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ABSTRACT

In this paper, we propose a novel second-order regularizer
based on the maximum response of the second-order direc-
tional derivative, assuming that the image under consideration
belongs to the class of piecewise-linear signals. Compared to
total-variation regularization that preserves edges but trans-
forms piecewise-smooth regions into piecewise-constant re-
gions, the proposed model is able to restore piecewise-linear
regions and finer details. Deconvolution experiments demon-
strate the performance of our approach in terms of the quality
of reconstruction.

Index Terms— Image deconvolution, Linear inverse
problems, Higher-order regularization.

1. INTRODUCTION

Every imaging system causes an inevitable degradation of
quality during acquisition. In that regard, the goal of deblur-
ring is to improve the contrast and the perceived resolution of
the degraded images. A common approach is to express the
deblurring problem in a variational framework, using a reg-
ularization term to model the a priori knowledge about the
input [1].

Total variation (TV) regularization has been introduced by
Rudin et al. in 1992 [2] as a denoising algorithm. The prin-
ciple of TV states that signals with excessive and possibly
spurious details have high total variation. Reducing the to-
tal variation of the image while keeping the solution close to
the original signal via some data-fidelity term removes noise
whilst preserving the sharpness of edges. TV-based regular-
ization is particularly well-suited to image restoration in cer-
tain cases. The underlying assumption of TV is that images
under consideration belong to the class of piecewise-constant
signals. Hence, the recovered images resulting from the ap-
plication of this model in the presence of noise are subject to
the so-called staircase effect. Therefore, the use of TV may
generate undesirable artifacts and compromise the quality of
the recovered image.

To overcome this problem, researchers have proposed us-
ing second (or higher)-order regularization methods. The re-
lated work can be categorized into two groups. The first one
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tries to reduce the staircase effect introduced by TV using
jointly the total-variation regularization and another regular-
ization term based on some higher-order derivatives [3, 4].
The second category considers regularization schemes solely
based on higher-order derivatives [5, 6].

In the next sections, our contribution is to propose a new
second-order regularization functional that falls in that sec-
ond category, and that is derived as an extension of TV. We
propose a cost-minimization technique in Sec. 5, and provide
experimental results in Sec. 6.

2. PROBLEM FORMULATION

Following a variational approach, we propose to solve the
general problem

f̂ = argmin
f

J {f} . (1)

with
J {f} =

1

2
‖y − A{f}‖22 + τJreg {f} , (2)

where A is a convolution operator, y is the noisy and blurred
observation, and f is the signal we are recovering. The
generic regularization term Jreg is weighted by a constant
τ . In this paper, we consider Jreg within the class of convex
regularizers that involve some norm of a linear differential
operator L of first or higher order, in a given number of
dimensions.

Assuming suitable differentiability properties on f , the
2D version of TV amounts to minimizing the maximum-
magnitude directional derivative at each position. The first-
order directional derivative of f along the unit vector uθ =
(cos θ, sin θ) is Duθf(x) = 〈u,∇f(x)〉, and its maximum
angular magnitude is maxθ |Duθf(x)| = ‖∇f(x)‖. Hence,
the TV regularization term can be reformulated as

JTV {f} =

∥∥∥∥max
θ

|Duθf(x)|
∥∥∥∥
1

. (3)

From that perspective, our new second-order regularizer
is meant to extend this directional-derivative-maximization
principle to the second-order case, while keeping the benefi-
cial properties of the L1-norm stated in [2].

In TV, signals are assumed to be piecewise-constant,
while our approach implicitly adopts a piecewise-linear
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Fig. 1. Denoising results on 1D signals

model. Note that, from an approximation viewpoint, the de-
composition of signals into piecewise-linear functions yields
a lesser approximation error than decomposing them into
piecewise-constant functions. Therefore, assuming that the
signals under consideration can be better decomposed into
piecewise-linear functions, we expect second-order regular-
ization to be more accurate in terms of restoration quality.

3. THE 1D MODEL

In this section, we illustrate and motivate the use of higher-
order information for regularization, confronting our model
with TV. To better understand the essential characteristics of
each method, we first consider the 1D case where both reg-
ularizers degenerate to the L1-norm of the first and second
derivatives, respectively. In order to illustrate the behavior of
the new regularizer, we consider comparisons in a pure de-
noising setting (i.e., the blurring operator being the identity).
The result is thus not affected by smoothing and is easier to
evaluate.

In this denoising experiment, we consider four types
of synthetic signals ( piecewise-constant, piecewise-linear,
mixed, and piecewise-parabolic). The original signals are
degraded by additive zero-mean Gaussian noise of standard
deviation σ = 2.

In Fig. 1, we observe the edge-preserving property of TV
as well as its characteristic staircase artifacts. We also no-
tice that, in the case of TV, nonconstant regions are broken to
smaller piecewise-constant ones. In contrast, our model re-
constructs piecewise-linear regions more accurately without
staircase artifacts, while still preserving sharp edges. Hence,
the second-order regularization is an interesting alternative to
TV, especially when dealing with piecewise-smooth signals.
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(b) Degraded image
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(d) Our solution

Fig. 2. Intensity plots on a 2D synthetic example

4. THE 2D MODEL

In this section, our second-order regularization term is de-
rived for the 2D case, based on the minimization of the max-
imum magnitude of second-order directional derivatives at
each coordinate. Assuming f(x) to be twice-differentiable,
its directional second derivative along the unit vector uθ =
(cos θ, sin θ) is D2

uθ
f(x) = uT

θ (H{f}(x))uθ, where H is
the 2 × 2 Hessian operator. The maximum-magnitude re-
sponse is then max

∣∣D2
uθ
f(x)

∣∣ = max(|λ±(x)|), where λ±

corresponds to

λ± =
1

2



∆f ±

√(
∂2f

∂x2
1

− ∂2f

∂x2
2

)2

+

(
2∂2f

∂x1∂x2

)2


 .

(4)
In other words, the maximum magnitude of the directional
second derivative at a given image coordinate corresponds
to the maximum absolute eigenvalue (or, equivalently in that
case, the spectral radius) of the corresponding Hessian matrix.
Hence, the proposed regularization method is convex and can
be written in the more concise form

Jnew{f} = ‖ρ (H{f}(x))‖1 , (5)

where ρ takes the spectral radius of its matrix argument.
As in the 1D case, we want to compare the proposed 2D

regularizer with TV. This is done by means of a synthetic
image that includes piecewise-linear as well as piecewise-
constant intensity regions. This experiment is once more car-
ried out in a denoising setting, with Gaussian noise of σ = 4.

We represent the oracle, degraded, and restored signals in
Fig. 2. In order to better visualize the results, we display
the corresponding intensities as three-dimensional plots. As a
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matter of fact, 2D TV restoration does obviously not discrim-
inate between sudden intensity jumps and smooth transitions.
As illustrated, this creates an oversharpening at smooth tran-
sitions, which corresponds to the well-known 2D staircase ef-
fect. On the other hand, our proposed 2D regularization term
yields better reconstruction performance (as in the 1D case)
on piecewise-linear regions while preserving the edges satis-
factorily.

As expected, the proposed 2D regularizer is thus well-
adapted for piecewise-linear image restoration. We assess our
method quantitatively in Sec. 6 by performing deconvolution
experiments on standard images.

5. MINIMIZATION

Our overall cost functional must be minimized according
to (1). Since our regularizer is itself convex, as it is based
on the spectral radius of the Hessian matrix, our overall cost
is convex as well. Therefore, we resort to standard-descent
optimization to find the solution, where the specific gradient
expression related to our cost functional is derived below.

Since we are dealing with discrete data, the regularizer is
discretized accordingly. Herein, we use vectors and matri-
ces for discrete quantities, denoting them using bold notation;
each vector corresponds to a lexicographically-ordered image
sequence. Considering the discretized image f , and according
to (4), we express the eigenvalues at each position i as

λ±
i = (T1f)i ±

√
(T2f)2i + (T3f)2i , (6)

where T1, T2, and T3 are block-circulant matrices imple-
menting the discretized versions of the corresponding second-
order operations. Let use define λd

i = |λ+
i |− |λ−

i |. Then,

Jnew{f} =
∑

i

max
(∣∣λ±

i

∣∣)

=
∑

i

1

2

(∣∣λ+
i

∣∣+
∣∣λ−

i

∣∣+
∣∣λd

i

∣∣) . (7)

For the sake of differentiability, the absolute value is approx-
imated by a smooth Huber function [7]. The corresponding
minimization problem is solved via the gradient-based algo-
rithms [8]. The regularizer is differentiated as

∇Jnew {f} =
1

2

[
TT

1 M1T1 +TT
2 ΘT2 +TT

3 ΘT3

]
f

+
1

2
TT

1 M2g, (8)

where the vector g is defined by gi =
√
(T1f)2i + (T2f)2i ,

and where M1,M2, and Θ are the weighting diagonal matri-

Uniform PSF Gaussian PSF
Image/σ TV Prop. TV Prop.
Cell/0.56 7.07 7.46 6.09 6.44

Cell/5 3.63 3.76 3.17 3.22
Cell/7 3.75 3.81 3.45 3.53

Fing./0.56 9.59 9.93 8.67 8.85
Fing./5 4.90 5.48 4.91 5.21
Fing./7 4.37 4.82 4.42 4.78

Lena/0.56 7.15 7.05 6.12 5.94
Lena/5 3.84 3.62 3.87 3.08
Lena/7 3.82 3.54 3.51 3.17

Table 1. Restoration results for TV and our method with two
different blurring kernels and three distinct noise levels.

ces

M1 = diag
(
1 + sgn(λd

i )

|λ+
i |

+
1− sgn(λd

i )

|λ−
i |

)
, (9)

M2 = diag
(
1 + sgn(λd

i )

|λ+
i |

− 1− sgn(λd
i )

|λ−
i |

)
, (10)

Θ = diag
(

sgn(λ+
i )(1 + sgn(λd

i ))

gi

− sgn(λ−
i )(1− sgn(λd

i ))

gi

)
. (11)

Finally, the gradient of the overall cost is given as

∇J {f} = −AT (y −Af) +
λ

2
∇Jnew {f} . (12)

6. EXPERIMENTAL RESULTS

In this section, the performance of the proposed model is eval-
uated on standard natural images of size 512× 512. We com-
pare our proposed model with TV regularization. In our ex-
periments, we consider two different types of blurring (Gaus-
sian and moving average over a kernel of size 9 × 9). Fur-
ther degradation is caused by Gaussian noise at distinct levels.
The corresponding restoration results are reported in Table
1. For visual appreciation, two of these results are shown in
Figs. 3 and 4. The results involving TV regularization are ob-
tained using the available implementation of [1]. In all cases,
the regularization parameter τ is fine-tuned to obtain the best
performance in terms of the increase of signal-to-noise ratio
(ISNR).

From Table 1, we see that our model performs better than
TV for two of the considered images. Inspecting Figs. 3
and 4, we observe that our model behaves better than TV in
piecewise-linear transitions, which is in accordance with the
properties of the regularizer discussed above. It also better
preserves filament-like structures. For instance, the lower part
of the Fingerprint image is relatively well restored, in contrast
to TV which tends to merge or dilate the original structures.
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(a) Original image (b) Blurred and noisy image

(c) TV solution (ISNR=4.90) (d) Our solution (ISNR=5.21)

Fig. 3. Close-up of the Fingerprint image for a Gaussian blur-
ring kernel and a noise of σ = 5.

7. CONCLUSIONS

We have proposed a second-order regularization method de-
rived as an extension of TV. We have studied the potential ap-
plicability of our model, and compared its performance with
respect to TV. The main advantage of our method is to al-
low for the reconstruction of piecewise-linear structure while
preserving edges and ridges satisfactorily. Our experiments
have shown the efficacy of our method for certain classes of
images.
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