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Reconstruction algorithms Algorithm benchmark in the random setting Machine Learning
Correlation: 0 = random guess, 1 — perfect recovery regularlzatlon
Alternating
projections 1.0- Direct inversion with NN

Train neural network to
map measurements to
reconstruction

First algorithms
Gerchberg-Saxton, Fienup, etc.
Still used today
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Non-linear optimization - mt{ﬂ;ﬂ_,_ﬂ TEEY T SR St S Denoising introduced at
Simple and flexible ' N

1 2 3 4 5 each iteration
Few convergence guarantees a = n/d = #samples/#dimension

RED, PnP, etc.
—4— Gradient descent (GD) - Random initialization

CO Nvex —¥— Trimming spectral method (t=5.0)
. —— Trimming spectral method (t=10.0) '
relaxatlon —4— Optimal Spectral method (OS) Ge,neratlve mOdelS 5
Rewrite the original equation 17 05+ Gradient descent PrOrs
Closer to convex optimization o Train a GAN to generate images
A few variants | Restrict search space to GAN
— 0.8 outputs
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AMP s Deep Image Prior
Based on Bayesian framework é 04 Use untrained CNN to generate
Approximate Message Passing S estimate
. . 0.2
Optimal among algorithms? Optimize weights to fit
S | 0.0 - . . . . | measurements
peCtra 0.8 1.0 1.2 1.4 1.6 1.8 2.0
methods a = n/d = #samples/#dimension
. . IT = AMP (asymptotic) OtherS?
Based on power iterations § AMP (synthetic, d = 5000) & AMP (image)

Fast to compute

Provide good initial guess Accepted in IEEE Signal Processing Magazine
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