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Abstract The characteristic functional is the infinite-dimensional generalization of
the Fourier transform for measures on function spaces. It characterizes the statistical
law of the associated stochastic process in the same way as a characteristic function
specifies the probability distribution of its corresponding random variable. Our goal in
this work is to lay the foundations of the innovation model, a (possibly) non-Gaussian
probabilistic model for sparse signals. This is achieved by using the characteristic func-
tional to specify sparse stochastic processes that are defined as linear transformations
of general continuous-domain white Lévy noises (also called innovation processes).
We prove the existence of a broad class of sparse processes by using the Minlos–
Bochner theorem. This requires a careful study of the regularity properties, especially
the L p-boundedness, of the characteristic functional of the innovations. We are espe-
cially interested in the functionals that are only defined for p < 1 since they appear to
be associated with the sparser kind of processes. Finally, we apply our main theorem
of existence to two specific subclasses of processes with specific invariance properties.
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1 Introduction

1.1 Presentation of the Innovation Model

Sparsity plays a significant role in the mathematical modeling of real-world signals.
A signal is said to be sparse if its energy tends to be concentrated in few coefficients
in some transform-domain. Natural images are known to have such a sparse represen-
tation. Moreover, numerous statistical studies have shown that typical biomedical and
natural images are non-Gaussian [26]. These empirical facts highlight the fundamental
limits of probabilistic models based on Gaussian priors [19]. The sparsity-based theo-
ries developed for overcoming these limitations include wavelets [18] (with powerful
applications in image coding and processing) and, more recently, compressed sensing
[11,12]. They are inherently deterministic.

A new general model has been recently developed in order to reconcile the sparsity
paradigm of signal processing with a probabilistic formulation. Its general foundations
and motivations were discussed in [32,33]. The main hypotheses are as follows.

• A signal is modeled as a random continuous-domain function s defined on Rd .
Hence, s is the stochastic process that captures the statistical properties of the
signal.

• The process s can be linearly decoupled, which implies the existence of a linear
whitening operator L such that

Ls = w, (1)

where w is a continuous-domain innovation process, also called white noise, which
is not necessarily Gaussian. The term “innovation” reflects the property that w is
the unpredictable component of the process.

Following the terminology of [33], these two hypotheses define the innovation model
(see Fig. 1).

The innovation model provides a mathematical framework that complies with the
sparse behavior of real-world signals for at least two theoretical reasons. First, a process
s following (1), given a non-Gaussian innovation process w, has been shown to be
sparser (i.e., more compressible) than any Gaussian one [33]. We can therefore refer
to these processes as sparse processes. Second, it has been demonstrated for the case
of symmetric α-stable (SαS) AR(1) processes that better decoupling is achieved in a
wavelet-like representation than with the traditional sine basis or the Karhunen–Loeve
transform [21].

Fig. 1 Innovation model
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The innovation model has already been applied to various fields of image processing
such as Bayesian estimation from noisy samples of sparse processes [2], algorithms
for the optimal quadratic estimation of sparse processes [17], and reconstruction tech-
niques based on sparse and self-similar processes [6]. It was also found to be useful in
inverse problems, involving MRI, deconvolution, and X-ray tomography reconstruc-
tion problems [7,8].

While these examples show that sparse processes are highly relevant for practical
applications, the theory currently available is based on too-constraining assumptions.
In particular, it excludes some of the sparsest processes such as SαS with α < 1, for
which wavelets have been found empirically to be optimal [21]. More generally, the
compatibility between a linear operator L and an innovation process w, defined as
the existence of a process s such that Ls = w, is a crucial question that needs to be
addressed.

The innovation model is formulated within the extended framework of generalized
stochastic processes (GSP), the stochastic counterpart of Schwartz theory of gen-
eralized functions. This probabilistic theory was historically introduced in the 50s
by Gelfand [14]. The larger part of the litterature on GSP is concerned with finite-
variance processes with a special emphasis on the Gaussian case. Recent examples
include results on existence and regularity of Gaussian GSP [10], construction of
Gaussian and Poisson isotropic and self-similar GSP [5], definition and study of frac-
tional random fields in the framework of GSP [3,22], or classification of Gaussian
stationary mean-square increments GSP [1]. Gelfand’s formulation extends beyond
the finite-variance family. For instance, the processes with unbounded variance take
a particular relevance in the context of sparsity [4], [13]. We consequently consider
[16] as the starting point of our own developments.

This framework of GSP enables the definition of the innovation processes, which
cannot be defined as classical stochastic processes. Gelfand defines innovation
processes as random generalized functions. As a consequence, the GSP are not
observed pointwise but by forming duality products with test functions ϕ ∈ D, where
D is the space of smooth and compactly supported functions. In other words, a GSP is
a random element of the space D′, topological dual of D. For a fixed ϕ, the observation
⟨w,ϕ⟩ is then a conventional random variable. In addition to that, Gelfand’s frame-
work appears to be particularly adapted for the development of the theory related to
the innovation model and for its applicability in signal processing.

1.2 Contributions

Our goal is to define the broadest framework that guarantees the existence of sparse
processes. In that sense, our work can be seen as an extension of the existence results
of [33]. We now give the three main results of this paper.

a) Proper definition of innovation processes over S′

While the usual definition of an innovation process (i.e., a continuous-domain white
noise) is over the space D′ [16], we therein define innovation processes over the space
S′ of tempered generalized functions. Recall that S is the space of rapidly decreasing
functions and S′ its topological dual. We have especially D ⊂ S and S′ ⊂ D′. This
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extension from D to S requires to identify a sufficient condition for an innovation
process to be tempered, which is the focus of Theorem 3. We show in addition that
most of the innovation processes on D′ are supported on S′ (Theorem 4). This ensures
the compatibility between the two constructions over D′ and S′ when they occur.

The choice of S′ is driven by the desire to make the innovation model applicable
to signal processing. Adopting S′ as the definition space allows us to extend ⟨w,ϕ⟩ to
the case of non-compactly supported functions, which are crucial in signal-processing
applications.

b) Existence of the broader family of sparse processes
We investigate the compatibility of pairs (w, L) of innovation processes and linear

operators and introduce a large class of valid combinations. Before describing our
contributions, we briefly summarize the knowm results on the existence of sparse
processes of the form s = L−1w.

Gelfand formulates the general definition of innovation processes on D′. Hence,
(w, Id) is a compatible pair for all w defined by [16]. An immediate extension of
this result is that (w, L) is also valid if the adjoint operator L∗ has a D-stable inverse
operator. In that case, one can directly define s according to

⟨s,ϕ⟩ = ⟨w, L∗−1ϕ⟩. (2)

Indeed, the D-stability of L∗−1 ensures that ⟨w, L∗−1ϕ⟩ is always well-defined. We
then have ⟨Ls,ϕ⟩ = ⟨s, L∗ϕ⟩ = ⟨w, L∗−1L∗ϕ⟩ = ⟨w,ϕ⟩ or, equivalently, Ls = w.
Unfortunately, interesting whitening operators for signal processing do not fullfil this
stability condition. For instance, in the one-dimension case, the common differential
operator L = αId − D with α > 0 associated with AR(1) processes is already prob-
lematic. Indeed, ρα(t) = u(t)e−αt , with u(t) the Heaviside step function, is the causal
Green function of L∗ = αId + D. Its inverse L∗−1ϕ = (ρ ∗ ϕ)(t) is therefore not
D-stable. Note that L∗−1 is however S-stable. This has also encourage us to develop
the theory of innovation model over S′ instead of D′.

As a first step, Unser et al. have expressed the comparability condition over S′. The
pair (w, L) is shown to be compatible if there exists p ≥ 1 such that (i) L∗ admits a
left inverse operator L∗−1 from § to L p and (ii) w is p-admissible, a condition that
quantifies the level of sparsity of w (see Theorem 3 in [33]). This theory enables sparse
processes to be defined not only for classical differential operators that are typically
S-stable, but also for fractional differential operators which require the L p extension.
This generalization is sufficient for most of the cases of practical interest, but has two
restrictions. First, it does not encompass the case of high sparsity as it is restricted to
p ≥ 1. Second, the p-admissibility condition limits the generality of the results.

In this paper, we formulate a new criterion of compatibility that avoid these restric-
tions. We show that the generalized stochastic process s over S′ with Ls = w exists if
one can link the existence of moments for w to the existence of a stable left inverse for
the operator L∗ (Theorem 5). We present our proofs of sufficiency in the most general
setting, which requires us to extend the continuity of the characteristic functional of
the innovation processes from S to L p spaces (Proposition 4).
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c) Construction of specific subclasses of processes
We apply our compatibility conditions to two specific families of operators. A class

of self-similar processes is defined (Proposition 6) by extending a previous study of the
fractional Laplacian operators [28]. A class of directional Lévy processes in dimension
d is introduced by the use of directional differential operators (Proposition 10). The
latter extends the work done in [33] for d = 1.

1.3 Outline

This paper is organized as follows. In Sect. 2, we recall some concepts and results on
generalized stochastic processes. In Sect. 3, we first present the general construction
of white noises (innovation processes) developed by Gelfand [16] and adapt it to the
space of tempered generalized functions (Sect. 3.1). Next, we present and prove a
criterion for the compatibility of the innovation process w and the whitening operator
L to form a sparse process (Sect. 3.2). The proof relies on continuity bounds for the
characteristic functional of innovation processes (Sect. 3.3). Finally, we apply this
criterion in Sect. 4 to two specific classes of operators and identify classes of gener-
alized stochastic processes: self-similar sparse processes through fractional Laplacian
operators (Sect. 4.1) and directional sparse processes through directional-derivative
operators (Sect. 4.2).

2 Generalized Stochastic Processes

Our main concern is to define stochastic processes that satisfy the innovation model (1).
The theory of GSP is based on functional analysis. In Table 1, we provide the definition
of function spaces linked to our work. They include subspaces of ordinary functions
from Rd to R (classical functions) as well as subspaces of the space D′ of distributions
(also called generalized functions) [25].

2.1 Definition of Generalized Stochastic Processes

We deviate from the traditional time-series approach to stochastic processes by pre-
senting them as probability measures on a function space X of functions from E to
R. Let X be a topological vector space of real-valued functions. We denote by A the
σ -field generated by the cylindric sets. There are the subsets of X defined by Ax,B =
{h ∈ X , (h(x1), . . . , h(xN )) ∈ B} for fixed N ∈ N, where x = (x1, . . . , xN ) ∈ E N

and B is a Borelian set in RN . For a given probability measure P on A, the canonical
stochastic process s on (X ,A,P) is defined by

s : (X , E) → R
(h, x) *→ h(x).

There are two ways to consider s.
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Table 1 Definition of function spaces used in the paper

Space Parameter Definition Structure

L p 1 ≤ p < +∞ ∥ f ∥p =
(∫

Rd | f (r)|pdr
)1/p

< +∞ Complete normed

L∞ ∥ f ∥∞ = ess supr∈Rd | f (r)| < +∞ Complete normed

L p 0 < p < 1 dp( f, g) =
∫
Rd |( f − g)(r)|pdr < +∞ Complete metric

L∞,α 0 < α < +∞ ∥ f ∥∞,α = ∥(1 + ∥r∥α2 ) f (r)∥∞ < +∞ Complete normed

R
⋂
α>0 L∞,α Complete metric

C∞ Infinitely differentiable functions Vectorial

D f ∈ C∞ with compact support Nuclear

S f ∈ C∞ with ∂n f ∈ R for all n ∈ Nd Nuclear

OM Space of slowly increasing functions Vectorial

s.t. f ∈ C∞ with |∂n f (r)| ≤ |Pn(r)|
for some polynomial Pn and all n

D′ u linear and continuous functional on D Nuclear

S′ u linear and continuous functional on S Nuclear

O′
C Space of rapidly decreasing generalized functions Vectorial

or equivalently u ∈ S′ such that Fu ∈ OM

• If x = (x1, . . . , xN ) ∈ E N is fixed, h *→ (h(x1), . . . , h(xN )) is a random variable
in RN with probability law Px(B) = P (h ∈ X , (h(x1), . . . , h(xN )) ∈ B) for any
Borelian set B of RN . These laws are the finite-dimensional marginals of s.

• For h∈ X following the probability measure P , the mapping x *→ h(x) is a sample
function of the stochastic process (i.e., a random element of X ).

If E = Rd , we get back to the theory of classical (non-generalized) stochastic
processes. The generalized theory of stochastic processes is obtained when E is formed
by a set of test functions of Rd to R. Let E = T be a locally convex topological vector
space (l.c.t.v.s.)—the minimal structure required in functional analysis [23]—and let
X = T ′ be the topological dual of T . We define the stochastic process s by

s : (T ′, T ) → R
(u,ϕ) *→ ⟨u,ϕ⟩. (3)

The random variable s(·,ϕ) is denoted by ⟨s,ϕ⟩. The realization s(u, .), which follows
P for u ∈ T ′, is by definition a linear and continuous functional on T . We call such
s a generalized stochastic process if D ⊂ T ⊂ L2 ⊂ T ′ ⊂ D′, meaning that s is
a random generalized function. In [16], Gelfand and Vilenkin develop the essential
results for T = D. In this paper, we especially focus on its extensions to T = S.

In Table 1, we list the type of structures that are useful in this paper. The two main
structures are the one of complete normed spaces (a.k.a. Banach spaces) and nuclear
spaces. Both of them are example of l.c.t.v.s., which means that the topology is defined
from a family of semi-norms [23]. A nuclear space N is a locally convex topological
vector space associated with a family of semi-norms P such that for any p ∈ P , one
can find a larger semi-norm q ∈ P such that the inclusion map from (N , q) to (N , p)
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is nuclear. Numerous characterizations of nuclear spaces are given in [15] or [29]. Note
that the Banach and nuclear structures are mutually exclusive in infinite dimension. As
we shall see, the nuclear structure is central to the definition of a continuous-domain
innovation process. For the definitions and properties of the spaces OM and O′

C , we
refer to [25].

2.2 The Characteristic Functional

By analogy with the finite-dimensional case (T = RN ), where the characteristic
function characterizes a probability measure (Lévy’s theorem), we use a Fourier-
domain representation to describe the measures on T ′.

Definition 1 Let T be a l.c.t.v.s. and let T ′ be its topological dual. The characteristic
functional of a generalized stochastic process s on T ′ associated with the probability
measure Ps is defined as

P̂s(ϕ) = E
[
ej⟨s,ϕ⟩

]
=

∫

T ′
ej⟨u,ϕ⟩dPs(u), (4)

where ϕ ∈ T .

The characteristic functional contains the definition of all finite-dimensional laws of the
process, in particular the distribution of all random vectors X = (⟨s,ϕ1⟩, . . . , ⟨s,ϕN ⟩).
Indeed, the characteristic function of X is given for all ω = (ω1, . . . ,ωN ) ∈ RN by

p̂X (ω) = E[ej⟨ω,X⟩] = P̂s(ω1ϕ1 + . . . + ωNϕN ). (5)

In Proposition 1, we summarize the main properties of P̂s .

Proposition 1 A characteristic functional is normalized (P̂s(0) = 1) and is continu-
ous and positive-definite on T . The latter means that for all N ∈ N, a1, . . . , aN ∈ C,
and ϕ1, . . . ,ϕN ∈ T , we have that

∑

i, j

ai a jP̂s(ϕi − ϕ j ) ≥ 0. (6)

The normalization property reflects the fact that Ps(T ′) = 1, whereas the positive-
definiteness is linked with the non-negativity of the measure Ps . Our focus here is
on probability measures on the dual space N ′ of a nuclear space N ⊂ L2 ⊂ N ′.
The reason is that the converse of Proposition 1 also holds if T is nuclear (Theorem
1). Notorious examples of nuclear spaces are D, S, and their duals D′ (the space of
distributions) and S ′ (the space of tempered distributions), as seen in Table 1. This
highlights the deep link between nuclear structures and the theory of generalized
processes.
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Theorem 1 (Minlos–Bochner) Let N be a nuclear space and P̂ be a continuous,
positive-definite functional from N to C with P̂(0) = 1. Then, there exists a unique
measure Ps on N ′ such that

P̂ = P̂s .

Minlos–Bochner’s theorem is an extension of Bochner’s theorem to the infinite-
dimensional setting. It is our key tool to define probability measures on the nuclear
space S ′. A proof of Theorem 1 can be found in [16].

3 A Criterion for Existence of Sparse Processes

3.1 White Lévy–Schwartz Noise

We first recall some definitions and results from Gelfand and Vilenkin’s theory of GSP
[16], especially the definition of white Lévy noises on D′.

Innovation Processes on D′

Definition 2 A stochastic process w on D′ with probability measure Pw is said to be

• with independent value at every point if the random variables X1 = ⟨w,ϕ1⟩ and
X2 = ⟨w,ϕ2⟩ are independent whenever ϕ1,ϕ2 ∈ D have disjoint supports (i.e., if
ϕ1ϕ2 ≡ 0) and

• stationary if the shifted process w(·−r0) defined by ⟨w(·−r0),ϕ⟩ = ⟨w,ϕ(·+r0)⟩
has the same finite-dimensional marginals as w.

The properties in Definition 2 can be inferred from the characteristic functional of
the process. Specifically, the independence property corresponds to the condition

P̂w(ϕ1 + ϕ2) = P̂w(ϕ1)P̂w(ϕ2) (7)

whenever ϕ1 and ϕ2 have disjoint supports [16]. Moreover, w is stationary iff. it has
the same characteristic functional as the process w(· − r0), i.e. iff. for all ϕ ∈ D and
r0 ∈ Rd ,

P̂w(ϕ(· − r0)) = P̂w(ϕ). (8)

The functional

P̂(ϕ) = exp
(∫

Rd
f (ϕ(r))dr

)
(9)

with f (0) = 0 satisfies the Eqs. (7) and (8). Moreover, Gelfand and Vilenkin give
necessary and sufficient conditions on f so that the functional is continuous and
positive-definite over D, and hence, defines a valid innovation process w.
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Theorem 2 (Gelfand–Vilenkin) Define P̂(ϕ) = exp
(∫

Rd f (ϕ(r))dr
)

on D where f
is a continuous function from R to C with f (0) = 0. The following conditions are
equivalent:

(i) There exists a (unique) probability measure Pw on D′ such that, for all ϕ ∈ D,

P̂(ϕ) = P̂w(ϕ).

(ii) The functional P̂ is a continuous, positive-definite, and normalized (P̂(0) = 1)
functional on D.

(iii) There exist µ ∈ R, σ 2 ∈ R+, and V a Radon measure on R\{0} with∫
R\{0} min(1, a2)V (da) < ∞ such that

f (ω) = jµω − σ 2ω2

2
+

∫

R\(0)

(
ejaω − 1 − jωa1|a|<1

)
V (da). (10)

A function f that can be represented in the form of (10) is called a Lévy exponent.
A Radon measure V on R\{0} with

∫
R\{0} min(1, a2)V (da) < ∞ is called a Lévy

measure. The function f is alternatively characterized by the triplet (µ, σ 2, V ) known
as the Lévy triplet.

Definition 3 A white Lévy noise, or an innovation process on D′ is a generalized
stochastic process w with probability measure Pw on D′ that is characterized by
P̂w(ϕ) = exp

(∫
Rd f (ϕ(r))dr

)
for some Lévy exponent f . In addition, the functional

F(ϕ) = log P̂w(ϕ) is called the generalized Lévy exponent associated with w.

A white Lévy noise on D′ has an independent value at every point and is sta-
tionary, which justifies the “white noise” nomenclature. By Theorem 2, we have a
one-to-one correspondence between Lévy exponents f and the white Lévy noises on
D′. Interestingly, one has the same one-to-one correspondence between the family
of infinite-divisible probability laws and Lévy exponents. Indeed, PX is an infinite-
divisible probability measure if and only if P̂X (ω) = e f (ω) where f (·) is a valid Lévy
exponent [24].

Gelfand and Vilenkin’s constructive result on the characteristic functional of an
innovation process onD resolves the central barrier of the positive-definiteness require-
ment in applying the Minlos–Bochner theorem. Indeed, we shall show in Proposition
2 that, for extending Theorem 2 to larger spaces of test functions, we only require to
prove the continuity of the functional (9) as the positive-definiteness is automatically
inherited.

Proposition 2 Let T be any of S, L p, or L p ∩ Lq for p, q > 0. Assume f is a
Lévy exponent such that the functional P̂(ϕ) = exp

(∫
Rd f (ϕ(r))dr

)
is well-defined

(namely, f (ϕ(r)) ∈ L1) and is continuous for the natural topology of T . Then, P̂ is
also positive-definite over T .

Note that the topological structure of L p ∩ Lq depends on the relative values of p
and q with respect to 1. If, for instance, p < 1 ≤ q, then L p ∩ Lq is a complete metric
space with distance dp,q( f, g) = dp( f, g) + ∥ f − g∥q (see Table 1 or [23]).
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Proof From Theorem 2 we know that P̂ is well-defined, continuous, normalized
and positive-definite over D. We then use a density argument to extend the positive-
definiteness to T . Indeed, D is dense in all possible T of Proposition 2. This result
is well-known for S and the L p spaces with p ≥ 1. The proof for L p spaces with
0 < p < 1 and for L p ∩ Lq spaces is also similar.

Let ϕ1, . . . ,ϕN ∈ T and a1, . . . , aN ∈ C. Since D is dense in T , there exist
sequences (ϕk

n)1≤n≤N ,k∈N of functions in D such that lim
k→+∞

ϕk
n = ϕn for all n. Then,

by using the continuity of P̂ over T , we obtain that

∑

1≤i, j≤N

ai a jP̂(ϕi − ϕ j ) = lim
k→+∞

⎛

⎝
∑

1≤i, j≤N

ai a jP̂(ϕk
i − ϕk

j )

⎞

⎠ ≥ 0. (11)

⊓1

Innovation Processes on S′

We recall that the Minlos–Bochner theorem is valid for any nuclear space including
S′ ⊂ D′, which allows us to generalize Definition 2 to S′. Moreover, it is possible
to characterize the independence and the stationarity of a generalized process on S′

directly on its characteristic functional in the same way we did for D′ in (7) and (8).
Next, we introduce a sufficient condition on the Lévy exponent f (more precisely,
on the Lévy measure) to extend the notion of innovation process to S ′ by applying
Theorem 1. We first give some definitions.

Definition 4 Let M (R\{0}) be the set of Radon measures on R\{0}. For V ∈
M (R\{0}) and k ≥ 0, we denote

µk(V ) =
∫

R\{0}
|a|k V (da), (12)

µ0
k(V ) =

∫

0<|a|<1
|a|k V (da), (13)

µ∞
k (V ) =

∫

|a|≥1
|a|k V (da). (14)

with µk(V ) = µ0
k(V ) + µ∞

k (V ). Further, we define

M (p, q) =
{

V ∈ M (R\{0})
∣∣ µ0

q(V ) < ∞ and µ∞
p (V ) < ∞

}
. (15)
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Hence, the set of Lévy measures corresponds to M (0, 2). We also define the set of
Lévy–Schwartz measures as a subset of Lévy measures adapted for extending the
framework of Gelfand and Vilenkin to the Schwartz space S (see Theorem 3) by

M (0+, 2) =
⋃

ϵ>0

M (ϵ, 2) ⊂ M (0, 2). (16)

It is not difficult to check the following properties of the sets M (p, q):

• M (p1, q1) ∩ M (p2, q2) = M
(

max(p1, p2) , min(q1, q2)
)
,

• M (p1, q1) ∪ M (p2, q2) = M
(

min(p1, p2) , max(q1, q2)
)
,

• M (p1, q1) ⊂ M (p2, q2) ⇔ p1 ≥ p2 and q1 ≤ q2.

The interest of Definition 4 is to focus separately on the behavior of V around 0 and
at infinities. It also helps in classifying the innovation processes according to their
Lévy measure. For instance, Poisson innovations correspond to V ∈ M (0, 0) while
innovations with finite variance are obtained for V ∈ M (2, 2). In Theorem 3, we state
our main result concerning innovation processes over S ′.

Theorem 3 (Tempered innovation processes) Suppose that f is a Lévy exponent with
triplet (µ, σ 2, V ), where V is a Lévy–Schwartz measure (Definition 4). Then, there
exists a unique measure P on S ′ such that

P̂(ϕ) =
∫

S ′
ej⟨u,ϕ⟩dP(u) = exp

(∫

Rd
f (ϕ(r))dr

)
, ∀ϕ ∈ S. (17)

The underlying generalized stochastic process w associated with P is called a tem-
pered innovation process or a white Lévy–Schwartz noise.

Proof The function space S is nuclear, which justifies the application of the Minlos–
Bochner theorem. Obviously, P̂(0) = 1, and P̂(ϕ) is also positive-definite, given it
is continuous (Proposition 2). However, note that it is not a priori evident that f (ϕ(r))
is even integrable for ϕ ∈ S, whereas the integrability is easily understood for ϕ ∈ D,
since f is continuous and ϕ is of finite support. We prove Theorem 3 by successively
establishing the integrability of f (ϕ(r)) for ϕ ∈ S and the continuity of the functional
P̂ on S.

The proof is based on a control on the generalized Lévy exponent developed in
Sect. 3.3. To use this result we first remark that S is a subspace of all L p spaces.
Moreover, the continuity of a functional over S implies its continuity over any L p

space with p > 0.
Since V is a Lévy–Schwartz measure, there exists 0 < ϵ ≤ 1 such that

V ∈ M (ϵ, 2). Using Corollary 1 (Sect. 3.3), we know that there exist κ1, κ2≥0
such that, for all ϕ ∈ S,

∫

Rd
| f (ϕ(r))| dr ≤ µ∥ϕ∥1 + σ 2

2
∥ϕ∥2

2 + κ1∥ϕ∥ϵϵ + κ2∥ϕ∥2
2.
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Table 2 Tempered innovation processes

Distribution and parameters Lévy triplet Generalized Lévy exponent
(µ, σ 2, V (da)) F(ϕ)

Gaussian (µ, σ 2, 0) jµ
(∫
ϕ
)
− σ2∥ϕ∥2

2
2

(µ, σ 2) ∈ R × R+

SαS
(

0, 0,
γ αCα
|a|α+1 da

)
−γ α∥ϕ∥αα

(with C−1
α =

∫
R(1−cos(a))|a|−(α+1)da)

(α, γ ) ∈ (0, 2) × R+ V ∈ M (α−,α+)

Variance Gamma
(

0, 0, e−λ|a|
|a| da

) ∫
Rd log

(
λ2

λ2+ϕ(r)2

)
dr

λ ∈ R+ V ∈ M (∞, 0+)

Poisson (0, 0, λP(da)) −jλµ0
1(P)

(∫
ϕ
)
+ λ

∫
Rd

∫
R\{0}(

ejaϕ(r) − 1
)

P(da)dr
λ > 0, P probability

measure
V ∈ M (0+, 0)

As ∥ϕ∥p is finite for all p > 0, we conclude that F(ϕ) is well-defined over S. In
addition, from Proposition 4 (Sect. 3.3) we know that there exist ν1, ν2≥0 such that,
for all ϕ,ψ ∈ S,

|F(ϕ) − F(ψ)| ≤ ν1
√

(∥ϕ∥ϵϵ+∥ψ∥ϵϵ)(∥ϕ − ψ∥ϵϵ)+ν2

√
(∥ϕ∥2

2 + ∥ψ∥2
2)(∥ϕ − ψ∥2

2).

Consequently, if ϕn → ϕ in S, then F(ϕn) → F(ϕ) in C. This shows that
P̂(ϕ) = exp(F(ϕ)) is continuous over S, which completes the proof by applying
the Minlos–Bochner theorem. ⊓1

The restriction V ∈ M (0+, 2) in Theorem 3 is extremely mild and plays no role
in all cases of practical interest (Table 2). Yet, it is possible to construct examples of
Lévy measures V ∈ M (0, 2) \ M (0+, 2) such as

V (da) = da

|a| log2(2 + |a|) . (18)

We give in Table 2 the main examples of white Lévy–Schwartz noises: Gaussian noises,
symmetric α-stable (SαS) noises (see [27]), Variance Gamma noise (which includes
the Laplace distribution and is linked with TV-regularization [7]), and Poisson noises.

Link Between Innovation Processes on D′ and S′

Let f be a Lévy exponent with a Lévy–Schwartz measure. According to Theorems 2
and 3, we can define,

• a measure PD′ on D′ such that P̂D′(ϕ) = exp
(∫

f (ϕ(r))dr
)

for ϕ ∈ D, and
• a measure PS′ on S′ such that P̂§′(ϕ) = exp

(∫
f (ϕ(r))dr

)
forϕ ∈ S, respectively.
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We discuss here the compatibility of the two measures. Let N = D or S. First,
we recall the method of constructing a measure on the nuclear space N . For given
ϕ = (ϕ1, · · · ,ϕN ) ∈ N N and a Borelian subset B of RN , a cylindric set is defined as

AN ′
ϕ,B =

{
u ∈ N ′, (⟨u,ϕ1⟩, · · · ⟨u,ϕN ⟩) ∈ B

}
. (19)

If CN ′ denotes the collection of all such cylindric sets, then, according to the Minlos–
Bochner theorem, the σ -field AN ′ = σ (CN ′) generated by the cylindric sets properly
specifies a probability measure on N ′. In Proposition 3, we compare the σ -fields AS ′

and AD′ . Note that it is not obvious a priori that the two σ -fields are closely related.
The main difficulty is to see that the space S ′ itself is an element of AD′ . The result
of Proposition 3 is necessary to be able to compare the two measures PS ′ and PD′ .

Proposition 3 We have the relations

AS ′ = {A ∩ S ′ | A ∈ AD′} (20)

⊂ AD′ . (21)

Proof We decompose the proof in four steps.

(1) We denote by Co
N ′ the collection of cylindric sets AN ′

ϕ,- with - open set of RN .
We claim that σ (Co

N ′) = AN ′ . This result is obtained by a transfinite induction
using the fact that the open sets generates the σ -field of the Borelian sets.

(2) We show that S′ ∈ AD′ . For α ∈ N and ϕ ∈ D, we consider (see Table 1)
Nα(ϕ) =

∑

0≤|k|≤α
∥∂kϕ∥∞,α where |k| = k1 + · · · + kd and ∂kϕ = ∂ |k|

∂r
k1
1 ···∂r

kd
d

ϕ.

A generalized function u ∈ D′ is tempered iff. there exist α ∈ N and C > 0 such
that, for all ϕ ∈ D, |⟨u,ϕ⟩| ≤ C Nα(ϕ). Then, u can be uniquely extended to a
continuous linear form on S. The space S′ is identified as a subspace of D′ [9].
In addition, we know that S is separable: there exists a sequence (ϕn) ∈ SN that
is dense in S. Because D is dense in S, we can also imposed that the ϕn are in D.
Consequently, we have

S′ =
⋃

C∈N

⋃

α∈N

⋂

n∈N
AD′
ϕn ,[−C Nαϕn ,C Nαϕn ] ∈ AD′ . (22)

A direct consequence is that {A ∩ S ′ | A ∈ AD′} ⊂ AD′ .
(3) First, we remark that {A ∩S ′ | A ∈ AD′} is a σ -field on S′ (as a restriction of a σ -

field on D′) containing Co
D′ ∩S′ and then σ (Co

D′ ∩S′). Consequently, it is enough to
show that Co

S′ ⊂ σ (Co
D′ ∩S′). Let us fixψ1, . . . ,ψN ∈ S and- an open set of RN .

Let (ϕn,k)n=1,...,N , k∈N be N sequences of functions in D converging in S toψn for
all n ∈ {1, . . . , N }. Because- is open, for all u ∈ S′, (⟨u,ψ1⟩, . . . , ⟨u,ψN ⟩) ∈ -
iff. (⟨u,ϕ1,k⟩, . . . , ⟨u,ϕN ,k⟩) ∈ - for k large enough. Moreover, because D ⊂ S,
we have AD′

ψ,- ∩ S′ = AS′
ψ,-. Thus,
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AS′
ψ,B =

⋃

p∈N

⋂

k≥p

(
AS′
ϕk,B

)

=
⋃

p∈N

⋂

k≥p

(
AD′
ϕk,B ∩ S′

)

∈ σ
(
Co
D′ ∩ S′) .

As a consequence, AS′ ⊂ {A ∩ S ′ | A ∈ AD′}.
(4) For the other inclusion, we first notice that {A ∩ S ′ | A ∈ AD′} = σ (Co

D′ ∩ S′)
(the restriction of the generator family generates the restrictive σ -field). Thus, we
just need to prove that AD′

ψ,- ∩ S′ ∈ AS′ for all ψ ∈ DN and - an open set of

RN , which is obvious because, as we said, AD′
ψ,- ∩ S′ = AS′

ψ,-. Consequently,
{A ∩ S ′ | A ∈ AD′} ⊂ AS′ . With (3), we obtain that {A ∩ S ′ | A ∈ AD′} = AS ′ .

We now focus on measures over AD′ and AS′ that define innovation processes.

Theorem 4 Let f be a Lévy exponent with Lévy–Schwartz measure V ∈ M (0+, 2).
By PD′ and PS′ we denote the measures on D′ and S′, respectively, that are defined
by the characteristic functional exp

(∫
Rd f (ϕ(r))dr

)
(over D and S, respectively). The

two measures are compatible in the sense that

∀A ∈ AS ′ , PD′(A) = PS′(A). (23)

In particular, PD′(S′) = 1 and PD′(D′\S′) = 0.

Proof From PS′ , we define a new measure on D′ by P(A) = PS′(A ∩ S′) for
A ∈ AD′ . We claim that P = PD′ . Indeed, for ϕ ∈ D, we have

P̂(ϕ) =
∫

D′
ej⟨u,ϕ⟩dP(u)

=
∫

S′
ej⟨u,ϕ⟩dP(u) (24)

=
∫

S′
ej⟨u,ϕ⟩dPS′(u) (25)

= exp
(∫

Rd
f (ϕ(r))dr

)

= P̂D′(ϕ).

We used that P(D′\S′) = 0 in (24) and that P restricted to S′ coincides with PS′ in
(25). The Minlos–Bochner theorem ensures that P = PD′ . Fix A ∈ S′. According
to Proposition 3, A ∈ AD′ and PD′(A) is well-defined. Consequently, we have that
PD′(A) = P(A) = PS′(A ∩ S′) = PS′(A). For A = S′, we obtain PD′(S′) = 1
and PD′(D′\S′) = 0.

The essential fact is that the theory of Gelfand already defines probability measures
concentrated on the tempered generalized functions.
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3.2 Sparse Processes

In the remainder of the paper, we restrict our attention to N = S. In Sect. 3.1,
we defined stochastic processes on S′, which are bona fide innovation processes.
According to [33], these innovation processes are split into two categories: (i) white
Gaussian noises corresponding to zero Lévy measure and the Lévy exponent f (ω) =
jµω − σ 2

2 ω
2, (ii) non-Gaussian white noises with non zero Lévy measures, which

are referred to as sparse innovation processes. The reason is that all non-Gaussian
infinite-divisible distributions are necessarily more compressible than Gaussians [33].

Our next goal is to define processes s such that Ls = w is an innovation process.
With the rationale as above, the processes leading to non-Gaussian innovations w will
be called sparse. The fact that the linear operator L whitens s implies that there exists
a deterministic operator L−1 that induces the dependency structure of the process s. If
we follow the formal equalities ⟨s,ϕ⟩ = ⟨L−1w,ϕ⟩ = ⟨w, L∗−1ϕ⟩, we then interpret
the model Ls = w as

P̂s(ϕ) = exp
(∫

Rd
f (L∗−1ϕ(r))dr

)
. (26)

However, we do not know a priori if (26) defines a valid characteristic functional.
This is especially true if (a) the operator L∗−1 is continuous from S to some function
space T (not necessarily nuclear) and if (b) the functionalψ *→ exp

(∫
Rd f (ψ(r))dr

)

is well-defined and continuous over T . More precisely, we are examining the com-
patibility of the Lévy exponent f with the linear operator L to define a characteristic
functional. Concretely, we are concerned with the function spaces T = S, R, L p-
spaces, and intersections of L p-spaces. We state in Theorem 5 a sufficient compatibility
condition. For the sake of generality, the operator L∗−1 is replaced with the generic
operator T.

