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ABSTRACT

B-splines are attractive basis functions for the continuous-
domain representation of biomedical images and volumes. In
this paper, we prove that the extended family of box splines
are closed under the Radon transform and derive explicit for-
mulae for their transforms. Our results are general; they cover
all known brands of compactly-supported box splines (tensor-
product B-splines, separable or not) in any dimensions. In
particular, we prove that the 2-D Radon transform of an N -
direction box spline is generally a (non-uniform) polynomial
spline of degree N −1. The proposed framework allows for a
proper discretization of a variety of 2-D and 3-D tomographic
reconstruction problems in a box spline basis. It is of rele-
vance for imaging modalities such as X-ray computed tomog-
raphy and 3-D cryo-electron microscopy.

Index Terms— Radon transform, tomography, box
splines

1. INTRODUCTION

Biomedical imaging heavily relies on tomographic algorithms
for the reconstruction of 2-D and 3-D images from projec-
tion data [1]. Prominent medical imaging examples are X-
ray computed tomography, emission tomography (PET and
SPECT), and portal imaging for radio therapy. Tomographic
reconstruction is also relevant for biology; for instance, for
small animal imaging using micro scanners and molecular
structure determination from 3-D cryo-electon tomography.

When the projection angles are evenly distributed, the to-
mogram is usually reconstructed by filtered backprojection
(FBP) [1]. When the acquisition conditions are less ideal
(e.g., noisy and/or missing data, non-even angular distribu-
tion of the projections), it is better to apply iterative tech-
niques such as ART (algebraic reconstruction) or the statis-
tical OSEM method, which offer greater flexibility.

A crucial step in the design of iterative reconstruction al-
gorithms is the discretization of the forward model. This
is usually achieved by selecting image-domain basis func-
tions and by mathematically simulating the acquisition pro-
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cess on them. For a parallel projection geometry, the suitable
model is the Radon transform (or the X-ray transform in 3-
D). Current reconstruction algorithms typically use the natu-
ral (square) pixel basis or some blob (or Kaiser-Bessel) func-
tions which have the advantage of being circularly symmetric.
While these particular choices simplify the derivation of the
forward model, they are not as favorable from an approxima-
tion theoretic point of view. Both bases have—at best—a first
order of approximation which implies that the rate of decay
of the discretization error as the reconstruction grid gets finer
is relatively slow [2, 3]. In principle, choosing higher-order
B-spline basis functions would be more advantageous since
these are optimal in the sense of their support being minimal
for a given order of approximation [3]. Splines have been
found to be useful for improving the performance of FBP re-
construction [4, 5, 6], but have hardly been deployed in the
context of iterative algorithms, probably due to the increased
complexity of the corresponding forward model.

The contribution of this work is to provide a general char-
acterization of the Radon (or X-ray) transform for the ex-
tended family of box splines. While bringing in this level
of generality may look like overkill at first sight, we find
that it actually simplifies the analysis because the family hap-
pens to be closed under the Radon/X-ray transform. Since all
commonly-used brands of B-splines are special instances of
box splines [7], it therefore makes sense to investigate these
functions in detail to obtain a complete analytical picture.

2. PROJECTION GEOMETRY

The X-ray transform relates a function to its projections along
some directions θ. The projections (or shadows) are obtained
by integrating the function along a set of parallel rays. In 2-D,
this is equivalent to performing the Radon transform.

To specify the geometry in the general d-dimensional set-
ting, we introduce the unit vector θ ∈ Rd that points along the
direction of integration. The spatial coordinates of the input
function are denoted by x = (x1, x2, . . . , xd); these are also
expressed in a rotated coordinate system as x = tθ + P

T
θ⊥y

where P
T
θ⊥ is a d × (d − 1) matrix specifying an orthogonal

basis of the hyperplane perpendicular to θ. The correspond-
ing hyperplane coordinates are y = (y1, . . . , yd−1) = Pθ⊥x;
they are obtained by projecting x onto the basis vectors per-
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pendicular to θ.
The (d-dimensional) X-ray transform P maps a function

f(x),x ∈ Rd into the set of its line integrals [1]. Specifically,
if θ ∈ Sd−1 (e.g., θ ∈ Rd with ‖θ‖ = 1), then

P{f}(y;θ) =

∫
R

f(tθ + P
T
θ⊥y)dt, (1)

with y ∈ Rd−1. In the sequel, we will also use the short-hand
notation Pθf(y) for the above map. The projection geometry
for the 2-D case is illustrated in Figure 1; the direction of
integration is θ = (− sin θ, cos θ) and the projection matrix
onto the Radon coordinate system is Pθ⊥ = [cos θ sin θ]
so that y = x1 cos θ + x2 sin θ.

The X-ray transform is a bounded linear operator that has
the convenient property of pseudo-commuting with the con-
volution and translation operations:

Pθ{f ∗ g}(y) = (Pθf ∗ Pθg)(y), (2)

Pθ{f(· − x0)}(y) = Pθ{f}(y −Pθ⊥x0). (3)

These properties are essential to the present work where we
are aiming at obtaining a closed-form expression for the X-
ray transform of a function that is expressed in an integer-shift
invariant basis

f(x) =
∑

k∈Zd

ckϕ(x− k) (4)

where the generator ϕ is a tensor-product B-spline or, more
generally, a box spline. The direct application of (3) yields

Pθf(y) =
∑

k∈Zd

ckPθ{ϕ}(y −Pθ⊥k). (5)

This means that we can discretize the X-ray reconstruction
problem exactly, provided that we have an explicit formula
forPθ{ϕ}(y), the X-ray (or Radon) transform of the B-spline
generator. It is then possible to use (5) to form the system ma-
trix H that relates the line integrals pm,n = Pθm

f(yn) to the
B-spline coefficients of the signal ck. Note that the approach
is also applicable to nonparallel geometries (e.g., fan beam or
cone beam), as long as the measurements correspond to pure
line integrals.

3. BOX SPLINES REVIEW

Geometrically, a box spline is the shadow (i.e., X-ray im-
age) of a hypercube, in RN , when projected to a lower-
dimensional space, Rd (N ≥ d). A box spline is defined for a
set of N vectors ξ1, ξ2, . . . , ξN in Rd. Each of these vectors
is the shadow of an edge of the N -hypercube adjacent to its
origin. The matrix of directions Ξ := [ξ1 ξ2 . . . ξN ] com-
pletely specifies the box spline in Rd. Note that the vectors in
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Fig. 1. X-ray projection geometry for d = 2. On the right:
projection of a pixel (tensor-product first-order B-spline) on
various angles.

this (multi-) set need not be distinct as they can appear with
some multiplicity. When N = d, the box spline is simply the
(normalized) indicator function of the parallelepiped formed
by d vectors in Rd:

MΞ(x) =

{
1

|detΞ| x =
∑d

n=1 tnξn for some 0 ≤ tn ≤ 1

0 otherwise
.

For N > d, box splines are defined recursively by a “direc-
tional” convolution which makes them particularly suitable
for the Radon transform:

MΞ∪ξ(x) =

∫ 1

0

MΞ(x− tξ)dt. (6)

When the lower dimensional space is R (i.e., d = 1), the box
splines coincide with univariate B-splines (basic splines).
When the distinct column vectors of Ξ are orthogonal to
each other, box splines amount to tensor-product B-splines.
The continuity and approximation power of the spline space
formed by the linear combination of shifts of a box spline
are determined based on properties of the matrix Ξ. The
approximation properties, along with the de Boor-Höllig’s
recurrence relations for fast evaluation of box splines, are
discussed in [7] which is the definitive reference on the sub-
ject. There are several algorithms for efficient and stable
evaluation of box splines [8, 9, 10].

Another way of constructing box splines, which is prob-
ably more transparent to engineers, is by repeated convolu-
tion of elementary line-segment-like distributions. Specifi-
cally, we have

MΞ(x) =
(
Mξ1

∗ · · · ∗MξN

)
(x) (7)

where the elementary box splines, Mξn
, are Dirac-like line

distributions supported over x = tξn with t ∈ [0, 1]. These
elementary box splines are in direct geometric correspon-
dence (via a rotation and a proper scaling) with the primary
box spline

M�e1
(x) = box(x1)δ(x2, · · · , xd)
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where δ(x2, · · · , xd) is the (d− 1)-dimensional Dirac distri-
bution and

box(x) =

{
1 0 ≤ x ≤ 1

0 otherwise
.

Moreover, they integrate to 1 which is a property that is shared
by all box splines (and also preserved through convolution).

Based on (7), one directly infers that the box splines are
positive, compactly-supported functions. Their support is a
zonotope, which is the Minkowski sum of N vectors in Ξ.
The center of the support of MΞ(x) is given by xΞ,0 :=
1
2

∑N
n=1 ξn. The Fourier transform of the box spline is there-

fore given by:

M̂Ξ(ω) = e−j〈ω,xΞ,0〉
N∏

n=1

sinc

(
〈ω, ξn〉

2π

)
,

where ω := (ω1, . . . , ωd) is the multivariate frequency vector.

4. X-RAY PROJECTION OF BOX SPLINES

We now turn to our main objective, which is the derivation
of an explicit formula for Pθ{MΞ}(y) where MΞ(x) is a
given box spline generator specified by N direction vectors
ξn ∈ Ξ. In the following discussion, ω′ =

(
ω′1, . . . , ω

′
d−1

)
denotes the (d − 1)-variate frequency vector corresponding
to the projection-domain spatial coordinate vector y ∈ Rd−1,
while the projection geometry is the specified in Section 2.

Theorem 1. The X-ray transform of a d-variate box spline
specified by the direction set, Ξ, is a (d−1)-variate box spline
whose direction set, Ξ′, is the geometric projection of the for-
mer. Specifically,

Pθ{MΞ}(y) = MP
θ⊥Ξ(y).

where Pθ⊥ is the transformation matrix that geometrically
projects the x-coordinate system onto the y-coordinate sys-
tem perpendicular to θ.

Proof. We start with the derivation of the X-ray transform of
the elementary (Dirac-type) box spline Mξ(x) whose distri-
butional Fourier transform is

M̂ξ(ω) = e−j
〈ω,ξ〉

2 sinc

(
〈ω, ξ〉

2π

)
.

We can proceed geometrically by determining the “shadow”
of the direction vector ξ since the latter specifies the support
of the elementary box spline as a line segment in Rd. The al-
ternative is to apply the central slice theorem which states that
the Fourier transform of Pθϕ(y) corresponds to the restric-
tion of ϕ̂(ω) to the hyperplane perpendicular to θ. Specifi-
cally, we have that

P̂θMξ(ω
′) = M̂ξ(ω)

∣∣∣
ω=P

T

θ⊥ω′
= M̂P

θ⊥ξ(ω
′).

ξ1

ξ2

y

ξ′
1

ξ′
2

θ
θ

Ξ′ = [cos(θ), sin(θ)]

Fig. 2. The X-ray transform of a box spline is a box spline
whose directions are projections of the directions of the origi-
nal box spline onto the projected plane. On the right: a trivari-
ate box spline (a tensor-product B-spline) projected to 2-D.

Since 〈PT
θ⊥ω′, ξ〉 = 〈ω′,Pθ⊥ξ〉, we immediately deduce

that Pθ{Mξ}(y) = MP
θ⊥ξ(y), which proves the theorem

for N = 1. By noting that Ξ
′ = [Pθ⊥ξ1 · · ·Pθ⊥ξN ] =

Pθ⊥Ξ, we are then able to transfer the result to the general
case using convolution properties (2) and (7).

The theorem is illustrated in Figure 2. The box spline
on the right is a trivariate tensor-product B-spline (first order)
whose direction vectors are (1, 0, 0), (0, 1, 0) and (0, 0, 1).
When projected to the plane orthogonal to θ, it yields a bi-
variate, three-direction, box spline that is a hat function with
hexagonal support. Likewise, the X-ray transform of the tri-
linear B-spline (second order) is again a three-direction box
spline, but with multiplicity of 2. The concept carries over to
higher-order tensor-product B-splines which are transformed
into three-direction box splines with repeated directions, the
main point being that these can be evaluated efficiently.

5. EXPLICIT FORMULAE IN 2-D

For d = 2, we will now show that the X-ray transforms of
box splines are polynomial splines of degree N − 1. The
geometric configuration is the one shown in Figure 1 with
the x-to-y projection matrix given by Pθ⊥ = [cos θ sin θ].
The application of Theorem 1 together with the convolution
formula (7) yields

PθMΞ(y) =
(
Mξ′

1
∗Mξ′

2
∗ · · · ∗Mξ′

N

)
(y) (8)

with ξ′n = Pθ⊥ξn = [ξn]1 cos θ + [ξn]2 sin θ, and

Mξ′
n
(y) =

1

|ξ′n|
box

(
y

ξ′n

)
,

which is a rectangular box of width ξ′n when ξ′n 	= 0. Note
that the convolution factors with ξ′n = 0 may be eliminated
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from (8) since M0(y) = δ(y). To evaluate the above convo-
lution product, we write Mξ′

n
(y) as

Mξ′
n
(y) = Δξ′

n
u(y) (9)

where Δhf(y) = f(y)−f(y−h)
|h| is the finite-difference opera-

tor with step h, and where u(y) is the unit-step (or Heaviside)
function. By substituting (9) in (8), we find that

PθMΞ(y) = (Δξ′
1
u ∗ · · · ∗Δξ′

N
u)(y)

=
Δξ′

1
· · ·Δξ′

N
yN−1
+

(N − 1)!
(10)

where we have used the fact that the (n + 1)-fold convolu-

tion of a step function is
yn
+

n! with yn
+ = max(y, 0)n. Finally,

we may expand the finite-difference operators which yields a
linear expansion of PθMΞ(y) in terms of some shifted ver-
sions of yN−1

+ . The result therefore implies that PθMΞ(y) is
a non-uniform polynomial spline of degree N − 1, or less if
some ξ′n = 0. We can also infer that this box spline function
is bell-shaped and that its support is

∑N
n=1 ξ′n.

A case of special interest is when the 2-D basis func-
tion (or generator) is a tensor-product B-spline of degree
n: ϕ(x) = βn(x1)β

n(x2) [11]. In the present formal-
ism, this corresponds to a box spline with directions vectors
ξ1 = (1, 0) and ξ2 = (1, 0), each having a multiplicity
(n + 1) so that N = 2n + 2. The specialization of (10)
for these particular values yields an explicit formula for the
Radon transform of a separable B-spline of degree n:

Pθ{β
n(x1)β

n(x2)}(y) =
Δn+1

cos θ Δn+1
sin θ y2n+1

+

(2n + 1)!

which corresponds to the spline bikernel identified by Horbelt
et al. in [5]. The more general result (10), which is valid for
any 2-D box spline, including the Zwart-Powell element [6],
is new to the best of our knowledge. Similar explicit expan-
sions can be derived for 3-D to 2-D box splines [9, 10].

6. DISCUSSION

The choice of the box spline generator in (4) should be dic-
tated by computational and approximation theoretic consid-
erations. Basis functions with larger support and smoothness
usually offer better approximation quality, but they also re-
quire more computations. This suggests the possibility of
a tradeoff between approximation order and the density of
the reconstruction grid. In particular, it has been demon-
strated that it is computationally advantageous asymptotically
to switch to a higher-order basis function than to increase the
sampling rate [5].

Tensor-product B-splines constitute a preferred set of ba-
sis functions because they are made up from univariate B-
splines building blocks which are widely studied and efficient

to evaluate. We should note, however, that the present box
spline framework includes other non-separable basis func-
tions with increased isotropy and same approximation order,
but lower polynomial degree and smaller support than their
tensor-product counterparts. This directly relates to the effi-
ciency issue, which deserves further investigation.

Another concept for consideration is the geometry of the
reconstruction lattice. While the common solution is to use
a Cartesian grid, the 2-D hexagonal lattice and the 3-D Body
Centered Cubic (BCC) and Face Centered Cubic (FCC) lat-
tices have been demonstrated to outperform the sampling ef-
ficiency of the Cartesian lattice due to their densest spectral
packing properties. The present box spline formalism can per-
fectly handle those lattices as well. A possible option would
be to discretize the tomographic reconstruction problem using
the BCC/FCC box splines investigated in [10] since these are
quite favorable from the sampling and computational aspects.
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