Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Compressed Sensing
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Compressed Sensing for Dose Reduction in STEM Tomography

L. Donati, M. Nilchian, M. Unser, S. Trépout, C. Messaoudi, S. Marco

Proceedings of the Fourteenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'17), Melbourne, Commonwealth of Australia, April 18-21, 2017, pp. 23-27.


We designed a complete acquisition-reconstruction framework to reduce the radiation dosage in 3D scanning transmission electron microscopy (STEM). Projection measurements are acquired by randomly scanning a subset of pixels at every tilt-view (i.e., random-beam STEM or RB-STEM ). High-quality images are then recovered from the randomly downsampled measurements through a regularized tomographic reconstruction framework. By fulfilling the compressed sensing requirements, the proposed approach improves the reconstruction of heavily-downsampled RB-STEM measurements over the current state-of-the-art technique. This development opens new perspectives in the search for methods permitting lower-dose 3D STEM imaging of electron-sensitive samples without degrading the quality of the reconstructed volume. A Matlab code implementing the proposed reconstruction algorithm has been made available online.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/donati1701.html,
AUTHOR="Donati, L. and Nilchian, M. and Unser, M. and Tr{\'{e}}pout, S.
	and Messaoudi, C. and Marco, S.",
TITLE="Compressed Sensing for Dose Reduction in {STEM} Tomography",
BOOKTITLE="Proceedings of the Fourteenth {IEEE} International Symposium
	on Biomedical Imaging: {F}rom Nano to Macro ({ISBI'17})",
YEAR="2017",
editor="",
volume="",
series="",
pages="23--27",
address="Melbourne, Commonwealth of Australia",
month="April 18-21,",
organization="",
publisher="",
note="")

© 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved