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ABSTRACT Cells rely on focal adhesions (FAs) to carry out a variety of important tasks, including motion, environmental
sensing, and adhesion to the extracellular matrix. Although attaining a fundamental characterization of FAs is a compelling
goal, their extensive complexity and small size, which can be below the diffraction limit, have hindered a full understanding.
In this study we have used single-molecule localization microscopy (SMLM) to investigate integrin b3 and paxillin in rat embry-
onic fibroblasts growing on two different extracellular matrix-representing substrates (i.e., fibronectin-coated substrates and spe-
cifically biofunctionalized nanopatterned substrates). To quantify the substructure of FAs, we developed a clustering method
based on expectation maximization of a Gaussian mixture that accounts for localization uncertainty and background. Analysis
of our SMLM data indicates that the structures within FAs, characterized as a Gaussian mixture, typically have areas between
0.01 and 1 mm2, contain 10–100 localizations, and can exhibit substantial eccentricity. Our approach based on SMLM opens new
avenues for studying structural and functional biology of molecular assemblies that display substantial varieties in size, shape,
and density.
INTRODUCTION
Focal adhesions (FAs) are cellular macromolecular assem-
blies consisting of dynamic protein complexes that are
localized near the cell membrane. FAs affect nearly all as-
pects of a cell’s life, including, but not limited to, adhesion,
directional migration, cell proliferation, differentiation, sur-
vival, and gene expression (1). Despite having been studied
for several decades, the inner architecture of FAs is still not
completely understood. In part, this is due to the limitations
of conventional fluorescence microscopy for FA analysis.
FAs are molecularly diverse structures, containing a large
number of proteins (2). Therefore, their investigation re-
quires imaging techniques that offer sufficient multiplexing
capabilities (3). Moreover, FAs have a size that is typically
in the order of a micron or less, and therefore their internal
spatio-temporal organization is not fully resolvable with
conventional microscopy.

During the last decade, several superresolution micro-
scopy techniques have been employed to image FAs
(4–9). An important insight from these studies was that
FAs are not homogeneous spatial structures. Initially, photo-
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activated localization microscopy (PALM) was used to
reveal that FAs can consist of patches of proteins with sub-
micron dimensions (4,9). Later on, Bayesian localization
microscopy and structured illumination microscopy showed
that many FAs exhibit discontinuous elongated (or fiberlike)
substructures (5,6). Moreover, single-particle tracking
demonstrated that proteins can diffuse within FAs (7,8),
which again suggests that they have an internal spatial orga-
nization. However, dedicated tools that allow a systematic
quantitative analysis of the FA substructure are still lacking.

For quantitative analysis of the internal spatial organiza-
tion of FAs, single-molecule localization microscopy
(SMLM) can potentially be implemented (10,11). SMLM
data consist of the localizations of individual photoactivat-
able or photoswitchable fluorescent molecules. Therefore,
a variety of methods have been developed to identify and
characterize clusters of such localizations (12,13). These
methods are often applied to investigate clusters of receptors
in the cell membrane. Such clusters are usually radially
symmetric, spatially well separated, and homogeneous in
size and density. FA substructures, on the other hand, cannot
be characterized similarly. Indeed, adhesions structures can
vary from subdiffraction entities composed of a couple of
different proteins (e.g., focal complexes or nascent adhe-
sions) to assemblies of many proteins measuring several
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microns (e.g., FAs) (14). Moreover, FA subunits are densely
packed; therefore, they cannot be resolved using a conven-
tional microscope. Finally, FAs usually have an elongated
shape, and the same is possibly true for their subcompo-
nents. Therefore, it is not clear if established SMLM clus-
tering methods are suitable for the identification of FA
substructures.

In this study we have designed, to the best of our knowl-
edge, a novel approach to investigate the FA substructure.
We used expectation maximization of a Gaussian mixture
(EMGM) (15) to interpret SMLM data in terms of spatial
probability distributions. EMGM allows us to quantify the
properties of closely packed localization patterns that
exhibit substantial varieties in size, density, and shape,
and is therefore well suited for studying the inner architec-
ture of FAs. Importantly, we improved the classical EMGM
framework to account for localization uncertainties and the
presence of a localization background, both being ubiqui-
tous in SMLM data.

The other goal of this study was to quantify the properties
of the subunits of which FAs are composed. For this pur-
pose, we used PALM, an implementation of SMLM that is
popular for imaging FAs (4,9,16–18), because it makes
use of photoactivatable fluorescent proteins that can be
genetically expressed. More in particular, we used PALM
to image integrin b3 and paxillin in fixed rat embryonic
fibroblasts (REFs), a well-known cell line for FA investiga-
tion. Cell experiments were performed using fibronectin-
coated substrates and specifically biofunctionalized nano-
patterned substrates, on which ordered patterns of nanoscale
adhesive spots were provided (19,20). Such nanopatterned
substrates have already been used to indirectly probe the
behavior of FAs on the nanoscale (21). In this way, the
spatial organization of integrin binding sites is precisely
controlled, ensuring that the observed substructures are
innate to FAs. Application of our improved version of
EMGM on the PALM data allowed us to determine that
FAs are composed of structures with areas between 0.01
and 1 mm2, containing 10–100 localizations, and exhibiting
substantial eccentricities.
MATERIALS AND METHODS

Microscope

PALM imaging was carried out on a custom-built microscope (22,23).

A 50-mW 405-nm laser (Cube; Coherent, Santa Clara, CA), a 100-mW

488-nm laser (Sapphire; Coherent), and a 100-mW 561-nm laser

(Excelsior; Spectra-Physics, Santa Clara, CA) were used for excita-

tion/activation. The three lasers were focused into the back focal plane

of the objective mounted on an inverted optical microscope (IX71;

Olympus, Melville, NY). We used a 100� objective (UApo N 100�;

Olympus) with a numerical aperture of 1.49 configured for total inter-

nal reflection fluorescence (TIRF). A dichroic mirror (493/574 nm

BrightLine; Semrock, Rochester, NY) and an emission filter (405/

488/568 nm StopLine; Semrock) were used to separate fluorescence

and illumination light. The fluorescence light was detected by an elec-
tron-multiplying charge-coupled device (EMCCD) camera (iXon

DU-897; Andor Technology, South Windsor, CT). An adaptive optics

system (Micao 3D-SR; Imagine Optic, Orsay, France) and an optical

system (DV2; Photometrics, Tucson, AZ) equipped with a dichroic

mirror (T565lpxr, Chroma Technology, Bellows Falls, VT) were placed

in front of the EMCCD camera.
Imaging procedure

Cells were imaged in PBS at room temperature. Before imaging, 100 nm

gold fiducial markers (C-AU-0.100; Corpuscular, Cold Spring, NY) were

added to the sample for lateral drift monitoring. Axial drift correction

was ensured by a nanometer positioning stage (Nano-Drive; Mad City

Labs, Madison, WI) driven by an optical feedback system (22). Excitation

of the mEos2 was done at 488 nm or 561 nm with �10 mW power (as

measured in the back focal plane of the objective). The mEos2 was acti-

vated at 405 nm with �2 mW power. The gain of the EMCCD camera

was set to 100 and the exposure time to 50 ms. For each experiment,

10,000 camera frames were recorded.
Substrate preparation

Quasi-hexagonal patterns of gold nanoparticles (AuNPs) were prepared on

25-mm-diameter microscope coverslips (No. 1.5 Micro Coverglass; Elec-

tron Microscopy Sciences, Hatfield, PA) by means of block-copolymer

micelle nanolithography as previously described (19,20,24) (Supporting

Material). Fibronectin-coated coverslips were prepared by first cleaning

with an oxygen plasma and then incubating with PBS containing 50 mg/

mL fibronectin (Bovine Plasma Fibronectin; Invitrogen, Carlsbad, CA)

for 30 min at 37�C. To remove the excess of fibronectin, the coverslip

was washed with PBS before seeding the cells.
Cell culture and fixation

The REF cells (CRL-1213, ATCC) were grown in DMEM supplemented

with 10% fetal bovine serum, 1% penicillin-streptomycin, 1% nonessen-

tial amino acids, and 1% glutamine, at 37�C with 5% CO2. The cells were

transfected by electroporation (Neon Transfection System; Invitrogen),

which was performed on �106 cells using 1 pulse of 1350 V lasting for

35 ms. The amount of DNA used for the transfection was 4 mg for both

the mEos2-paxillin-22 vector and the mEos2-Integrin-b3-N-18 vector.

Approximately 2.105 transfected cells were seeded on individual cover-

slips and grown in cell culture medium without penicillin-streptomycin,

at 37�C with 5% CO2. The cells were washed with PBS �20 h after trans-

fection (Fig. S1), and then incubated in PBS with 2.5% paraformaldehyde

at 37�C for 10 min. After removing the fixative, the cells were again

washed with PBS, and the coverslip was placed into a custom-made

holder.
PALM data analysis

The recorded images were analyzed by a custom-written algorithm

(MATLAB; The MathWorks, Natick, MA) that was adapted from a previ-

ously published algorithm (4,23). First, peaks were identified in each cam-

era frame by filtering and applying an intensity threshold. Only peaks with

an intensity at least four times the background were considered to be emit-

ters. Subsequently, each emitter was localized by maximum likelihood esti-

mation of a 2D Gaussian distribution (25). When peaks appeared during

several consecutive frames within the same pixel, they were assumed to

correspond to the same emitter, and the emitter images in these frames

were summed before maximum likelihood estimation. Drift was corrected

in each frame by subtracting the average position of the fiducial markers

from the positions of the emitters in that frame. The localization uncertainty
Biophysical Journal 113, 2508–2518, December 5, 2017 2509
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for each emitter was obtained from the Cram�er-Rao lower bound of the

maximum likelihood procedure (26). PALM images were generated by

plotting a 2D Gaussian centered on each fitted position with a SD equal

to the corresponding localization uncertainty. Only positions with a locali-

zation uncertainty <40 nm were used.
EMGM procedure

The EMGM procedure (Supporting Material) was implemented in

MATLAB (The MathWorks). The initial values of the parameters that

describe a mixture consisting of K components were estimated by deleting

a component from the previously estimated mixture consisting of K-1 com-

ponents and adding two new components that were generated from the

deleted one (Supporting Material). Additionally, one new Gaussian compo-

nent was generated from the background component of the previously esti-

mated mixture. This was done three times for each of the original K-1

Gaussian components and the background component, resulting in a total

of 3K initializations. In the case of K ¼ 1, the initialization was done

randomly three times. The procedure was stopped when the null hypothesis

that the previously estimated K-1 component mixture is the correct one was

fulfilled (Supporting Material). For this purpose, we simulated the distribu-

tion of likelihood increments when comparing the K-1 and K component

models under the null hypothesis. This distribution is obtained by simu-

lating 100 datasets assuming the K-1 solution, and applying EMGM on
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each dataset, for both K-1 and K mixture components. If the real likelihood

increment had a p value <0.01 under the null hypothesis, it was assumed

that the K-1 component solution is the correct one. Before analysis, the

PALM data was split into overlapping 2� 2 mm areas, and the EMGM anal-

ysis was performed on each area separately (Fig. S2). Afterwards, identical

mixture components in different EMGM results were combined according

to a criterion based on the correlation between their posterior probabilities

(Supporting Material).
RESULTS

EMGM

FAs display a substantial variety in size, shape, and density,
and their substructure potentially as well. Quantifying the
properties of the FA substructure with SMLM clustering
methods is therefore challenging. Clusters in SMLM data
are often characterized using the pair correlation function
(27) or Ripley’s K(r) or L(r) function (28). These functions
describe the density around a certain point as a function of
the distance r from that point. As an illustration, we used
PALM to image integrin b3 in a REF cell (Fig. 1 A). We
lizations

0.5 μm

= 0.10 μm

0.5 μm

area (μm2) 

ensity (#/μm2)

.2 0.4 0.6 0.8 1.0

2 3 4 5
x 103

FIGURE 1 Application of SMLM clustering

algorithms to PALM data of FAs. (A) Given here is

a PALM image of a fixed REF cell expressing integ-

rin b3 labeled with mEos2. (B) Given here is a

zoom-in PALM image corresponding to the green

rectangle in (A). (C) Given here is a scatter plot of

the mEos2 localizations corresponding to the green

rectangle in (A). (D) Given here is Ripley’s L(r)-r

as a function of r, obtained from the localizations

in (C). (E) Shown here are clusters obtained from

the localizations in (C) by DBSCAN. The minimum

number of localizations was set to 10, and two

values were chosen for the maximum search radius

rmax: 0.05 and 0.10 mm. The different colors of the

localizations indicate to which cluster they belong;

the background localizations are red. (F) Shown

here is a result of EMGM analysis of the localiza-

tions in (C). The red dots symbolize the localiza-

tions, and the blue ellipses the 2s error ellipses of

the components. (G) Histograms show the eccentric-

ity b/a, localization density, number of localizations,

and area pab of the 2s error ellipses of the compo-

nents obtained by EMGM from the complete PALM

data set in (A). The rightmost bins in each histogram

(except for the eccentricity histogram) contain all

values within that bin and larger.
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used Ripley’s L(r)-r function (29) to analyze a subset of the
data (Fig. 1, B–D). This function shows a peak �0.2 mm,
indicating that the degree of clustering is highest on this
length scale. However, it is difficult to interpret this result
in terms of FA substructure properties, especially consid-
ering the heterogeneity in size and shape of the FAs
themselves.

Such difficulties can be avoided by clustering methods
that identify individual clusters based on criteria related to
the local density of localizations, such as the nearest
neighbor method (30) or density-based spatial clustering
of applications with noise (DBSCAN) (31). We applied
DBSCAN (32) to the same subset of the PALM data
mentioned above (Fig. 1 E). One value for the DBSCAN
search radius identified several substructures in the FA,
whereas a larger value did not. However, the large search
radius identified two clusters that were considered to be
background by the small search radius. It is clear that
DBSCAN can handle the heterogeneity in size and shape
of FAs, but identification of FA substructures largely de-
pends on the values used for parameters that are related to
a localization density threshold. Such a threshold is chal-
lenging to define, because FA substructures exhibit a variety
of localization densities and can be closely packed (Fig. 1, A
and B).

The difficulties related to established SMLM clustering
methods prompted us to develop an approach based on
EMGM (15). The main assumption of EMGM is that FAs
can be modeled by a mixture of bivariate Gaussian probabil-
ity distributions (Supporting Material). After choosing
initial values for the parameters of each Gaussian compo-
nent, the posterior probability that a certain localization
was generated from a certain Gaussian component is evalu-
ated (i.e., the expectation step). The Gaussian component
parameters are then reestimated using the new posterior
probabilities (i.e., the maximization step) and the likelihood
of the updated Gaussian mixture is calculated and checked
for convergence.

To apply EMGM on SMLM data, we used a ‘‘greedy
learning’’ approach (33) to initialize the parameters of the
Gaussian components, and a model selection procedure
based on hypothesis testing (34) to determine the number
of components in the mixture (Supporting Material). How-
ever, the specific nature of SMLM data poses some additional
challenges for EMGM. One problem is that not all localiza-
tions are necessarily part of the structure of interest, but can
instead belong to a background. In the case of a simple uni-
form background, the EMGM algorithm can be readily
adjusted (Supporting Material). Moreover, the localizations
in SMLM data contain measurement uncertainties (35).
This localization uncertainty can be described by a spatial
probability distribution that is usually modeled as a Gaussian.
EMGM can therefore be adapted by convolving the probabil-
ity distributions that describe the mixture and the localization
uncertainties (Supporting Material).
Evaluation of EMGM on simulations

The performance of the EMGM algorithm adapted for
SMLM data was evaluated and validated by applying it
to simulated data. We simulated mixtures consisting of
K closely spaced Gaussian components described by iden-
tical spatial probability distributions (i.e., 2D symmetric
Gaussians with SD sx ¼ sy ¼ 20 nm) and containing an
identical number of positions (i.e., 100) (Fig. 2 A, and Sup-
porting Material). Such components have similar character-
istics to nascent adhesions or, more speculatively, to the
substructure of larger FAs.

First, we verified the performance of our proposed initial-
ization scheme and model selection procedure. The results
show that the simulated mixtures are correctly identified,
provided K is <10 (Fig. 2 B; Fig. S3). Interestingly, simula-
tions of random Gaussian mixtures that are closer to the
experimental reality confirm this finding (Fig. S4). We
used 3K initializations for a mixture with K components
(Supporting Material). Increasing the number of initializa-
tions does not substantially improve the EMGM perfor-
mance (Fig. S5).

Next, we simulated the effect of a uniform localization
background density bg and a localization uncertainty s.
The results indicate that the adapted EMGM correctly pre-
dicts sx,y for values of bg up to 25,000 #/mm2 when K ¼ 4
(Fig. 2 C; Fig. S6). For larger values of K, the method per-
forms well for bg values up to 10,000 #/mm2 (Fig. S7).
Our EMGM approach also captures the effect of the
apparent increase in sx,y due to localization uncertainties
for values of s up to 30 nm (Fig. 2 D; Fig. S8). Unlike
for the localization background, this limit does not seem
to depend on the number of components (Fig. S9). Note
that the largest values of s and bg included in these simu-
lations are typically not encountered in good-quality
SMLM data.

Because one cannot assume that the substructures of FAs
are radially symmetric, the component shape should be
accounted for by the EMGM algorithm. We simulated
mixture components with decreasing sx and simultaneously
increasing sy (Supporting Material). The results (Fig. 2 E)
clearly show that the algorithm correctly predicts the chang-
ing eccentricity sx/sy. The adapted EMGM should also be
able to distinguish closely spaced substructures inside
FAs. Toward this end, we simulated Gaussian mixtures
with a decreasing spacing dx,y between the component
centers (Fig. 2 F, and Supporting Material). The adapted
EMGM performs well when dx,y is >70 nm, or more gener-
ally when the relative spacing dx,y/sx,y is >4 (Fig. S10). A
smaller dx,y (or dx,y/sx,y) results in a significant overlap in
the spatial probability distribution of two adjacent
components.

It should be noted that the results (Fig. 2) depend on the
number of localizations that are contained by the compo-
nents. The sensitivity of the EMGM algorithm strongly
Biophysical Journal 113, 2508–2518, December 5, 2017 2511
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decreases for components containing �10 localizations
(Fig. S11).
Application of EMGM on experimental data

To demonstrate the application of our EMGM algorithm, we
made use of the SMLM data of a REF cell expressing
mEos2-labeled integrin b3 (Fig. 1, B and C). Similar to
DBSCAN applied with the small search radius (Fig. 1 E),
EMGM also finds several FA substructures (Fig. 1 F). More-
over, EMGM identifies two structures on the right as well, as
indicated by the DBSCAN result using the large search
radius (Fig. 1 E).

We next proceeded to apply the EMGM algorithm on the
whole PALM dataset (Fig. 1 A). Because the simulation re-
sults (Fig. 2 B) indicate that our algorithm works best for a
small number of components, we reduce their number by
applying a scanning procedure, consisting of splitting the
original field of view into smaller overlapping areas, and
by subsequently applying EMGM to each of these areas
(Fig. S2). The size of these areas has to be chosen carefully,
as clipping of mixture components should be avoided, while
ensuring that only a few are included. Afterwards, the results
are combined, by merging identical Gaussian components in
overlapping regions based on the correlation between their
2512 Biophysical Journal 113, 2508–2518, December 5, 2017
posterior probabilities, while excluding Gaussian compo-
nents that belong to structures that were clipped during the
splitting procedure (Supporting Material).

EMGM characterizes FA substructures in terms of bivar-
iate Gaussian probability distributions. The properties of
such a distribution can be translated into more intuitive
properties using the error ellipse, i.e., the line that describes
a constant probability density. The major axis a and the mi-
nor axis b of an ellipse define its area and shape (Fig. S12).
We therefore describe the FA substructure shape by the ec-
centricity b/a (similar to the definition above). To calculate
the area, we choose the 2s error ellipse, corresponding to
twice the SD of the Gaussian distribution. This error ellipse
defines the area in which there is a probability to find�95%
of all localizations belonging to the mixture component. We
pooled the area and eccentricity values of all identified
components in our PALM data set (Fig. 1 G). Most compo-
nents have an area <0.5 mm2 with a peak �0.1 mm2, and
many exhibit some degree of eccentricity, with most
values <0.8. The EMGM algorithm also returns the poste-
rior probability of each localization belonging to a specific
Gaussian distribution, which gives the total number of local-
izations of each FA substructure (Supporting Material).
Making the simplifying assumption that the localizations
are uniformly distributed within the 2s error ellipse, this
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leads to a characteristic localization density. Most FA sub-
structures have a localization density <2000 #/mm2, and
contain <100 localizations (Fig. 1 G).
Integrin and paxillin

After the evaluation of the adapted EMGM, we applied our
method to investigate the substructure of FAs in cells
growing on often-used fibronectin-coated substrates. We
used PALM to image fixed REF cells (n ¼ 10) expressing
paxillin or integrin b3 labeled with mEos2 (Fig. 3,
A and B). To identify the FA substructure, we applied
the adapted EMGM to each of these PALM datasets
(Fig. 3 C). As discussed above, the properties of individual
mixture components, defined as bivariate Gaussians, can be
described by three parameters: eccentricity, area, and number
of localizations. We plotted these quantities as a function of
each other, for both paxillin and integrin b3 (Fig. 3, D–F).
A B C

D E F
Most mixture components contain between 10 and 100 local-
izations, and have an area between 0.01 and 1 mm2 (Fig. 3D).
The components with the lowest number of localizations are
mainly located outside the FA structure (Fig. S13). The pax-
illin case displays a slightly more pronounced tail toward
components that contain more localizations (up to 1000 lo-
calizations). These components are situated within the FA
structure (Fig. S14), explaining the visual difference between
paxillin and integrin b3 (Fig. 3 B). When plotting the eccen-
tricity as a function of the number of localizations (Fig. 3 E),
it is again apparent that the paxillin FA substructures can
contain more localizations than the integrin ones. Further-
more, the mixture components in both cases appear to be
eccentric, with most values <0.7. The FA substructures con-
taining fewer localizations appear to be somewhat more
eccentric, a tendency that is more apparent in the paxillin
case. A similar observation can be made when plotting the
eccentricity as a function of the area (Fig. 3 F). The larger
FIGURE 3 EMGM analysis of PALM data of in-

tegrin b3 or paxillin on fibronectin-coated sub-

strates. (A) Given here are summed TIRF images

of the mEos2 off-state of fixed REF cells express-

ing integrin b3 or paxillin labeled with mEos2,

growing on fibronectin-coated substrates. (B)

Given here are zoom-in PALM images correspond-

ing to the red rectangles in (A). (C) Shown here is

the result of the EMGM analysis of the PALM data

shown in (B). The red dots symbolize the localiza-

tions, and the blue ellipses symbolize the 2s error

ellipses of the mixture components. (D–F) Given

here is the result of the EMGM analysis of

PALM data corresponding to different REF cells

(n ¼ 10): (D) number of localizations in each

mixture component as a function of the area of

its 2s error ellipse, (E) eccentricity of the 2s error

ellipse of each mixture component as a function of

its number of localizations, and (F) eccentricity of

the 2s error ellipse of each mixture component as a

function of its area. The dashed white rounded rect-

angles in (D) and (E) are visual guides.
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the FA substructure, the more eccentric it seems to be. Inter-
estingly, both paxillin and integrin objects seem to have
similar areas, with a peak �0.1 mm2.
Nanopatterned substrates

The FA substructure properties (Fig. 3) have been
obtained from REF cells growing on fibronectin-coated
substrates, which do not have well-controlled binding sites
(especially considering the presence of extracellular
matrix proteins in the cell culture medium). It can there-
fore not be guaranteed that the observed FA substructure
is innate; it might simply be reflecting how the integrin
binding sites on the fibronectin-coated substrate are orga-
nized on the nanoscale level. Such difficulties in interpre-
tation of the data can be avoided by making use of a
substrate where the integrin binding site locations are
precisely controlled. We have therefore made use of
block-copolymer micelle nanolithography to pattern
substrates with a quasi-hexagonal grid of 8-nm-diameter
AuNPs (19,20) (Supporting Material). The AuNPs are
functionalized with cyclic arginyl-glycyl-aspartic acid
peptides, using a flexible polyethylene glycol spacer.
The area between the AuNPs is passivated with a polyeth-
A B C

D E F
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ylene glycol layer, ensuring that integrins can only adhere
to the peptides immobilized on AuNPs. This enables a
more unambiguous interpretation of the observed FA
substructure. We chose a 56-nm spacing between the
AuNPs, which was shown to result in good cell adhesion
(19). Furthermore, we also tested a 119-nm spacing,
which poses more challenges for adhering cells (20).

We again imaged fixed REF cells (n ¼ 10) expressing
integrin b3 labeled with mEos2 (Fig. 4, A and B). Next,
we applied the adapted EMGM to each of the PALM data-
sets, to investigate the FA substructure (Fig. 4 C). We
plotted the number of localizations as a function of the
area, for both the 56- and 119-nm AuNP spacings
(Fig. 4, E and F). The fibronectin case (Fig. 4 D) was
added for comparison. It is clear that the objects on the
fibronectin-coated substrate can contain up to 100 localiza-
tions, whereas the localization numbers on the 56-nm
spacing substrate are generally below that level (Fig. 4,
D and E). Interestingly, the FA substructure areas are
very similar between both types of substrates, mostly
between 0.01 and 1 mm2 (Fig. 4, E and F). The FA sub-
structure observed on the nanopatterned substrates does
not appear in contradiction with the results obtained from
fibronectin-coated substrates.
FIGURE 4 EMGM analysis of PALM data of in-

tegrin b3 on nanopatterned substrates. (A) Shown

here are summed TIRF images of the mEos2 off-

state of fixed REF cells expressing integrin b3

labeled with mEos2, growing on nanopatterned

substrates with 56- or 119-nm spacing between

the AuNPs. (B) Shown here are zoom-in PALM

images corresponding to the red rectangles in

(A). (C) Given here is the result of the EMGM anal-

ysis of the PALM data shown in (B). The red dots

symbolize the localizations, and the blue ellipses

symbolize the 2s error ellipses of the mixture

components. (D–F) Given here is the result of

the EMGM analysis of PALM data corresponding

to different REF cells (n ¼ 10). The number of lo-

calizations in each mixture component is shown as

a function of the area of its 2s error ellipse, for (D)

fibronectin-coated substrates (Fig. 3 D), (E) nano-

patterned substrates with 56-nm spacing, and (F)

nanopatterned substrates with 119-nm spacing.

The dashed white rounded rectangles in (D) and

(E) are visual guides.
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Isolated and overlapping mixture components

The interpretation of the EMGM results can be complicated
(Figs. 3 C and 4 C). Especially inside dense and large struc-
tures, which visually appear to be FAs, one can observe
several components that overlap, based on their 2s error el-
lipses. The isolated mixture components, on the other hand,
seem to correspond with smaller structures that could be
nascent adhesions or focal complexes. We, therefore, per-
formed a postanalysis step on EMGM results (Fig. 5 A,
and Supporting Material). We split the mixture components
into two categories: the ones whose 1s error ellipse overlaps
with at least one other 1s error ellipse, called the ‘‘overlap-
ping’’ components, and the ones whose 1s error ellipse does
not overlap with another one, called the ‘‘isolated’’ compo-
nents. A new object can be calculated from a set of overlap-
ping components, giving rise to a third category, called the
‘‘merged’’ components (Fig. 5 A, and Supporting Material).
Application of this merging procedure on a previously ob-
tained EMGM result (Fig. 3 C) shows that there are indeed
several components that overlap (Fig. 5, B and C).

We applied the merging procedure on the EMGM results
of REF cells (n ¼ 10) expressing integrin b3 labeled with
mEos2, growing on fibronectin-coated (Fig. 3 D) and
56-nm spacing nanopatterned (Fig. 4 E) substrates. As ex-
pected, on both types of substrate, the merged objects tend
to have a larger area (up to 1 mm2) and contain more local-
A B
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izations (up to 1000 localizations) than the isolated
and overlapping objects (Fig. 5 D–F). The isolated compo-
nents exhibit a similar behavior on both substrate types
(Fig. 5 E). Both cases exhibit FA substructures with an
area between 0.01 and 0.1 mm2, containing <100 localiza-
tions. The overlapping components are also not showing
much difference between both substrate types, although
the ones on the fibronectin-coated substrate can contain
more localizations (Fig. 5 F). Interestingly, the isolated
and overlapping objects on the nanopatterned substrate
also behave quite similarly (Fig. 5, E and F). The overlap-
ping FA substructures are therefore not necessarily artifacts
found by EMGM in a dense localization environment.
DISCUSSION

We propose, to the best of our knowledge, a new way to
explore the properties of unknown structures as observed by
SMLM. Using EMGM, we interpret patterns in SMLM data
as a mixture of bivariate Gaussians. This approach allows us
to describe densely packed structures that can display strong
heterogeneities in size, shape, and density, and is therefore
well suited for investigation of the substructure of FAs.

However, application of EMGM to SMLM data is not
without challenges. The result can be influenced by the
choice of the initial values for the mixture component
fibronectin
56 nm

erlapping

 EMGM result

rea (μm2) 
10-1 1 1010-2

rea (μm2) 
10-1 1 1010-2

integrin β3 - fibronectin

FIGURE 5 Merging procedure applied on

EMGM results for integrin b3. (A) Given here is

an illustration of the concept of merging overlap-

ping mixture components based on overlapping er-

ror ellipses. The red dots symbolize the

localizations. The black/green/blue ellipses repre-

sent the 2s error ellipses of the merged/isolated/

overlapping mixture components. (B) Given here

is an EMGM result for PALM data of a fixed

REF cell growing on a fibronectin-coated substrate

and expressing integrin b3 labeled with mEos2

(Fig. 3C). (C) Shown here is a result of the merging

procedure applied on the EMGM result in (B).

(D–F) Shown here is a result of the merging pro-

cedure applied on EMGM results for integrin b3

(Figs. 3 D and 4 E). The number of localizations

in each mixture component is shown as a function

of the area of its 2s error ellipse, for (D) the merged

components, (E) the isolated components, and (F)

the overlapping components. The dashed white

rounded rectangles in (F) are visual guides.
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properties, and the number of components needs to be cho-
sen as well. We identified an initialization procedure and a
selection criterion for the number of components that
gives good results for mixtures consisting of a small number
of components (e.g., <10 for our simulated data). To
allow analysis of larger numbers of components, we used a
scanning procedure that consists of splitting the SMLM
data into smaller overlapping areas, and performing
EMGM on each area separately. It is important to note
that, unlike some SMLM clustering methods, the EMGM
approach essentially does not depend on the choice of a
free parameter (except for the area size of the scanning
procedure).

