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Observing cellular responses to perturbations is central to gener-
ating and testing hypotheses in biology.We developed amassively
parallel microchemostat array capable of growing and observing
1,152 yeast-GFP strains on the single-cell level with 20 min time
resolution. We measured protein abundance and localization
changes in 4,085 GFP-tagged strains in response to methyl
methanesulfonate and analyzed 576 GFP strains in five additional
conditions for a total of more than 10,000 unique experiments,
providing a systematic view of the yeast proteome in flux. We
observed that processing bodies formed rapidly and synchro-
nously in response to UV irradiation, and in conjunction with 506
deletion-GFP strains, identified four gene disruptions leading to
abnormal ribonucleotide-diphosphate reductase (Rnr4) localization.
Our microchemostat platform enables the large-scale interrogation
of proteomes in flux and permits the concurrent observation of
protein abundance, localization, cell size, and growth parameters
on the single-cell level for thousands of microbial cultures in
one experiment.

microfluidics | cell arrays | high-content imaging | DNA damage response |
yeast proteomics

Observing proteins in the cellular milieu has been a long-
standing technical challenge in biology. One major advance

was the development of GFP, enabling the visualization of pro-
teins in vivo (1). High-content imaging has been primarily ap-
plied to mammalian cells, using either reverse transfection arrays
or microtiter-based systems in which the slow doubling time of
mammalian cells enables long-term imaging under static con-
ditions (2, 3).
The Saccharomyces cerevisiae GFP fusion library covering

4,159 proteins provided the first static view of global protein
abundance, localization, and noise (4, 5). This library was re-
cently used to establish the static differences in protein abun-
dance and localization in response to DNA replication stress
induced by methyl methanesulfonate (MMS) and hydroxyurea
(HU) (6), in response to DTT, H2O2, and nitrogen starvation
(7), and 800 cytoplasmic proteins were analyzed upon entry into
stationary phase (8). These three recent large-scale screens all
relied on standard microtiter plates for imaging the yeast strains
at a single time point before and after perturbation. Meanwhile,
microfluidic devices emerged as powerful tools for conducting
complex time-lapse experiments on small to medium scales (9,
10), enabling the analysis of cellular network responses (11) and
the implementation of synthetically engineered systems (12).
However, it has thus far been technically impossible to in-
terrogate thousands of continuously growing microbial strains
with high spatiotemporal resolution in a single experiment.
Despite the fact that a wealth of systems-level information is

available for S. cerevisiae, the single-cell temporal dynamics of
protein abundance and localization has not yet been measured
on a systems scale. To enable such analyses we developed a
microfluidic platform capable of growing and observing 1,152
yeast strains with a temporal resolution of 20 min. We explored

the dynamic behavior of ∼2/3 of the yeast proteome by imaging
4,085 yeast-GFP strains during a switch to 0.03% MMS. A subset
of 576 strains that exhibited abundance or localization changes in
response to MMS were interrogated in five additional con-
ditions: HU, low MMS, MMS pulses, UV pulses, and hyper-
osmotic shock. We generated 506 deletion-GFP strains that
allowed us to identify components regulating processing body (P-
body) formation in response to UV irradiation. We confirmed
that Wtm1 regulates Rnr4 nuclear localization, which is a key
effector of the UV response. We additionally identified two gene
deletions, tsa1Δ and rtt101Δ, that led to increased cytoplasmic
localization of Rnr4 and two gene deletions, rai1Δ and nam7Δ,
that led to increased nuclear localization. We thus establish
P-body formation as an intricate component of the UV stress
response and provide insights into Rnr4 regulation.

