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On the Hilbert Transform of Wavelets

Kunal Narayan Chaudhury and Michael Unser

Abstract—A wavelet is a localized function having a prescribed number
of vanishing moments. In this correspondence, we provide precise argu-
ments as to why the Hilbert transform of a wavelet is again a wavelet. In
particular, we provide sharp estimates of the localization, vanishing mo-
ments, and smoothness of the transformed wavelet. We work in the general
setting of non-compactly supported wavelets. Our main result is that, in the
presence of some minimal smoothness and decay, the Hilbert transform of a
wavelet is again as smooth and oscillating as the original wavelet, whereas
its localization is controlled by the number of vanishing moments of the
original wavelet. We motivate our results using concrete examples.

Index Terms—Hilbert transform, localization, smoothness, vanishing
moments, wavelets.

I. INTRODUCTION

It is known that the poor translation-invariance of standard wavelet
bases can be improved by considering a pair of wavelet bases, whose
mother wavelets are related through the Hilbert transform [1]–[4]. The
advantages of using Hilbert wavelet pairs for signal analysis had also
been recognized by other authors [5], [6]. More recently, it was shown
in [7] how a Gabor-like wavelet transform could be realized using such
Hilbert pairs.

The fundamental reasons why the Hilbert transform can be seam-
lessly integrated into the multiresolution framework of wavelets are its
scale and translation invariances, and its energy-preserving (unitary)
nature [7]. These properties are at once obvious from the Fourier-do-
main definition of the transform. We recall that the Hilbert transform

of a sufficiently well-behaved function is specified by

for

for (1)

On one hand, the unitary nature ensures that the Hilbert transform of
a (wavelet) basis of is again a basis of . On the other
hand, the invariances of scale and translation together provides co-
herence—the Hilbert transform of a wavelet basis generated from the
mother wavelet is simply the wavelet basis generated from the
mother wavelet .

The flip side, however, is that the transform is incompatible with
scaling functions (low-pass functions in general), the building blocks
of multiresolution analyses. As shown in Fig. 1, the transform “breaks
up” scaling functions, resulting in the loss of their crucial approxi-
mation property. Moreover, the transformed function exhibits a slow
decay. Starting from a given multiresolution with associated wavelet
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Fig. 1. Scaling functions and their Hilbert transforms: (a) the discontinuous
Haar scaling function (BLUE) and its transform (RED) and (b) the smooth cubic
B-spline (BLUE) and its transform (RED). In either case, the transformed func-
tion is “broken up” and, as a consequence, loses its approximation property.
In particular, the transform no longer exhibits the partition-of-unity property,
which is characteristic of scaling functions. Also, note the slow decay of the
transform, particular for the smooth spline function. In fact, both the transforms
decay as —the smoothness of the original function has no effect on the
decay of the transform.

basis , this presents conceptual difficulties in realizing a dual
multiresolution with basis . It was shown in [7] that this
pathology can, however, be overcome by a careful design of the dual
multiresolution in which the Hilbert transform is applied only on the
wavelet, and never explicitly on the scaling function.

The above-mentioned pathologies can be explained by considering
the space-domain definition of the transform, which is slightly more
involved mathematically (see, e.g., [8] and [9]):

(2)
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Fig. 2. The convolution kernel of the Hilbert transform, . It has a singu-
larity at the origin and its tails decay slowly. The former pathology can be over-
come provided that the signal on which the transform is applied is sufficiently
smooth, while the slow decay can be overcome if the signal is of compact sup-
port, or at least, sufficient decay.

Disregarding the technicalities involving the use of truncations and
limits, is thus essentially given by the convolution of with
the kernel (cf. Fig. 2). It is now readily seen that the above-men-
tioned observations follow as a consequence of the “oscillating” form
of the kernel and its slow decay at the tails. We will conveniently switch
between definitions (1) and (2) in the sequel.

Our main observation is that the Hilbert transform goes well with
oscillatory patterns, and wavelets in particular. The archetypal relation
in this regard is its action on pure sinusoids,

Thus, the transform tends to preserve oscillations. The nature of the
interaction with localized oscillations is suggested by the relation

(3)

which holds if the localization window is bandlimited to
[10]. This is an immediate consequence of definition (1).

The crucial observation, however, is that the transformed signal is
again smooth (in fact, infinitely differentiable) and oscillatory, and im-
portantly, has the same localization as the input signal. It is known that
a particular family of spline wavelets, namely, the B-spline wavelets
[11], converge to a function of the form with the
increase in the order of the spline. In particular, it was shown in [7]
that the Hilbert transform has comparable localization, smoothness,
and vanishing moments for sufficiently large orders (cf. Fig. 3).
It was also shown that the transformed wavelet in fact approaches

as the order increases, which is consistent with
(3). Since, more generally, wavelets with sufficient smoothness and
vanishing moments can be made to closely approximate the form in
(3), we could in fact arrive at a similar conclusion for a larger class of
wavelets.

Using these instances as guidelines, we attempt to answer the fol-
lowing basic questions in the sequel:

• When is the Hilbert transform of a wavelet well-defined? In par-
ticular, how much smoothness and decay is required?

Fig. 3. B-spline wavelets (shown in BLUE) and their Hilbert transforms
(shown in RED). The wavelets are ordered (left to right) by increasing
smoothness and vanishing moments; both are compactly supported. Notice
how the decay of the Hilbert transform increases with the increase in vanishing
moments—the transform of the cubic spline wavelet appears to have an almost
identical localization. Moreover, it is as smooth as the original wavelet. It is
shown in the text that, in the presence of some minimal smoothness, the Hilbert
transform is as smooth and oscillating as the spline wavelet. (a) Degree 0 (Haar
wavelet) and (b) Degree 3 (Cubic spline wavelet).

• Why does the Hilbert transform of a wavelet exhibit better decay
than the corresponding scaling function? How does one really get
past the decay?

• How good is the localization of the transformed wavelet, how
smooth is it, and how many vanishing moments does it have?

II. NOTATIONS

The Fourier transform of is defined by
. We omit the domain of integration when

this is obvious from the context. We define ,
and . The notation denotes the
function . We write to
signify that for all , where is an absolute
constant. We denote the first derivative of by ; in general,
we denote the th derivative by . We say that is -times
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continuously differentiable if all its derivatives up to order exists
and are continuous.

III. MAIN RESULTS

The kernel fails to be absolutely integrable owing to its slow
decay and, more importantly, its singularity at the origin. The limiting
argument in (2) avoids the singularity by truncating the kernel around
the origin in a systematic fashion. The slow decay of the kernel, on the
other hand, can be dealt with by simply restricting the domain of (2) to
functions with sufficient decay.

As noted in the introduction, the Hilbert transform goes well only
with smooth functions. This can be readily appreciated by looking at
the transform of the discontinuous Haar wavelet in Fig. 3. In this case,
the transform “blows up” in the vicinity of the discontinuities, and is, in
fact, not even well defined at the points of discontinuity. The following
result, which relies on some classical methods of harmonic analysis,
explains how this problem can be fixed.

For convenience, we introduce the mixed norm
which measures both the local smoothness and the global size

of .
Theorem III.1 (The Classical Result): Let be a differentiable

function such that both and are finite. Then
is well-defined, and

(4)

In particular, this holds true if is continuously differentiable
and is of compact support.

Proof: Consider the basic quantity

(5)

Note that . To begin with, we at least need to guar-
antee that is well-defined. Note that the integrand in (5) is the
product of the bounded function (on ) and the integrable
function . Therefore, the integral is absolutely convergent for all

. All we need to show is that the integral remains convergent as
. To this end, we split the integral in (5), and use the anti-sym-

metry of to write

where when and zero otherwise. Clearly,
the second integral is convergent. As for the first, note that since
is bounded, by the mean-value theorem,

for and for all . Therefore, by the dominated conver-
gence theorem,

In particular, we conclude that is well defined, and

(6)

Since has the same decay and smoothness as , it is now
immediate that is well defined (pointwise), and that

(7)

Next, we note that

where . Since is finite, is well defined,
and

Therefore,

(8)

Combining (7) and (8), we obtain (4).
We note that the main conclusions of the theorem are well-known

results in harmonic analysis; e.g., see [8] and [9]. Moreover, the as-
sumptions under which we reproduce these results in Theorem III.1
are on the conservative side. In fact, as can already be seen from our
derivation, the transform remains well-defined if we replace the con-
straint by the weaker hypothesis of Lipschitz continuity,
that is, if for some absolute constant . Our
goal here was to introduce some mathematical tools which we eventu-
ally use to prove our main result.

