 

93



Proof of Theorem 1: For any given snake candidate s(x), we define its cubic spline interpolant sint (x) , which is uniquely 

defined as in [12]. It is a C2-curve that agrees with s(x) at the integers (i.e., ,sint (k) = s(k), Yk E Z), and is a cubic 

polynomial on each interval [k, k + l), k E 2 . We then rewrite the cost function as 

(3) 

where we have substituted s(k) by s,,(k) in the first part of the criterion while leaving the value of V (e, a) unchanged. To 
manipulate the second term, we use the so-called first integral equation [ 131, which states that for any function s(x) whose 
second derivative is square integrable [ 14, Lecture 6)]: 

(4) 

Hence, we obtain 

5(s) = CV(k,s.,,(k))+/Z~ d2Sint(x) 2 
ksZ 

-1 dx2 ] dxiAI[F- d2;;>x)j’dx. (5) 

By hypothesis, there exists a solution S* , not necessarily unique, for which <(s*) is minimal. This solution has a unique 

interpolator Syn,, which fixes the first and second terms in the above expression. Finally, <(s*) can be minimal if and only if 

the third term is minimal as well, that is, when s *(a 
- ‘int Y2) = 0 almost everywhere; i.e., the set of x’s such that 

s +(a 
- ‘int *(2) f 0 is of measure zero. If we integrate twice, we get that S* - s:,~ = ax + b everywhere (because a set of 

measure zero does not contribute to the integral). Finally, because of the interpolation condition, we conclude that 
s%(x) = s,m,(x> everywhere. It follows that the optimal snake S* (x) is a cubic spline. n 

We can relate our problem to curve fitting by interpreting the function go, X) in (1) as a pseudo-metric in y, which is allowed 
to vary as we move along x (or increment k). In particular, if we consider a quadratic criterion of the form g(s( k) - f (k); k) 

= NW(k) - f(k>l”, where w (k)>O is a sequence of weighting factors, then the optimization task is mathematically 
equivalent to the well-known smoothing spline problem in statistics [15]. The goal there is to find a smooth (regularized) 
curve s(x) that is reasonably close (in the least squares sense) to a set of noisy data points j(k). The fact that this leads to a 
spline solution is well known in this context (quadratic cost function); it was established independently by Reinsh and 
Schoenberg [16, 171. Theorem 1 extends this result considerably because we did not make any hypothesis on the form of the 
potential function (or pseudo-metric) g(s(k) - f (k);k). In other words, we have shown that splines are optimal, 
irrespective of the metric used, which is a rather remarkable property. 

2.2 Computational solution 

To solve the snake problem numerically, we express its cubic spline solution using the standard B-spline expansion 

s*(x)= -& (k)f13(x-k) 
kc2 (6) 

where the c(k) are the B-spline coefficients, and where the generating function is a cubic B-spline. 

Thanks to (6), we can now manipulate (2) to obtain a discrete form of the criterion in terms of the B-spline coefficients 
c (k) . Using the basic convolution and differentiation rules of splines (cf. [ZS]), we obtain the explicit formula 

&is) = xV(k,(b; *c)(k)) + Ac(b; * dC2) * c)(k)(dC2’ * c)(k) 
keZ ksZ 

(7) 
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where * denotes the discrete convolution operator and where the kernels bf (discrete cubic B-spline) and dc2) (second 

difference) are defined by their z-transform as follows: B:(z) = (z + 4 + z-l)/6 and Dc2)(z) = z - 2+ z? (cf. [19]). Note 
that we have now replaced the integral in the second term by a sum, which is much more tractable computationally. The task 
is then to minimize (7), which is typically achieved by differentiation with respect to c (k). In the case of a quadratic 

potential function, this leads to a linear system of equations that can be solved using any of the standard techniques [ 151. For 
the more general case when V(x, y) is not quadratic, the solution may still be determined numerically, for example by using 
an iterative algorithm (steepest descent or conjugate gradient). 
Note that the spline snake (6) has as many degrees of freedom (B-spline coefficients) as there are discrete contour points; i.e., 
one per integer grid point. If il is sufficiently small, then the spline (5) will interpolatefck) exactly. Conversely, the use of 
larger values of 2 will have the effect of stiffening the spline and smoothing out the discontinuities of the unconstrained 
contour curve f (x) . 

3. B-SPLINE SNAKES: PARAMETRIC FORMULATION 

3.1 Parametric solution 

The previous section has provided the link between splines and the traditional variational formulation of snakes. In this 
section, we propose to impose smoothness constraints in a simpler and more economical fashion, and to give an intuitive B- 
spline snake formulation useful for images. 
The idea is to eliminate the second term in (7) and to introduce a variable knot spacing between the knot points. An increased 
knot spacing will essentially have the same smoothing effect on the solution. Thus, we consider the simplified optimization 
problem 

s*(x) =arp~~;~V(k.q,(k)) 
h ksZ 

(8) 

which is now constrained indirectly in the sense that sh( x) with h > 1 is a coarser spline with knot spacing h : 

s/Jx)=&Jk).p3(xlh-k) 
keZ 

(9) 

Hence, our new smoothness parameter is h rather than il. . Typically, we will take h to be an integer m , which will reduce the 
number of degrees of freedom (B-spline coefficients) in the same proportion. If we perform the same substitution as before, 
we find that in the case of a quadratic potential function the new solution corresponds to a weighted least square spline 
approximation of the unconstrained curve f (x) . In the general case where V (x, y) is not quadratic, we still have some form 
of minimum error approximation, except that the “metric” is no longer Euclidean. 
To differentiate this new solution from the previous one, we will call it a parametric spline. This terminology is justified by 
the fact that the smoothness constraint is entirely implicit and that the number of degrees of freedom is much less than the 
number of contour points. A reduced number of control points simplifies the implementation and accelerates computation. 

The argument is essentially the same for more general curves in the plane, which are described using two splines instead of 
one. Specifically, we represent a general B-spline snake as follows: 

s,(t)=(s,(t),s).(f))=Cc(k).pn(~-k), (OItSt,, =hN-1). 
k=Z 

where s, (1) and sY (t) are the x and y spline components, respectively; these are both parameterized by the curvilinear 

variable t. The exact value of t,,,, which marks the end of the curve, is dictated by the desired resolution of the final discrete 
curve; by convention, we do only render the curve points for t integer. This 2D spline snake is characterized by its vector- 
sequence of B-spline coefficients c(k) = (cX (k), cY (k)) . Note that there are only N = t,, I h primary coefficient vectors, 

each corresponding to a spline knot on the curve; the other coefficient values are deduced using some prescribed boundary 
conditions. N node points that lie exactly on the snake define the initial curve. The B-spline coefficients c(k) are obtained by 
inverse filtering [ 181 from the N node points. 
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Clearly, if we specify N, the above automatically defines the knot-spacing h and therefore the smoothness constraint for the 
curve. Assuming a curve representation by M = t,,, + 1 discrete points, we obtain h = M I N . The freedom of the spline 
curve has been reduced by the same amount, resulting in a smoothing and stiffening of the curve. Increasing the number N of 
node points will reduce the knot spacing, and consequently it will reduce the smoothing effect on the curve. 

3.3 Energy formulation 

With the introduction of variable knot spacing, we no longer require internal curve energies. Experimental tests elsewhere 
demonstrate this point experimentally [20]. In the general case, the external potential function is defined by the gradient of the 
input data. While there are many possibilities to compute the gradient, we have chosen the morphological gradient: 

Vl(x, y) = Dilation(Z) - Erosion(Z) (11) 
This gradient is smooth and has proven useful in other applications [21]. Our cost function is the summation of the gradient 
(external force) over the path of the curve S(X) sampled at M consecutive points: 

M-l 

W W  = c - VZMi)) 
i=O 

(12) 

For the cost function to be a good approximation of the curvilinear integral, we will typically select M sufficiently large so 
that the curve points are connected (i.e. within a distance of one pixel of each other). We note, however, that the exact value 
of M is not critical; a less dense sampling may be used to increase optimization speed. The negative sign in (12) is used 
because we employ a minimization technique for the optimization. 

4. OPTIMIZATION STRATEGIES 

4.1 Function minimization 

The literature is rich on minimization strategies, including methods such as golden section search, steepest descent methods 
and conjugate gradient methods, as well as heuristic techniques tailored to a particular problem. In two dimensional 
optimization problems, one may advantageously use the information of the gradient of the energy function if it is available. 
The B-spline formulation allows an easy computation of the gradient function of the energy term. The parameters subject to 
optimization are the B-spline coefficients (and hence indirectly the node-points), yielding: 

WcW = Iv-l &VZ(s(i)> 

(c(k) c i=o at(k) 

WZ(sG>> = wmG>>) 22 wmm 
(13) 

at(k) as(i) s=s(c(k)) Wk) as(i) s=s(c(k)) 

4$-k) 

The term WOW)>> 

as(i) 
is the derivative of the force function in the spatial domain. It can be obtained by computing a 

s=s(c(k)) 

direct B-spline transform followed by a spline interpolation from a derivative B-spline. The direct transform only has to be 
done once at the beginning of the optimization. The use of splines throughout the entire development allows us to define a 
consistent B-spline snake framework. Equipped with the gradient, we can proceed to find the minimum of the energy function. 
Two algorithms have been studied: steepest descent and conjugate gradient. The former starts at an initial snake contour with 
parameters c,(k) . Consecutive values of C,(k) are changed to ci+l (k) by minimizing along a line going from ci (k) in the 

direction of the local downhill gradient -R ‘T(;‘)) . Lambda is found by performing a line search minimizing <( ci( k)) 
I 

along the direction of the gradient. This algorithm is often not efficient, because it potentially minimizes along the same line 
many times. The conjugate gradient algorithm provides a better solution, because it employs search directions that are A- 
orthogonal, which - in theory and for a quadratic potential function - perform exactly one minimization along the same line 
[22]. For non-quadratic potential functions, the algorithm is iterated, and still outperforms the steepest descent algorithm in 
the majority of cases. 
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4.2 Multi-resolution procedure 

Snakes may get trapped in local minima. Hence, a good initialization close to the desired contour is necessary. It is obtained 
based on a priori information or based on a manual placement. This requirement can be loosened through the use of a multi- 
scale representation. Multiscale processing is an old but powerful idea [23, 241. It is usually applicable whenever one wishes 
to implement an image processing algorithm that is iterative in nature and requires many successive updates. The basic 
principle is to construct an image pyramid and to start applying the procedure at the coarsest level on a very small version of 
the image. Upon convergence, the solution is propagated to the next liner level where it is used as starting condition. One then 
proceeds with this coarse-to-fine iteration strategy until one reaches the finest level of the pyramid which corresponds to the 
image itself. This type of multi-resolution approach has two advantages: first, on reduced versions of the image, a smaller 
number of curve points can be used thereby improving optimization speed. Second, it usually also improves robustness; the 
pyramid has a smoothing effect on the criterion to be optimized which often reduces the likelihood of getting trapped in local 
optima. 
We have presented a pyramid decomposition for improved up-projection of labels [25]. In this framework, the pyramid has a 
common axis of symmetry at all resolution levels. The image at a resolution r is orthogonally projected on a subspace 

V,+l(bc(k)), which may be defined by spline basis functions at different scales (the subscript w defines the scale of the 
spline, i.e. the knot spacing). If one uses powers of two for w , then for every step in the pyramid the image size is reduced by 
two in each dimension. Hence, the original set of node points n(k) is down projected onto a smaller version of the original 
image. The reduced image contains fewer image details, and thus less noise. The snake is potentially able to converge to the 
correct result from an initial contour farther away from the final contour. An example demonstrating the increased robustness 
of the multi-resolution approach is given in Fig. 1. In Fig. la), the initial starting contour is shown, which was drawn 
manually. The result of the direct optimization is shown in Fig. lc). Then, a three-level pyramid was computed using cubic 
spline basis functions. The optimized contours for the different levels are shown in Fig. lb). Clearly, the multi-resolution 
decomposition eliminates small (undesired) image details and the snake is able to converge to the true result. 
At spatially coarser resolution levels, the discrete curve points are spaced closer together. Accordingly, the resolution of the 
snake curve can be decreased by the same amount, which provides faster computation speeds without compromising the 
approximation quality. Given a snake scale parameter ho at the original resolution, we obtain h, = ho /m for the coarser 
pyramid level. 

a) initial contour b) multi-resolution c) single-resolution 

Figure 1: Identical initial contour a) for both b) and c), but only correct convergence with the multi-resolution approach. 
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5. PERFORMANCE EVALUATION 

We have already shown elsewhere that our B-spline snake formulation without internal energies produces results similar to 
those of the traditional snake using internal energies [20], while providing faster optimization speeds and providing more 
intuitive user interaction. Here, in addition, we would like to assess whether the proposed approach provides more consistent, 
and therefore in average more precise optimization results. The smaller the variance of multiple measures of the same 
quantity, the more consistent the analysis is. We propose to measure intra-observer consistency, as well as algorithm 
consistency. 
Intra-observer consistency is assessed from five different manual measurements of the surface-area of the corpus callosum and 
the associated standard errors. The five measurements were repeated using two different drawing tools; first using the pencil 
tool of a public domain software (NIH Image, V. 161), and then using the B-spline interface. For the latter, the user clicked 
and positioned node points along the contour, which were linked by a cubic spline. The manual tracer was free in selecting the 
number of desired node points. In average, about 20 node points were used. 
Algorithm consistency was assessed by measuring surface-area and standard error of the mean of the results obtained after 
optimization of the initial contours from the B-spline interface. Results are presented in Fig. 2 and in Table I. We note that 
manual contour outlining using the pencil tool or using the B-spline snake essentially produces the same quantitative results. 
Uncertainty values in terms of standard error of the mean are comparable for both approaches. Time requirements were 
similar, slightly favoring the B-spline approach. The latter, however, provides a visually better looking and more appealing 
contour (see Fig. 3). Surface-areas obtained after optimization of the initial curve prove to be more reliable, expressed by the 
lower value of standard error. The mean surface-area is smaller than in the previous two cases. It seems that the human tracer 
has a tendency to place contours somewhat outside of the transition, so that these transitions remain visible. An experiment 
with a phantom object would be adequate here to determine which of the two contours is closer to the true contour. Note also 
that the subjective impression of the manual tracer was that the B-spline snake offered a more agreeable way of contour 
outlining. 

g 2600 

? 
t+ 

2 2500 

s 

2400 

2300 
0 1 2 

Trill 
4 5 6 

Figure 2: Comparison of surface areas obtained by 1) manual tracing, 2) B-spline outlining, and 3) B-spline snake with 
optimization 
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c) B-spline outlining with optimization 

Figure 3: Comparison of different contour outlining techniques 

Table I: 
Surface-area and standard errors obtained for repetitive contour outlining of the corpus callosum by 1) manual tracing, 2) B- 

spline outlining, and 3) optimized B-spline snake 

Manual 
s = 2.5; a = 2784 
s = 23, a = 2789 
s = 23; a = 2744 
s = 22; a = 2877 

std err = 28.0 

B-spline outlining 
s = 20; a = 2727 
s = 20; a = 2732 
s = 21; a = 2777 
s = 20; a = 2852 
s = 23; a = 2697 
S=21; i-i=2757 
std err = 27.0 

Optimized B-spline snake 
s = 27; a = 2395 
s = 24; a = 2415 
s = 25; a = 2461 
s = 25; a = 2462 
s = 24; a = 2445 

std err = 13.2 

6. BIO-MEDICAL APPLICATIONS 

6.1 Segmentation of corpus callosum in an MRI image 

The corpus callosum is a relevant brain feature, and physicians are often interested in its size. Images are typically assessed by 
MRI. For this and other cases as well, it is routine medical practice for a technician to outline the boundaries manually. Often, 
the standard imaging tools consist of an interface that allows manual border tracing using the computer mouse. Technicians 
face several problems related to that task. First, the hand drawn boundary is subject to small, uncontrollable hand movements 
that result in a noisy boundary. Second, the technician often does not have the possibility to pause in the outlining process. 
Also, a curve that is not considered satisfactory often has to be redrawn in its entirety. 
We have asked an experienced technician to outline the boundaries of the corpus callosum using the B-spline snake concept. 
She found the tools appealing, and stressed the fact that it is much easier and more accurate to click on a certain number of 
points, instead of having to follow the desired contour using a pencil drawing tool. We have presented this example in detail 
during the algorithm description (see Fig. 3). In this context, note also that elastic deformation transformations have been 
studied as a quantitative description of the callosal shape with respect to the Talairach atlas [26]. 
For this particular example, we also tried the standard Kass-type regularized snake but had considerable difficulties to find a 
set of the stiffness parameters that would make the snake converge to an appropriate solution. The main difficulty there is that 
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even if we assume that those parameters exist, it can be quite time consuming to adjust them interactively by trial and error. 
For the B-spline approach, the user interaction is much more natural; the snake can be constructed easily to conform to less 
standard shapes by simply entering more nodes in areas where the contour is not so smooth. 

6.2 Segmentation of a PET image sequence 

The purpose of this application is to demonstrate the vast range of applicability of the B-spline snake. PET-scans are much 
noisier than MRI scans or CT scans, and of much different nature than ultrasound images (coronary artery). An example of 
one frame of an 18-frame sequence of the brain is shown in Fig. 4a). Here, researches are interested in finding the boundaries 
of the brain. The B-spline snake is not suited for separating gray and white matter, because the desired contour is not smooth 
and would require the introduction of a large number of node points. However, on the PET scan, it may be an interesting tool 
for a gross separation of the brain from the scull. 
Enhancement of the original image (Fig. 4a) by a contrast operator highlighted contours of interest (Fig. 4d). Manual 
placement of the initial contour in the first frame of the sequence using four node points (Fig. 4b) was followed by automatic 
knot insertion at a scale h twice as fine, yielding a modified initial contour with eight equidistantly spaced node points (Fig. 
4~). This contour was optimized using the conjugate gradient algorithm and a multi-resolution decomposition of two levels. 
The optimized contour (Fig. 4e) is automatically propagated to the next neighboring frame, where it served as new initial 
contour (i.e. no more user interaction necessary). The final result for frame 18 is shown in Fig. 4f. 

d) enhanced image 
Figure 4: PET-scan of the brain. 

6.3 Segmentation of ultrasound images 

f) detection of the brain (last frame) 

In this application, the B-spline snake is applied on coronary artery ultrasound images for the detection of the endothelial 
wall. From the resulting curve, the treating physician is then capable to compute surface-area of the coronary artery, which is 
an important measure for the analysis of atherosclerosis. 
The segmentation has been obtained by manually positioning the initial curve in the first frame of the sequence at the 
approximate correct location using four node points and a cubic B-spline snake. The curve was then automatically optimized 
to attract it toward the endothelial wall using the conjugate gradient algorithm and a three-level pyramid. The final 
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segmentation result has been shown in Fig. 1. The entire image sequence is segmented based on a single initial contour for the 
first frame, with forward propagation of the initial solution to consecutive frames. 

7. CONCLUSIONS 

In this paper, an alternate B-spline snake formulation has been presented. Its main characteristic is a variable knot spacing, 
which allows to implicitly control the smoothness of the curve. We have given theoretical justification for B-splines to be 
optimal in a snake formulation where internal energies are no longer necessary. Also, we have presented an optimization 
strategy using a multi-resolution approach in both the image domain (image pyramid) and the parametric contour domain 
(larger spline knot spacing). Such an approach ensures fast execution speeds, as well as robustness in noisy image 
environments. We have presented an experiment to assess intra operator variability, demonstrating that the proposed approach 
produces consistent results and provides a mean for intuitive user-interaction. 
The method has been demonstrated on a variety of problems, featuring different image modalities. The proposed algorithms 
can be applied on a vast range of images with varying signal to noise ratios and image resolutions. We believe that the 
proposed technique could be a valuable tool for the outlining of image contours in bio-medical applications. 
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