Results
Massively Parallel Microchemostat Device. We developed a micro-
fluidic device containing an array of 1,152 microchemostats (Fig.
1 A and B and SI Appendix, Figs. S1–S5). These 1,152 micro-
chemostats are subdivided into three independent sections of
384 microchemostats each, and medium supply can be switched
between two sources. Yeast strains are arrayed on a standard
microscope coverslip using a DNA array spotter (Fig. 1C and SI
Appendix, Figs. S1 and S4). The cell array is aligned to the
microfluidic device, and the device is then primed with medium,
which is continuously flowed through the medium supply chan-
nels. No fluid flow occurs through the microchemostats, and
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nutrients are supplied by diffusion to each growth chamber (SI
Appendix, Fig. S5). The arrayed cells start to divide and eventually
occupy all available space in the michrochemostat. Once the
microchemostats are confluent, cells are prevented from escap-
ing the bottom of the growth chamber by the shallow sieve
channels. Cells thus are pushed out the top of each micro-
chemostat, where they are carried away by the medium stream and
consequently eluted from the device. Michrochemostat cross-
contamination is avoided because there is no active flow through
the microchemostats. Furthermore, once the growth chambers are
confluent, cells cannot invade other microchemostats (SI Appen-
dix, Movie S1). Details of cell arraying, device priming, and on-
chip cell culturing are given in the SI Appendix, and SI Appendix,
Movies S1–S3 show on-chip cell growth.
To achieve high-quality imaging each strain was grown as

a monolayer by using an active method to push down on the
5-μm-high microchemostat roof (Fig. 1B and SI Appendix, Fig.
S1). The microfluidic device was placed on an automated fluo-
rescence microscope to image each microchemostat in phase
contrast and fluorescence at 90× magnification and 20-min time
resolution (SI Appendix, Fig. S3). We determined the on-chip
doubling time to be 129 min, which is comparable to a batch
doubling time of 120 min (SI Appendix, Fig. S7).

Image Analysis. Image analysis was accomplished with a custom-
written software pipeline that automatically conducts all pro-
cessing steps, including chamber segmentation, cell segmenta-
tion, background correction, signal deconvolution, and protein
localization analysis (SI Appendix, Figs. S8–S13). Cell segmen-
tation is accomplished in two steps. First the images were seg-
mented using a watershed, followed by the precise segmentation
of cells using ovuscules and e-snakes (SI Appendix, Fig. S8B). Using
a virtual cell sorting algorithm, we achieved a specificity of 92.3%
for correctly segmented cells (SI Appendix, Figs. S8C and S12).
Aside from being extremely labor intensive, we found that

manual annotation of protein localization can be error prone,
with often limited overlap between two independent annota-
tions. To eliminate our dependency on manual scoring we de-
veloped algorithms to quantify protein localization (SI Appendix,
Fig. S8 D and E). We implemented a fuzzy classification ap-
proach that returns the probability of a cell to display any mix-
ture of six main spatial patterns defined as (i) periphery (cell
membrane), (ii) structure (endoplasmic reticulum, golgi, vacu-
ole, etc.), (iii) punctate (cytoplasmic or nuclear foci), (iv) disk
(nuclear and nucleolar), (v) corona (cytoplasmic), and (vi)
homogeneous (no detectable localization) (SI Appendix, Fig.
S8D). This classifier allowed us to determine subcellular protein
localization, to detect protein localization changes, and to
quantify the timing of localization changes. The probability
vectors of the six spatial patterns carry sufficient information to

distinguish similar subcellular localizations, such as nuclear
(Hhf1) and nucleolar (Utp10) (SI Appendix, Fig. S8E), and can
be mapped back to physiologically relevant localization classes as
defined by Huh et al. (5) (SI Appendix, Figs. S8F and S31–S34).
The analysis returned a comprehensive set of data including
single-cell protein abundance, noise, localization, and morpho-
logical features such as cell size (SI Appendix, Fig. S8G and
Movie S4). Details can be found in SI Appendix.

Data Overview and Platform Performance.With 22 microchemostat
devices we captured 23,040 movies, of which 16,731 (72.6%)
passed a stringent quality filter (SI Appendix, Table S2). These
16,731 movies consisted of 21 × 106 images, from which we ana-
lyzed a total of 1.5 × 108 cells, with an average of 199 cells
quantified per image. By comparison, the original University of
California, San Francisco (UCSF) yeast-GFP collection consisted
of 14,562 images (5), the study by Tkach et al. collected 74,664
images (6), and the entire University of Washington - Yeast Re-
source Center (UW-YRC) currently contains ∼1.2 × 106 images.
Overall we performed the equivalent of more than 10,000 unique
experiments. All data can be accessed at cellbase.epfl.ch.
We imaged the complete GFP library (4,159 strains) growing

for 6 h in standard conditions (SD-his, 20 g/L glucose), followed
by a switch to medium containing 0.03% MMS for 7 h. We
achieved a coverage of 4,085 strains (98.2%) (SI Appendix, Fig.
S17). On the basis of this dataset, we manually selected a subset
of 576 strains for which we observed protein abundance or lo-
calization changes in response to MMS. This subset was further
analyzed under five additional conditions: (i) 0.2 M HU, (ii) low
MMS (0.0075%), (iii) MMS pulses, (iv) UV pulses, and (v)
hyperosmotic shock (1 M sorbitol).
We used 2,580 duplicate movies to assess the repeatability of

our measurement. The mean and SD of the raw intensity values
correlated well between two independent repeats (R2

log = 0:91) and
were stable over the entire recording period (SI Appendix, Fig.
S16). The correlations were slightly weaker after deconvolution
owing to low protein abundance in many strains (R2

lin = 0:96,
R2
log = 0:43, and Rs = 0:72) (Fig. 2A), and the relationship between

protein noise and abundance was similar to that in previous
experiments (SI Appendix, Fig. S14) (4, 13, 14). Our measurements
were also in good agreement with a FACS measurement
(R2

log = 0:74; SI Appendix, Fig. S20) (4), a recent microscopy study
(R2

log = 0:72; SI Appendix, Fig. S21) (6), and with two methods for
determining absolute protein abundance: tandem affinity purifi-
cation (TAP) western (R2

log = 0:78) (15) and mass spectrometry
(R2

log = 0:84) (SI Appendix, Fig. S14) (16). The latter correlations
allowed us to derive a calibration curve converting arbitrary
fluorescence values to absolute numbers of proteins per cell.

Protein Abundance Changes. To identify proteins whose abun-
dance changed upon MMS treatment, we compared the mean
abundance values of the last three time points with pre-MMS
levels. A total of 124 proteins exhibited a significant fold increase
(P < 0.01, >threefold) (Fig. 2 B and C). Surprisingly, no proteins
were observed with a significant fold decrease. Cells thus accu-
mulated protein upon MMS treatment (Fig. 2B, orange line). A
similar result was recently observed for ∼2,500 proteins mea-
sured from bulk populations by mass spectrometry in response to
osmotic shock (17). At steady state, protein abundance is de-
termined by synthesis, degradation, and dilution rates. Cells
arrested within 1 h upon exposure to MMS, effectively elimi-
nating dilution (SI Appendix, Fig. S22). We note that low-abun-
dance proteins could be actively degraded but that their absolute
change in abundance is below the current sensitivity limit. Nev-
ertheless, no medium- or high-abundance proteins were observed
to significantly decrease upon MMS treatment. The same was
observed for the subset of 576 proteins measured in the five ad-
ditional stress conditions (SI Appendix, Figs. S26–S30), suggesting
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Fig. 1. A massively parallel microchemostat array for culturing 1,152 yeast
strains. (A) Design of the microchemostat array with flow and control layers
in blue and red, respectively. (B) Detailed schematic of a pair of micro-
chemostats. (C) Illustration of the chip programming process.
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that yeast cells rely on dilution for the removal of medium- to
high-abundance proteins, rather than expending energy in active
degradation, under the stress conditions examined here.
We determined the timing and accumulation rates of the 124

up-regulated proteins. Accumulation rates ranged over 3 orders
of magnitude, from ∼100 to 100,000 proteins·cell−1·h−1. The rate
was independent of initial protein abundance and inversely cor-
related with time to induction (Rs = −0.60; Fig. 2D). For proteins
that increased in low MMS or MMS pulses, the time to induction
was longer compared with high MMS, and accumulation rates
were lower, showing that timing and rates are interdependent (SI
Appendix, Fig. S25).
It is known from gene expression studies that mRNA levels are

globally altered within 30 min after MMS exposure (SI Appendix,
Fig. S24) (18). We tested whether mRNA induction times cor-
related with observed protein induction times but found that
mRNA and protein induction times did not correlate (RS = 0:15;
Fig. 2D and SI Appendix, Fig. S24). This suggests that yeast cells
optimize protein accumulation to temporally control the in-
crease in protein abundance rather than timing transcript in-
duction. A poor correlation was also observed between protein
and mRNA fold changes in our dataset (SI Appendix, Fig. S23)
and by Tkach et al. (6), but a similar comparison of protein and
mRNA levels during a diauxic shift showed better correlations
between fold change and timing (16). Posttranscriptional mecha-
nisms therefore seem to play a significant role in determining
protein induction timing and abundance levels in response to
MMS. An additional confounding factor may be the fact that MMS
arrests cells, which may amplify differences between mRNA and
protein. Protein levels therefore may correspond well to mRNA
levels in steady-state growth but do so poorly during transitions.

Protein Localization Changes. We determined the extent and dy-
namics of protein relocation events upon MMS treatment. On
the basis of a manual analysis, and confirmed quantitatively using
our computational approach, we identified 118 proteins that
change localization (Fig. 3), of which 81 were not identified in

the global analysis performed by Tkach et al. (6) (SI Appendix,
Fig. S43). We quantitated the coordinated transition from the
nucleus to the cytoplasm of Mcm2p, Mcm4p, Mcm6p, and Mcm7p.
The minichromosome maintenance proteins form a complex,
and synchronous transitions occurred over a range of 115–135
min after MMS, exemplifying the accuracy of our temporal
analysis (SI Appendix, Fig. S35).
The 111 relocating proteins could be grouped into five major

transition classes: transitions between cytoplasm and nucleus (28
proteins), transitions from the nucleus to nuclear foci (11 pro-
teins), nuclear periphery aggregations (21 proteins), formation
or dissolution of cytoplasmic foci (33 proteins), and transitions
between the cell interior and the cell membrane (18 proteins)
(Fig. 3A). Predominantly, proteins shuttled between two loca-
tions. Exceptions to this rule were rare. One example was Rnr4,
which could localize to three distinct structures, including the
nucleus, cytoplasm, and to a lesser degree puncta.
The group of 33 proteins forming cytoplasmic protein aggre-

gates was functionally diverse and included enzymes, heat shock
proteins, protein transporters, and uncharacterized proteins. The
largest subclass consisted of P-body components (Edc3, Lsm1,
Pby1, Xrn1, Pat1, Lsm7, Dcp2, Dcp1, Scd6, Dhh1, and Lsm3).
P-bodies are cytoplasmic mRNA processing bodies (19), but it is
unclear whether P-bodies degrade mRNA, serve as sites for
mRNA storage, or both (20, 21). P-bodies have been observed to
form in response to a number of cellular stresses, primarily upon
nutrient starvation, and have been indirectly implicated with the
DNA damage response (22) and more recently in response to
HU but not MMS (6). P-bodies were observed in Candida albi-
cans upon various stresses, including UV irradiation (23). A
recent investigation in S. cerevisiae observed formation of cyto-
plasmic foci upon UV irradiation but identified these as a new
class of UV-induced granules (24). To assess whether P-body
formation was specific to DNA damage and not due to general
stress induced by MMS or HU exposure, we tested whether
P-bodies formed in response to UV irradiation. We found that
P-bodies formed rapidly in response to UV irradiation, which
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was in stark contrast to the delayed formation in response to
MMS and HU (Fig. 3 B–D and SI Appendix, Figs. S36–40).
Furthermore, all major P-body components formed cytoplasmic
foci synchronously within 9–14 min after UV irradiation. In re-
sponse to HU, MMS, and hyperosmotic shock, P-body compo-
nents accumulated in cytoplasmic foci asynchronously over an
extended time-period (1–6 h). The rapid and strong response to
UV irradiation suggests that P-bodies may form in response to
mRNA damage. P-bodies could thus be involved in mRNA re-
pair, sequestration, or degradation of damaged mRNA.
Recent large-scale studies of protein relocalization upon var-

ious stresses acquired single time-point measurement at 2 h for
MMS and HU (6), at 1 h for H2O2, 3 h for DTT, and 15 h for
nitrogen starvation (7). Unlike those measurements, our micro-
chemostat array returned the precise temporal evolution of pro-
tein localization changes over a 6-h period (Fig. 3 B–D). We
observed that protein relocalization events occur over the entire
6-h observation period in all perturbations tested, indicating that
single time-point measurements can miss significant components
of a response. Although many proteins change localization in
response to MMS and HU, their timing can be notably different
(Fig. 3B). Furthermore, in some conditions such as hyperosmotic

shock and pulsed stresses, protein localization changes are often
transient (SI Appendix, Figs. S38–S40), making it difficult or
impossible for a single time-point measurement to capture all
protein localization changes.

Generation and Analysis of Gene Deletion-GFP Strains. Synthetic
genetic array analysis is a powerful approach to map genetic
interactions. Here we combined gene deletions with GFP reporter
strains to identify genes that impact either protein abundance or
localization phenotypes. We generated ∼560 deletion-GFP strains
by crossing 40 strains from the nonessential gene deletion col-
lection into 14 GFP reporter strains including six P-body com-
ponents and Rnr4. We imaged all deletion-GFP strains in
quadruplicate in response to UV pulses to assess whether any
of the deletions impacted P-body formation or Rnr4 protein
abundance or localization. Those strains for which we observed
phenotypes were individually validated using five PCRs, verifying
the absence of the wild-type allele and the presence of the
kanMX cassette.

Size and Growth Phenotypes. We first assessed whether any of the
deletion strains exhibited either a size or growth defect (Fig. 4A).
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Most deletion strains were normal in size, both before and after
UV irradiation, whereas a number of strains were abnormal even
in standard growth conditions. Rad55Δ, rtt101Δ, and mms1Δ
were large, both before and after UV irradiation, whereas
bmh1Δ, mrt4Δ, and rai1Δ were considerably smaller.
As expected, rad9Δ and rad55Δ exhibited the most significant

growth defect upon low-dose UV irradiation (6 J/m2, 18 J/m2,
and 36 J/m2 per pulse, respectively) (Fig. 4A). Rad9Δ failed to
arrest after the first UV pulse, in concordance with its known
function (25). By the second UV pulse rad9Δ strains accumu-
lated enough damage, leading to cell death. Rad55Δ on the other
hand arrested after the first UV pulse but also failed to repair
accumulated damage, leading to cell death after the second
pulse. Pat1Δ also exhibited a major growth defect upon UV ir-
radiation. Both pat1Δ and lsm1Δ were recently shown to be
growth defective upon a 30 J/m2 or higher UV dose (26) and 0.2
M HU (6). Scd6Δ cells, on the other hand, had no apparent
growth defect upon low doses (6–36 J/m2) of UV irradiation and
were also found to be insensitive to 0.1 M HU (6). In addition to
these three deletions, rtt101Δ and mms1Δ also exhibited growth
defects. We could thus establish that the microchemostat plat-
form is capable of quantifying size and growth phenotypes, in
addition to measuring protein abundance and localization.

P-Body Regulation. To identify genes affecting UV-dependent
P-body formation, we analyzed punctate formation of six P-body
GFP strains (Scd6, Dcp1, Lsm1, Pat1, Edc3, and Xrn1). We
could identify deletions that led to either a significant increase or
decrease in P-body formation, because most deletions had no

apparent effect on P-body formation (Fig. 4B). Scd6Δ inhibited
accumulation of Edc3, Xrn1, Lsm1, and Dcp1 in cytolasmic foci,
whereas pat1Δ affected foci formation of Edc3 and Xrn1. These
dependencies are in concordance with current knowledge of
P-body assembly but had not previously been characterized in
UV-dependent P-body formation (21).
Rad9Δ led to sustained P-body formation of Dcp1, Edc3,

Lsm1, Pat1, Scd6, and Xrn1. This finding seems to be in agree-
ment with a recent observation that a mec1Δ tel1Δ deletion led
to P-body formation even under normal growth conditions (6),
but we cannot exclude the possibility that the growth defect of
the rad9Δ deletion is the cause of sustained P-body formation.
Nonetheless, the rad9Δ deletion phenotype shows that information
of a strain’s growth phenotype is important for interpreting changes
in protein localization and that both measurements need to be
combined when possible.

Rnr4 Regulation.We measured the effect of the gene deletions on
Rnr4 protein abundance and localization. Rnr4 is a ribonucleo-
tide reductase regulatory subunit forming a functional hetero-
dimer with Rnr2 (27). During normal cell growth Rnr4 is localized
to the nucleus and partially relocates to the cytoplasm during
S-phase. Upon DNA damage Rnr4 is relocated to the cytoplasm,
and its abundance increases, leading to an overall increase in
dNTP levels (28). Increased dNTP levels in turn improve survival
in response to DNA damage while increasing mutation rate (29).
Wtm1 was previously identified as an anchor required for nuclear
localization of Rnr4 (30), which we also observed in our dataset,
because deletion ofWTM1 led to decreased nuclear localization of
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Rnr4 (Fig. 4C). In addition to wtm1Δ, tsa1Δ, and rtt101Δ also led
to a decreased nuclear localization of Rnr4. Deletion of TSA1
was recently shown to lead to genomic instability, induction of
RNR1 and RNR3, and increased dNTP levels (31). In our
experiments tsa1Δ did not lead to an appreciable abundance
increase of Rnr4 but did affect its nuclear localization, shifting
Rnr4 into the cytoplasm. Our data suggest that this change in
localization contributes to elevated dNTP levels. Rtt101 was re-
cently shown to form a complex with Mms1 and Crt10 (a tran-
scriptional regulator of RNR2 and RNR3) (32), connecting DNA
repair with rRNA quality control (33). Like tsa1Δ, rtt101Δ also led
to decreased nuclear localization of Rnr4. We therefore were able
to identify two components that impact Rnr4 nuclear localization,
which is also disrupted in cells lacking Tsa1 and Rtt101.
Three deletions gave rise to increased nuclear retention of Rnr4:

rad9Δ, rai1Δ, and nam7Δ. Strikingly, two of these gene deletions
are involved in mRNA processing (Nam7, Rai1). Dysfunctional
mRNA decay/degradation therefore seems to lead to increased
Rnr4 nuclear retention and in some case also to decreased Rnr4
abundance (nam7Δ), indicative of a feedback mechanism between
mRNA degradation, NTP/dNTP pools, and Rnr4 activity.

Discussion
We developed a microfluidic approach enabling the parallel in-
terrogation of thousands of yeast strains with single-cell resolu-
tion under controlled environmental conditions. We also developed
a comprehensive image processing pipeline necessary for the
quantitative and unbiased analysis of protein abundance and
localization in tens of thousands of time-lapse movies. In this
large-scale survey we identified proteins that change abundance
or localization in response to MMS and investigated a subset of
576 strains in response to five additional stress conditions, in
which we observed that P-body formation was both rapid and
synchronous in response to UV irradiation. This was in stark
contrast to P-body formation in response to HU- and MMS-
induced stress, in which P-body components assembled late and
asynchronously. To further characterize P-body and Rnr4 regulation

upon UV irradiation, we created ∼560 deletion-GFP strains and
simultaneously quantitated size and growth defects, together
with temporal abundance and localization changes of GFP tag-
ged protein reporters. We show that Scd6 and Pat1 are regu-
lators of P-body formation in response to UV irradiation. We
also identified four proteins (Tsa1, Rtt101, Rai1, and Nam7) that
affect nuclear localization of Rnr4. Deletions of Rai1 and Nam7
led to increased nuclear localization of Rnr4, establishing a link
between mRNA processing and Rnr4 activity. These results
show that the platform, in conjunction with gene deletions, is
highly effective at discovering previously unknown regulators
that affect protein abundance and/or localization. Finally, be-
cause the platform returns information on cell sizes and growth
rates, it also supersedes the classic spot assay commonly used in
yeast genetics.
The ability to measure single-cell phenotypes has become of

increasing importance in microbiology, systems, and synthetic
biology. Thus far, such analyses have been restricted to the in-
terrogation of a few strains or clones at a time. However, a clear
need exists for high-content imaging of gene knockout and GFP-
tagged libraries in microbiology and systems biology, and for the
in vivo characterization of part, component, and device libraries
in synthetic biology. The fusion of engineered cellular systems,
microfluidic, and optical hardware as demonstrated here may in
the future allow the deployment of large-scale sensor arrays or
integrated biohardware for applications in diagnostics and en-
vironmental monitoring. In summary, massively parallel time-
lapse microscopy of microbial cultures provides a window into
cellular processes inaccessible by current large-scale methods
and will contribute to a systems-level description of molecular
dynamics occurring on the single-cell level.
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