A. Vanishing Moments and Decay

The derivation of the Theorem III.1 exposes the unfortunate fact that
the poor decay cannot be improved even if is required to be
more smooth (cf. transform of the cubic spline in Fig. 1), or have a
better decay. However, it does suggest the following: If goes
to zero as goes to infinity (which is the case if is sufficiently
nice), then

In particular, if has zero mean, then goes to zero at in-
finity. Therefore, the decay of must be better than in this
case. This alludes to the connection between the zero-mean condition
and the improvement in decay. To make this more precise, we consider
the example of the Haar wavelet

for
for
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Let . Since has zero mean, we can write

Now for , and . Hence,

Thus, while the Hilbert transform of the Haar scaling function decays
only as , the transform of the Haar wavelet has a better decay of

. This is clearly seen by comparing the plots in Figs. 1 and 3.
We can now generalize the above observation by requiring that, for

some

This vanishing moment property is in fact characteristic of wavelets,
which are often parametrized by the number [12]. The following
result explains how higher vanishing moments can contribute to the
increase in the decay of the Hilbert transform. The main idea is that the
kernel of the Hilbert transform effectively behaves as in the
presence of vanishing moments.

We use the augmented decay to compute the number of vanishing
moments of the transformed wavelet.

Theorem III.2 (Decay and Vanishing Moments): Let be a dif-
ferentiable wavelet having vanishing moments. Also, assume that

, and are finite. Then is
well-defined, and

(9)

Moreover, has vanishing moments.
Before proceeding to the proof, we make some comments. Note

that, under the assumptions on the vanishing moments, (9) holds true
for compactly supported wavelets provided it is continuously differen-
tiable. This in fact is the case for the cubic spline wavelet shown in
Fig. 3. More generally, (9) holds if is continuously differentiable,
has vanishing moments, and satisfies the mild decay conditions

where and are arbitrarily small positive numbers. The significance
of the above result is that by requiring to have a large number
of vanishing moments, we can effectively make as localized as

. This had been observed qualitatively early on in connection with
the wavelet localization of the Radon transform [13].

Now, we show that (9) is sharp, by considering the special case of
B-spline wavelets. It is known that if is a B-spline wavelet of
degree , then is again a (fractional) B-spline wavelet of
the same degree, and hence has the same decay of [7], [14].
This exactly what is predicted by (9), since is known to have
vanishing moments.

Proof of Theorem III.2: It follows from Theorem III.1 that
is well-defined, and that

(10)

As for the decay, fix any away from zero, and let

It is clear that

Using this, we can write

A simple computation shows that

so that

where . From Theorem III.1 and the assumptions on
, it follows that

Combining this with (10), we obtain (9).
As for the vanishing moments of , note that, since has
vanishing moments,
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One can then verify, e.g., using the dominated convergence theorem,
that is -times differentiable, and that

(11)

Therefore, for .
Now, since is square-integrable,1 (1) holds. It can then be ver-

ified that is -times differentiable, and that
for . To arrive at the desired conclusion, we note that

, whereby

This is sufficient to ensure that (11) holds for , thus completing
the proof.

Note that the specialized form of this result is well-know for the par-
ticular case of , that is, when the function is of zero mean. For
example, along with the classical Caldéron–Zygmund decomposition
(a wavelet-like decomposition), this is used to derive certain bounded-
ness properties of the transform on the class of integrable functions [9].
To the best of our knowledge, there is no explicit higher-order gener-
alization of this result in the form of Theorem III.2 in the harmonic
analysis or signal processing literature.

B. Smoothness

We now investigate the smoothness of . The route we take
capitalizes on the Fourier-domain specification of the transform, and
the fact that the smoothness of a function is related to the decay of
its Fourier transform. In general, the better the decay of the Fourier
transform, the smoother is the function, and vice versa. We recall
that a finite-energy signal is said to belong to the Sobolev space

if

The Sobolev embedding theorem asserts that every belonging to
can be identified (almost everywhere) with a function which

is -times continuously differentiable provided that ; e.g.,
see [12]. Since (1) holds true for all finite-energy signals, we immedi-
ately conclude that

Proposition III.3 (Comparable Smoothness): If belongs to
, then belongs . In particular, if

, then both and are -times continuously differen-
tiable (almost everywhere).

For example, the cubic spline wavelet belongs to for all
[14]. This explains the comparable smoothness of the

wavelet and its transform shown in Fig. 3, which are both twice con-
tinuously differentiable.

1This follows from the fact that is both integrable and bounded. The
boundedness of is a consequence of its uniform continuity, which in turn
follows from the boundedness of . Indeed, uniform continuity along with
integrability implies that as , and this along with conti-
nuity implies boundedness.

IV. CONCLUSION

It has been known for quite some time that the Hilbert transform
of a wavelet is again a wavelet. In this correspondence, we were con-
cerned with the precise understanding of the sense in which this holds
true. In particular, we formulated certain basic theorems concerning
the localization, smoothness, and the number of vanishing moments of
the Hilbert transform of a wavelet. Our main objective was to provide
self-contained and straightforward proofs of these results along with
some concrete examples.
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