The properties of SMLM data pose challenges to the
classic EMGM algorithm. One complication is the localiza-
tion uncertainty, which leads to an overestimation of the
SD of the Gaussian mixture components. An important
contribution of this work is that we improved the EMGM
approach to account for this effect. For reasonable localiza-
tion uncertainties (e.g., <30 nm for our simulated data), we
found that the adapted EMGM worked well. We would like
to point out that the effect of localization uncertainties
is ignored by most existing SMLM clustering methods.
Besides localization uncertainty, we also adjusted the
EMGM algorithm to account for the presence of a uniform
localization background. The method was found to perform
excellently for any realistic level of background (e.g., up to
10,000 #/mm2 for our simulated data).

To investigate the inner architecture of FAs, we
performed SMLM imaging of FAs in fixed REF cells.
We first explored the use of points accumulation in nano-
scale topography (36) for imaging integrin b3 (Supporting
Material). Our points accumulation in nanoscale topog-
raphy data suggests that not all integrins are accessible
for antibodies (Fig. S15). To avoid antibody labeling prob-
lems, we therefore opted for PALM. We imaged integrin
b3 and paxillin in fixed REF cells on fibronectin-coated
substrates. The EMGM algorithm allowed us to identify
integrin b3 objects with a typical area in the range between
0.01 and 1 mm2, and containing between 10 and 100 local-
izations. Paxillin objects were found to have a similar area,
but can contain more localizations, up to 1000. We attri-
bute this difference to a treelike organization of the FAs,
rooting from isolated integrin islands, and expanding to-
ward the actin filaments due to cross-linking and multiva-
lent binding of paxillin and other proteins to their
recruiting components. The equivalent diameter of the
smallest objects was found to be �100 nm (using the 2s
error ellipse area, which is 0.01 mm2 for the smaller
objects). This indeed justifies the need for superresolution
microscopy to investigate the inner structure of FAs.
Most objects were found to exhibit a substantial eccentric-
ity, with values down to 0.1. An algorithm that does not
assume radial symmetry, such as EMGM, is therefore
essential for the analysis of the FA substructure.
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A fibronectin coating is often used to ensure good cell
adhesion to the substrate. However, it is important to rule
out that the observed FA substructure is a mere artifact of
the binding sites presented by such fibronectin-coated sub-
strates. We therefore repeated the experiments on substrates
that were patterned with a quasi-hexagonal grid of function-
alized AuNPs. Our EMGM algorithm identified integrin b3
objects with areas in the same range as on fibronectin-coated
substrates, whereas the number of localizations was lower,
typically not exceeding 100. The FA substructure observed
on the nanopatterned and fibronectin-coated substrates do
not contradict each other.

The EMGM results sometimes display strongly overlap-
ping mixture components, which is mathematically
perfectly possible, but difficult to interpret. One possibility
is that the background within the FAs is more complex
than a simple uniform distribution. This could lead to the
background partially being characterized by some of
the mixture components, whereas the others are actual FA
substructures. Note that our scanning procedure already
captures background heterogeneities on the scale of the
scanned areas. Another possibility is that a bivariate
Gaussian is not the most accurate model for the FA subunits.
To a certain extent, a postanalysis step can provide more
insight. We performed a merging procedure that describes
FA substructures either as isolated Gaussian components,
or a combination of several overlapping components. We
hypothesize that a substantial set of the isolated components
(areas between 0.001 and 0.01 mm2, and number of localiza-
tions between 10 and 100), correspond to focal complexes
or nascent adhesions. The overlapping mixture components,
which appear to belong to FAs, have areas and localization
numbers in the same range as the isolated components. This
suggests that the observed objects are indicative of the real
FA substructure. The merged components have a maximal
area �1 mm2 and contain up to 1000 localizations, which
can be interpreted as an upper limit for the FA substructure.

We envisage several ways in which our EMGM approach
could be extended or adapted to allow a systematic and
detailed study of the inner architecture of FAs. Several FA
proteins could be investigated in multicolor mode to assess
their spatial relationship. In this context, it could be of inter-
est to develop an extension of EMGM that allows us to
investigate the colocalization of the mixture components.
It would also be interesting to develop a 3D implementation
of EMGM for the investigation of FA substructure in both
the lateral and axial direction, as observed for instance by
iPALM (18). It seems worthwhile to explore the possibility
of incorporating models other than the Gaussian bivariate
distribution, and other types of background besides the uni-
form one. Note that the effect of repetitive localizations on
EMGM should be investigated, because photoactivatable
fluorescent proteins can be localized more than once due
to a phenomenon called ‘‘photoblinking’’ (37). Using tran-
sient transfection, a population of endogenous proteins
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will not be fluorescently labeled, and the labeled proteins
might be overexpressed. Techniques such as CRISPR/cas9
can bring solutions to this problem (38).
CONCLUSIONS

We have used PALM to investigate FAs in REF cells
growing on fibronectin-coated substrates and specifically
biofunctionalized nanopatterned substrates, on which or-
dered patterns of nanoscale adhesive spots were provided.
To quantify the FA subunit properties, we developed a
method based on EMGM that accounts for localization un-
certainty and background. Analysis of our PALM data indi-
cates that integrin b3 and paxillin structures within FAs have
areas between 0.01 and 1 mm2, contain 10–100 localiza-
tions, and can exhibit substantial eccentricities. We believe
that our EMGM-based approach is generic enough for the
investigation of various other SMLM imaged nanoscale
structures as well, especially for closely packed protein
structures, or objects that display strong radial asymmetries
and differences in size and density.
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17. Fuchs, J., S. Böhme, ., G. U. Nienhaus. 2010. A photoactivatable
marker protein for pulse-chase imaging with superresolution. Nat.
Methods. 7:627–630.

18. Kanchanawong, P., G. Shtengel,., C. M. Waterman. 2010. Nanoscale
architecture of integrin-based cell adhesions. Nature. 468:580–584.

19. Arnold, M., E. A. Cavalcanti-Adam,., J. P. Spatz. 2004. Activation of
integrin function by nanopatterned adhesive interfaces. ChemPhysChem.
5:383–388.

20. Platzman, I., C. A. Muth, ., J. P. Spatz. 2013. Surface properties
of nanostructured bio-active interfaces: impacts of surface stiffness
and topography on cell-surface interactions. Roy. Soc. Chem. Adv.
3:13293–13303.

21. Geiger, B., J. P. Spatz, and A. D. Bershadsky. 2009. Environmental
sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33.

22. Annibale, P., M. Scarselli,., A. Radenovic. 2012. Identification of the
factors affecting co-localization precision for quantitative multicolor
localization microscopy. Opt. Nanoscopy. 1:9.

23. Deschout, H., T. Lukes, ., A. Radenovic. 2016. Complementarity of
PALM and SOFI for super-resolution live-cell imaging of focal adhe-
sions. Nat. Commun. 7:13693.

24. Pallarola, D., I. Platzman, ., J. P. Spatz. 2017. Focal adhesion stabili-
zation by enhanced integrin-cRGD binding affinity. BioNanoMaterials.
18. https://doi.org/10.1515/bnm-2016-0014.
Biophysical Journal 113, 2508–2518, December 5, 2017 2517

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)31076-7
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref1
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref1
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref2
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref2
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref3
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref3
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref3
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref4
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref4
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref5
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref5
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref5
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref6
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref6
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref6
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref7
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref7
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref7
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref8
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref8
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref8
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref8
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref9
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref9
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref9
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref10
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref10
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref10
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref11
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref11
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref11
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref12
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref12
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref12
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref13
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref13
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref13
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref14
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref14
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref14
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref15
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref15
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref16
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref16
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref16
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref17
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref17
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref17
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref18
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref18
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref19
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref19
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref19
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref20
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref20
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref20
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref20
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref21
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref21
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref22
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref22
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref22
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref23
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref23
http://refhub.elsevier.com/S0006-3495(17)31076-7/sref23
https://doi.org/10.1515/bnm-2016-0014


Deschout et al.
25. Mortensen, K. I., L. S. Churchman,., H. Flyvbjerg. 2010. Optimized
localization analysis for single-molecule tracking and super-resolution
microscopy. Nat. Methods. 7:377–381.

26. Ober, R. J., S. Ram, and E. S. Ward. 2004. Localization accuracy in sin-
gle-molecule microscopy. Biophys. J. 86:1185–1200.

27. Sengupta, P., T. Jovanovic-Talisman,., J. Lippincott-Schwartz. 2011.
Probing protein heterogeneity in the plasma membrane using PALM
and pair correlation analysis. Nat. Methods. 8:969–975.

28. Owen, D. M., C. Rentero,., K. Gaus. 2010. PALM imaging and clus-
ter analysis of protein heterogeneity at the cell surface. J. Biophotonics.
3:446–454.

29. Kiskowski, M. A., J. F. Hancock, and A. K. Kenworthy. 2009. On the
use of Ripley’s K-function and its derivatives to analyze domain size.
Biophys. J. 97:1095–1103.

30. Baddeley, D., I. D. Jayasinghe, ., C. Soeller. 2009. Optical
single-channel resolution imaging of the ryanodine receptor distri-
bution in rat cardiac myocytes. Proc. Natl. Acad. Sci. USA.
106:22275–22280.

31. Endesfelder, U., K. Finan, ., M. Heilemann. 2013. Multiscale spatial
organization of RNA polymerase in Escherichia coli. Biophys. J.
105:172–181.

32. Ester, M., H. P. Kriegel,., X. Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceed-
ings of the Second International Conference on Knowledge Discovery
2518 Biophysical Journal 113, 2508–2518, December 5, 2017
and Data Mining (KDD-96). pp. 226–231. http://citeseer.ist.psu.edu/
viewdoc/summary?doi¼10.1.1.121.9220.

33. Verbeek, J. J., N. Vlassis, and B. Kröse. 2003. Efficient greedy learning
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