Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Box-Splines
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Efficient Reconstruction of Hexagonally Sampled Data Using Three-Directional Box-Splines

L. Condat, D. Van De Ville, M. Unser

Proceedings of the 2006 Thirteenth IEEE International Conference on Image Processing (ICIP'06), Atlanta GA, USA, October 8-11, 2006, pp. 697-700.


Three-directional box-splines are particularly well-suited to interpolate and approximate hexagonally sampled data. In this paper, we propose a computationally efficient end-to-end reconstruction process. First, we introduce a prefiltering step that is based on a quasi-interpolation scheme using low-complexity finite-impulse-response (FIR) filters. Second, we derive a closed analytical expression for three-directional box-splines of any order that leads to a fast evaluation of the spline surface. All operations act locally on the data, and thus are well adapted to applications dealing with large images. To demonstrate the feasibility of our method, we implemented the complete procedure and we present experimental results.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/condat0602.html,
AUTHOR="Condat, L. and Van De Ville, D. and Unser, M.",
TITLE="Efficient Reconstruction of Hexagonally Sampled Data Using
	Three-Directional Box-Splines",
BOOKTITLE="Proceedings of the 2006 Thirteenth {IEEE} International
	Conference on Image Processing ({ICIP'06})",
YEAR="2006",
editor="",
volume="",
series="",
pages="697--700",
address="Atlanta GA, USA",
month="October 8-11,",
organization="",
publisher="",
note="")

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved