Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Exact Discretization
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

B-Spline-Based Exact Discretization of Continuous-Domain Inverse Problems with Generalized TV Regularization

T. Debarre, J. Fageot, H. Gupta, M. Unser

IEEE Transactions on Information Theory, vol. 65, no. 7, pp. 4457-4470, July 2019.


We study continuous-domain linear inverse problems with generalized total-variation (gTV) regularization, expressed in terms of a regularization operator L. It has recently been proved that such inverse problems have sparse spline solutions, with fewer jumps than the number of measurements. Moreover, the type of spline solely depends on L (L-splines) and is independent of the measurements. The continuous-domain inverse problem can be recast in an exact way as a finite-dimensional problem by restricting the search space to splines with knots on a uniform finite grid. However, expressing the L-spline coefficients in the dictionary basis of the Green's function of L is ill-suited for practical problems due to its infinite support. Instead, we propose to formulate the problem in the B-spline dictionary basis, which leads to better-conditioned problems. As we make the grid finer, we show that a solution of the continuous-domain problem can be approached arbitrarily closely with functions of this search space. This result motivates our proposed multiresolution algorithm, which computes sparse solutions of our inverse problem. We demonstrate that this algorithm is computationally feasible for 1D signals when L is an ordinary differential operator.

@ARTICLE(http://bigwww.epfl.ch/publications/debarre1903.html,
AUTHOR="Debarre, T. and Fageot, J. and Gupta, H. and Unser, M.",
TITLE="\mbox{{B}-Spline}-Based Exact Discretization of Continuous-Domain
	Inverse Problems with Generalized {TV} Regularization",
JOURNAL="{IEEE} Transactions on Information Theory",
YEAR="2019",
volume="65",
number="7",
pages="4457--4470",
month="July",
note="")

© 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved