Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Texture Processing
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Fundamentals of Texture Processing for Biomedical Image Analysis: A General Definition and Problem Formulation

A. Depeursinge, J. Fageot, O.S. Al-Kadi

Biomedical Texture Analysis, A. Depeursinge, O.S. Al-Kadi, J.R. Mitchell, Eds., Academic Press, London, United Kingdom, ch. 1, pp. 1-27, 2017.


This chapter aims to provide an overview of the foundations of texture processing for biomedical image analysis. Its purpose is to define precisely what biomedical texture is, how is it different from general texture information considered in computer vision, and what is the general problem formulation to translate 2D and 3D textured patterns from biomedical images to visually and biologically relevant measurements. First, a formal definition of biomedical texture information is proposed from both perceptual and mathematical point of views. Second, a general problem formulation for biomedical texture analysis is introduced, considering that any approach can be characterized as a set of local texture operators and regional aggregation functions. The operators allow locally isolating desired texture information in terms of spatial scales and directions of a texture image. The type of desirable operator invariances are discussed, and are found to be different from photographic image analysis. Scalar-valued texture measurements are obtained by aggregating operator's response maps over regions of interest.

@INCOLLECTION(http://bigwww.epfl.ch/publications/depeursinge1705.html,
AUTHOR="Depeursinge, A. and Fageot, J. and Al-Kadi, O.S.",
TITLE="Fundamentals of Texture Processing for Biomedical Image Analysis:
	{A} General Definition and Problem Formulation",
BOOKTITLE="Biomedical Texture Analysis",
PUBLISHER="Academic Press",
YEAR="2017",
editor="Depeursinge, A. and Al-Kadi, O.S. and Mitchell, J.R.",
volume="",
series="",
type="",
chapter="1",
pages="1--27",
address="London, United Kingdom",
edition="",
month="",
note="")

© 2017 Academic Press. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Academic Press. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved