Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Cell Detection
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Fast Detection of Cells Using a Continuously Scalable Mexican-Hat-Like Template

K.N. Chaudhury, Z. Püspöki, A. Muñoz Barrutia, D. Sage, M. Unser

Proceedings of the Seventh IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'10), Rotterdam, Kingdom of the Netherlands, April 14-17, 2010, pp. 1277-1280.


We propose a fast algorithm for the detection of cells in fluorescence images. The algorithm, which estimates the number of cells and their respective centers and radii, relies on the fast computation of intensity-based correlations between the cells and a near-isotropic Mexican-hat-like detector. The attractive features of our algorithm are its speed and accuracy. The former attribute is derived from the fact that we can compute correlations between a cell and detectors of various sizes using O(1) operations; whereas, it is our ability to continuously control the center and the radius of the detector that results in a precise estimate of the position and size of the cell. We provide experimental results on both simulated and real data to demonstrate the speed and accuracy of the algorithm.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/chaudhury1001.html,
AUTHOR="Chaudhury, K.N. and P{\"{u}}sp{\"{o}}ki, Z. and
	Mu{\~{n}}oz-Barrutia, A. and Sage, D. and Unser, M.",
TITLE="Fast Detection of Cells Using a Continuously Scalable
	{M}exican-Hat-Like Template",
BOOKTITLE="Proceedings of the Seventh {IEEE} International Symposium on
	Biomedical Imaging: {F}rom Nano to Macro ({ISBI'10})",
YEAR="2010",
editor="",
volume="",
series="",
pages="1277--1280",
address="Rotterdam, Kingdom of the Netherlands",
month="April 14-17,",
organization="",
publisher="",
note="")

© 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved