Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Texture Operators
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Biomedical Texture Operators and Aggregation Functions: A Methodological Review and User's Guide

A. Depeursinge, J. Fageot

Biomedical Texture Analysis, A. Depeursinge, O.S. Al-Kadi, J.R. Mitchell, Eds., Academic Press, London, United Kingdom, ch. 3, pp. 55-94, 2017.


This chapter reviews most popular texture analysis approaches under novel comparison axes that are specific to biomedical imaging. A concise checklist is proposed as a user guide to assess the relevance of each approach for a particular medical or biological task in hand. We revealed that few approaches are regrouping most of the desirable properties for achieving optimal performance. In particular, moving frames texture representations based on learned steerable operators showed to enable data-specific and rigid-transformation-invariant characterization of local directional patterns, the latter being a fundamental property of biomedical textures. Potential limitations of having recourse to data augmentation and transfer learning for deep convolutional neural networks and dictionary learning approaches to palliate the lack of large annotated training collections in biomedical imaging are mentioned. We conclude by summarizing the strengths and limitations of current approaches, providing insights on key aspects required to build the next generation of biomedical texture analysis approaches.

@INCOLLECTION(http://bigwww.epfl.ch/publications/depeursinge1703.html,
AUTHOR="Depeursinge, A. and Fageot, J.",
TITLE="Biomedical Texture Operators and Aggregation Functions: {A}
	Methodological Review and User's Guide",
BOOKTITLE="Biomedical Texture Analysis",
PUBLISHER="Academic Press",
YEAR="2017",
editor="Depeursinge, A. and Al-Kadi, O.S. and Mitchell, J.R.",
volume="",
series="",
type="",
chapter="3",
pages="55--94",
address="London, United Kingdom",
edition="",
month="",
note="")

© 2017 Academic Press. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Academic Press. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved