Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Amyloid Imaging
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Predicting Cognitive Decline with Deep Learning of Brain Metabolism and Amyloid Imaging

H. Choi, K.H. Jin

Behavioural Brain Research, vol. 344, pp. 103-109, May 15, 2018.


For effective treatment of Alzheimer's disease (AD), it is important to identify subjects who are most likely to exhibit rapid cognitive decline. We aimed to develop an automatic image interpretation system based on a deep convolutional neural network (CNN) which can accurately predict future cognitive decline in mild cognitive impairment (MCI) patients using flurodeoxyglucose and florbetapir positron emission tomography (PET). PET images of 139 patients with AD, 171 patients with MCI and 182 normal subjects obtained from Alzheimer's Disease Neuroimaging Initiative database were used. Deep CNN was trained using 3-dimensional PET volumes of AD and normal controls as inputs. Manually defined image feature extraction such as quantification using predefined region-of-interests was unnecessary for our approach. Furthermore, it used minimally processed images without spatial normalization which has been commonly used in conventional quantitative analyses. Cognitive outcome of MCI subjects was predicted using this network. The prediction accuracy of the conversion of mild cognitive impairment to AD was compared with the conventional feature-based quantification approach. Accuracy of prediction (84.2%) for conversion to AD in MCI patients outperformed conventional feature-based quantification approaches. ROC analyses revealed that performance of CNN-based approach was significantly higher than that of the conventional quantification methods (p < 0.05). Output scores of the network were strongly correlated with the longitudinal change in cognitive measurements (p < 0.05). These results show the feasibility of deep learning as a practical tool for developing predictive neuroimaging biomarker.

@ARTICLE(http://bigwww.epfl.ch/publications/choi1801.html,
AUTHOR="Choi, H. and Jin, K.H.",
TITLE="Predicting Cognitive Decline with Deep Learning of Brain
	Metabolism and Amyloid Imaging",
JOURNAL="Behavioural Brain Research",
YEAR="2018",
volume="344",
number="",
pages="103--109",
month="May 15,",
note="")

© 2018 Elsevier. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Elsevier. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved