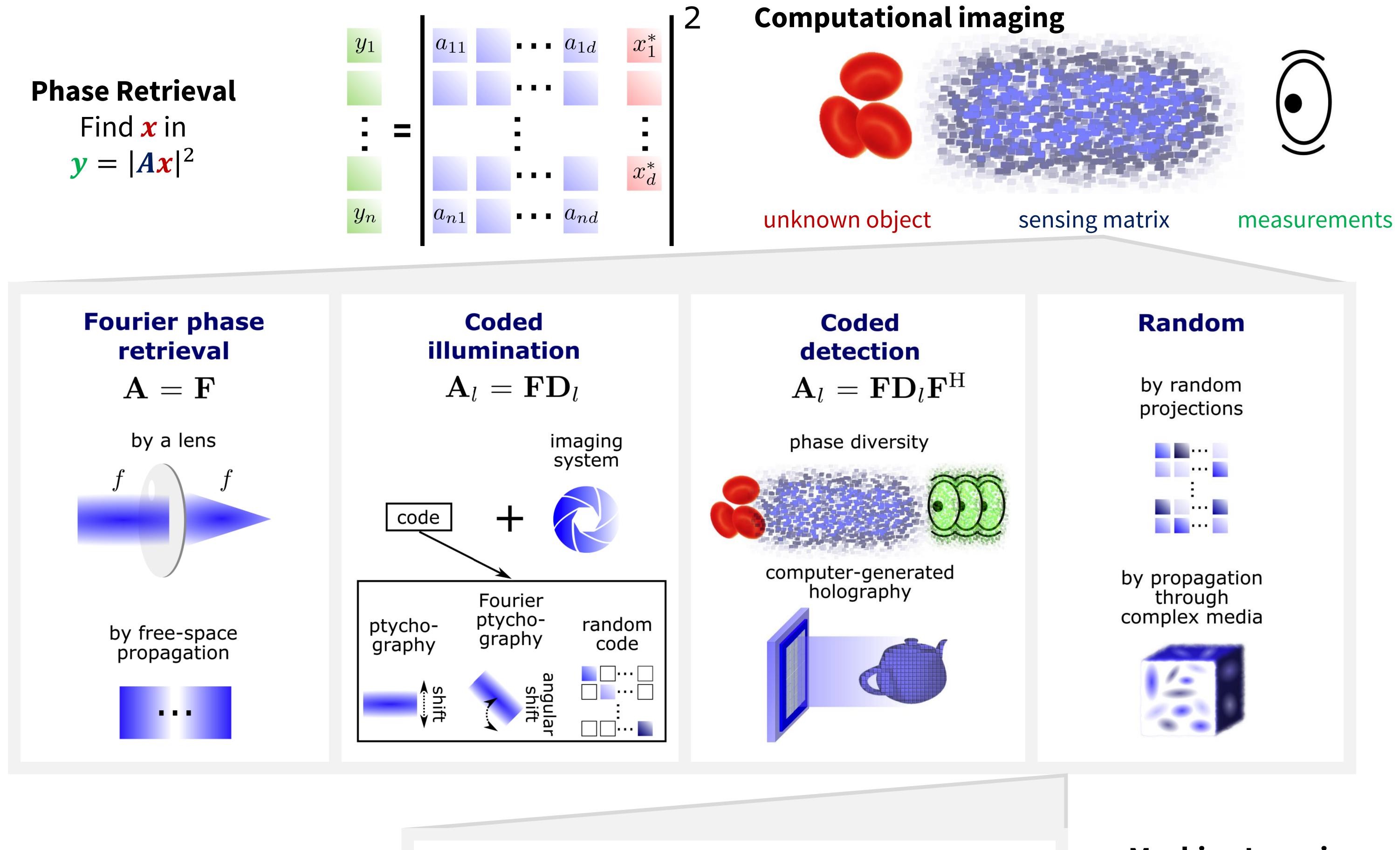
Phase Retrieval: From Computational Imaging to Machine Learning

Jonathan Dong¹, Lorenzo Valzania², Antoine Maillard³, Thanh-an Pham¹, Sylvain Gigan², Michael Unser¹

³ Department of Mathematics, ETHZ, Zürich, Switzerland ¹Biomedical Imaging Group, EPFL, Lausanne, Switzerland ²Laboratoire Kastler Brossel, ENS-PSL, Paris, France



Reconstruction algorithms

Algorithm benchmark in the random setting

Machine Learning

First algorithms Gerchberg-Saxton, Fienup, etc. Still used today

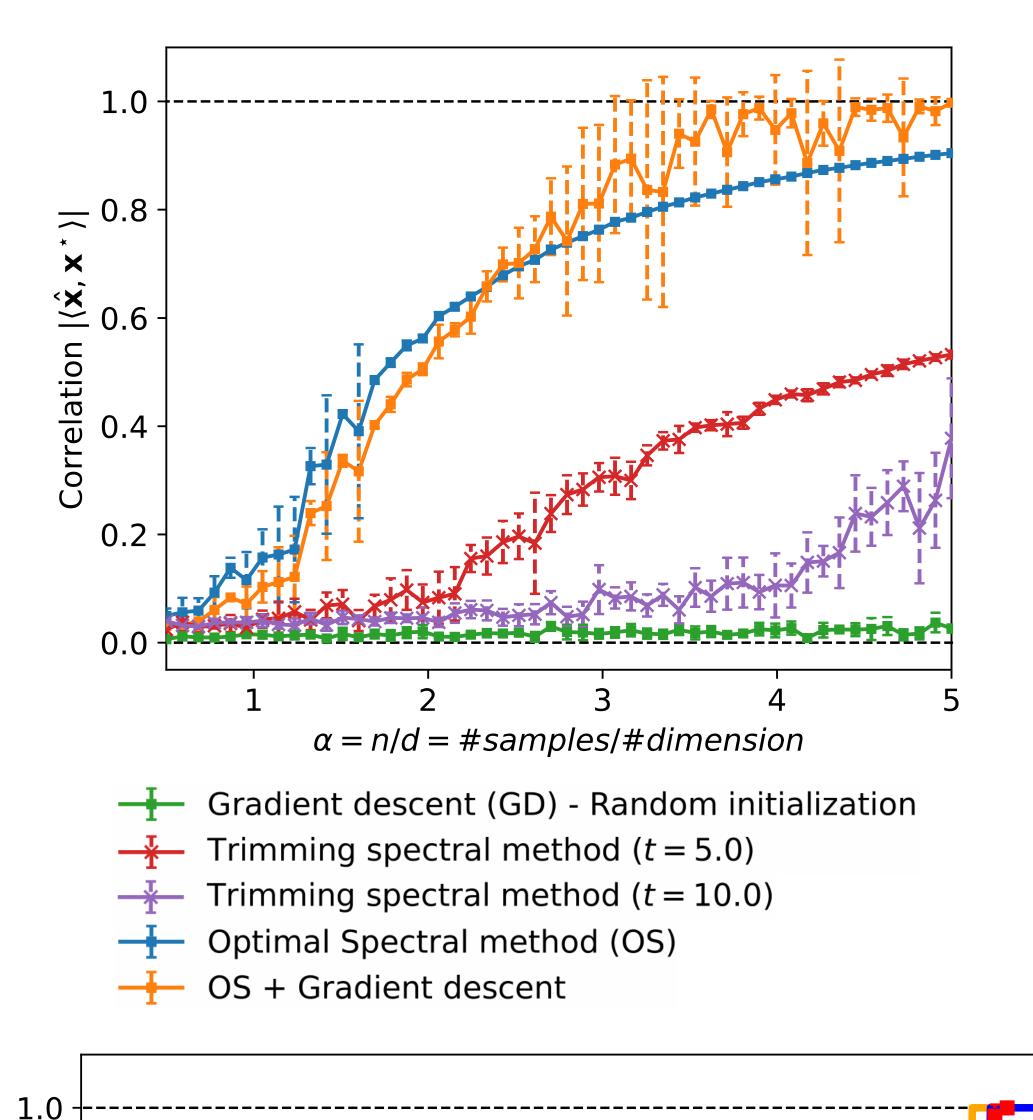
Gradient-based

optimization

Non-linear optimization Simple and flexible Few convergence guarantees

Rewrite the original equation Closer to convex optimization A few variants

Correlation: $0 \rightarrow$ random guess, $1 \rightarrow$ perfect recovery



regularization

Direct inversion with NN

Train neural network to map measurements to reconstruction

Regularization using CNN denoisers

Denoising introduced at each iteration RED, PnP, etc.

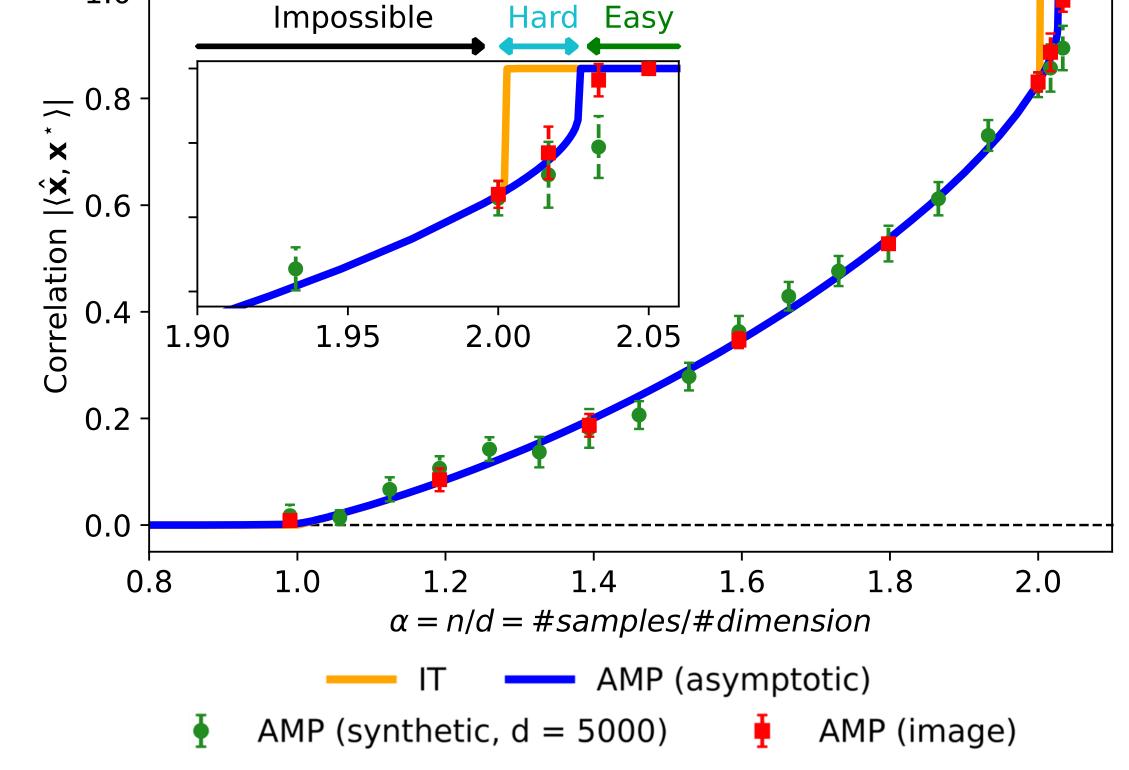
Generative models as priors

Train a GAN to generate images Restrict search space to GAN outputs

Based on Bayesian framework **Approximate Message Passing** Optimal among algorithms?

Spectral ••• methods

Based on power iterations Fast to compute Provide good initial guess



Deep Image Prior

Use untrained CNN to generate estimate Optimize weights to fit measurements

Others?

Accepted in IEEE Signal Processing Magazine Contact: jonathan.dong@epfl.ch