Theorem 5 (Compatibility conditions) Let f be a Lévy exponent with triplet
(µ, σ 2, V ) and let T be a linear operator from S to S′. Suppose we have 0 < pmin ≤
pmax ≤ 2 and

• V ∈ M (pmin, pmax),
• pmin ≤ 1, if µ ̸= 0 or V non-symmetric,
• pmax = 2, if σ 2 ̸= 0, and
• T is a linear and continuous operator from S to L pmin ∩ L pmax .

Then, there exists a unique probability measure Ps on S ′ with

P̂s(ϕ) = exp
(∫

Rd
f (Tϕ(r))dr

)
. (27)

Proof We apply the Minlos–Bochner theorem to the functional P̂(ϕ) = exp
( ∫

Rd

f (Tϕ(r))dr
)
. It is normalized because f (T{ϕ}) = 0 for ϕ = 0. The linearity

of T also enables us to conclude the positive-definiteness of the functional from
Proposition 2, given that it is well-defined and continuous over S. The continuity
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is established by applying the bounds in Sect. 3.3 on the generalized Lévy exponent
F(ϕ) =

∫
Rd f (ϕ(r))dr. In particular, Corollary 1 implies the existence of κ1, κ2 ≥ 0

such that, for all ϕ ∈ S,

∫

Rd
| f (Tϕ(r))|dr ≤ µ∥Tϕ∥1 + σ 2

2
∥Tϕ∥2

2 + κ1∥Tϕ∥pmin
pmin + κ2∥Tϕ∥pmax

pmax ,

and the assumptions on f and T ensure that the integral is finite. Thus, P̂ is well-
defined. Under the assumptions of Theorem 5, we can also apply Proposition 4 and
find ν1, ν2≥0 such that, for all ϕ,ψ ∈ S,

|F(Tϕ) − F(Tψ)| ≤ ν1

√
(∥Tϕ∥pmin

pmin + ∥Tψ∥pmin
pmin)∥Tϕ − Tψ∥pmin

pmin

+ν2

√
(∥Tϕ∥pmax

pmax + ∥Tψ∥pmax
pmax)∥Tϕ − Tψ∥pmax

pmax .

Now, if ϕn → ϕ in S, then, Tϕn → Tϕ in L pmin ∩ L pmax (continuity of T) and
F(Tϕn) → F(Tϕ). Hence, P̂(ϕ) is continuous over S. According to Theorem 1,
there exists a unique s such that P̂s = P̂ . ⊓1

Comparison with p-admissiblity.
Theorem 5 gives a compatibility condition between f and L. Another condition,

called p-admissibility, was introduced in [33]. A Lévy exponent f is said to be p-
admissible if | f (ω)| + |ω f ′(ω)| ≤ C |ω|p for all ω ∈ R, where 1 ≤ p < +∞ and C
is a positive constant. Although p-admissibility is sufficient in many practical cases,
we argue that it is generally more restrictive than the assumptions in Theorem 5.

• The p-admissibility condition is restricted to p ≥ 1 and requires the differentiability
of the Lévy exponent. The most natural sufficient condition to assure differentiability
is that µ1(V ) < +∞ (or µ∞

1 (V ) < +∞ when V is symmetric). In contrast,
Theorem 5 does not impose the differentiability constraint and includes scenarios
with p < 1.

• The notion of M (p, q) introduced in Definition 4 distinguishes the limitations
imposed by the Lévy measure V at a → 0 and a → ∞. As a result, Theorem 5
allows for a richer family of Lévy exponents f . For instance, suppose that f =
fα + fβ is the sum of two SαS Lévy exponents with α < β. Then, although fα and
fβ can be α-admissible and β-admissible, respectively, f is not p-admissible for
any p > 0. It is not hard to check that f is covered by Theorem 5.

• The assumptions of Theorem 5 can also be slightly restrictive. The SαS case is
a generic example. We denote Vα the Lévy measure of the SαS Lévy exponent
fα . Then, because µ∞

α (Vα) = µ0
α(Vα) = +∞, the Theorem 5 only allows for

Vα ∈ M (α−,α+) = ⋃
ϵ>0 M (α − ϵ,α + ϵ), but the condition ϕ ∈ Lα is clearly

sufficient (and necessary) in practice. However, we know that fα(ω) = −|ω|α is
α-admissible (if α ≥ 1).
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3.3 Continuity of Characteristic Functionals

This section is devoted to the derivation of bounds on the generalized Lévy exponents
to conclude the continuity results required in Theorems 3 and 5. We first introduce
some notations and useful inequalities.

Definition 5 Let p > 0, x, y ∈ R, and f, g ∈ L p(Rd). We define

h p(x, y) =
√

(|x |p + |y|p) |x − y|p, (28)

Hp( f, g) =
√(

∥ f ∥p
p + ∥g∥p

p
)
∥ f − g∥p

p. (29)

Lemma 1 Let p, q > 0.

(i) For all x, y ∈ R we have that

|x − y|p ≤ max
(

1, 2
p−1

2

)
h p(x, y), (30)

|x2 − y2|p/2 ≤ max
(

1, 2
p−1

2

)
h p(x, y). (31)

(ii) For f, g ∈ L p(Rd), we have that

∫

Rd
h p( f (r), g(r))dr ≤ Hp( f, g). (32)

(iii) For f, g ∈ L p ∩ Lq and λ ∈ [0, 1],

Hλp+(1−λ)q( f, g) ≤
√
λHp( f, g) +

√
1 − λHq( f, g). (33)

Proof For p ≥ 1, it follows from Jensen’s inequality that |x±y|p ≤2p−1 (|x |p + |y|p).
Moreover, for 0 < p < 1, we have that |x±y|p ≤ |x |p + |y|p. Consequently,

|x − y|p =
√

|x − y|p
√

|x − y|p

≤ max(1, 2
p−1

2 )h p(x, y)

and

|x2 − y2|p/2 =
√

|x + y|p
√

|x − y|p

≤ max(1, 2
p−1

2 )h p(x, y).
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Let now f, g ∈ L p(Rd). By invoking the Cauchy–Schwartz inequality, we can verify
that

∫

Rd
h p( f (r), g(r))dr =

∫

Rd

√
| f (r)|p + |g(r)|p

√
| f (r) − g(r)|pdr

≤
√∫

Rd
(| f (r)|p + |g(r)|p) dr

√∫

Rd
| f (r) − g(r)|pdr

= Hp( f, g).

To prove (1), we define F(r1, r2)= f (r1)(g − f )(r2) and G(r1, r2)= g(r1)( f − g)

(r2). As a consequence, Hp( f, g) =
√

∥F∥p
p + ∥G∥p

p. We now write that

Hλp+(1−λ)q( f, g) =
√

∥F∥λp+(1−λ)q
λp+(1−λ)q + ∥G∥λp+(1−λ)q

λp+(1−λ)q

≤
√
λ∥F∥p

p + (1 − λ)∥F∥q
q + λ∥G∥p

p + (1 − λ)∥G∥q
q

[using the convexity of p *→ a p for a ≥ 0]
≤

√
λ

(
∥F∥p

p + ∥G∥p
p
)
+

√
(1 − λ)

(
∥F∥q

q + ∥G∥q
q
)

[using the concavity of
√

.]
=

√
λHp( f, g) +

√
1 − λHq( f, g).

The key step towards obtaining continuity bounds is to control the non-Gaussian part
g of the Lévy exponent.

Lemma 2 (Control of g(ω)) Let V be a Lévy measure, and define Asym = ∅ if V is
symmetric and Asym = {1} otherwise. For some 0 < p ≤ q ≤ 2 let A = {p, q}∪Asym
and set pmin = min A and pmax = max A. Then, if V ∈ M (pmin, pmax), for the
function

g(ω) =
∫

R\{0}

(
ejωa − 1 − jωa1|a|<1

)
V (da), (34)

there exist constants κ1 and κ2 ≥ 0 such that, for all (ω1,ω2) ∈ R2,

|g(ω2) − g(ω1)| ≤ κ1h pmin(ω1,ω2) + κ2h pmax(ω1,ω2). (35)
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Proof We decompose (g(ω1) − g(ω2)) into 4 parts as

g(ω1) − g(ω2) =
∫

|a|<1

(
cos(aω1) − cos(aω2)

)
V (da)

+
∫

|a|≥1

(
cos(aω1) − cos(aω2)

)
V (da)

+ j
∫

|a|<1

(
sin(aω1) − sin(aω2) − a(ω1 − ω2)

)
V (da)

+ j
∫

|a|≥1

(
sin(aω1) − sin(aω2)

)
V (da)

= gℜ,0(ω1,2) + gℜ,∞(ω1,2) + gℑ,0(ω1,2) + gℑ,∞(ω1,2).

To simplify the notations we introduce / = a
2 (ω1 − ω2) and 0 = a

2 (ω1 + ω2). We
can write that

{
cos(aω1) − cos(aω2) = −2 sin(/) sin(0),

sin(aω1) − sin(aω2) = 2 sin(/) cos(0).

1. We start with gℜ,0 and use the fact that | sin x | ≤ min(1, |x |) ≤ |x | pmax
2 , because

pmax ≤ 2.

|gℜ,0(ω1,2)| ≤ 2
∫

|a|<1
| sin(/) sin(0)|V (da)

≤ 2
∫

|a|<1
|/0| pmax

2 V (da)

= 21−pmax µ0
pmax

(V ) |ω2
1 − ω2

2|
pmax

2

≤ max
(

21−pmax , 2
1−pmax

2

)
µ0

pmax
(V ) h pmax(ω1,ω2),

where we used part (1) of Lemma 1 with p = pmax for the last inequality.
2. For gℜ,∞ , we use | sin x | ≤ |x |

pmin
2 and part (1) of Lemma 1 with p = pmin to

obtain

|gℜ,∞(ω1,2)| ≤ 2
∫

|a|≥1
| sin(/) sin(0)|V (da)

≤ 2
∫

|a|≥1
|/0|

pmin
2 V (da)

= 21−pmin µ∞
pmin

(V ) |ω2
1 − ω2

2|
pmin

2

≤ 2
1−pmin

2 max
(

1, 2
1−pmin

2

)
µ∞

pmin
(V ) h pmin(ω1,ω2).

3. If V is symmetric, then gℑ,0 = 0 and we do not need any bounds. For asymmetric
cases, we know that pmax = max(q, 1). Here, we use the inequality |x − sin x | ≤
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2|x |pmax ∈ [1, 2] for 1 ≤ pmax ≤ 2. Indeed, |x − sin(x)| = |x |(1 − sinc(x)) ≤
|x | min(2, |x |) ≤ 2|x |× |x |pmax−1. By recalling cos x =

(
1 − 2 sin2 ( x

2

))
, we have

that

|gℑ,0(ω1,2)| = 2
∣∣∣∣

∫

|a|<1
(sin(/) cos(0) −/) V (da)

∣∣∣∣

= 2
∣∣∣∣

∫

|a|<1

(
/− sin(/) + 2 sin(/) sin2

(
0

2

))
V (da)

∣∣∣∣

≤ 2
∫

|a|<1

(
2|/|pmax + 2|/| pmax

2 |0/2| pmax
2

)
V (da)

= 4µ0
pmax

(V )
(
|ω1 − ω2|pmax + |ω2

1 − ω2
2|

pmax
2

)

≤ 2
pmax+5

2 µ0
pmax

(V ) h pmax(ω1,ω2),

where we used part (1) of Lemma 1 for p = pmax ≥ 1.
4. Again, if V is symmetric, gℑ,∞ = 0. The construction of A for asymmetric cases

implies that pmin = min(p, 1). By using the inequality | sin x | ≤ |x |pmin and part
(1) of Lemma 1, we get that

|gℑ,∞(ω1,2)| ≤ 2
∫

|a|≥1
| sin(/) cos(0)|V (da)

≤ 2
∫

|a|≥1
|/|pmin V (da)

= 2µ∞
pmin

(V ) |ω1 − ω2|pmin

≤ 2µ∞
pmin

(V ) h pmin(ω1,ω2).

We now just have to sum the four bounds to get the result. ⊓1

Corollary 1 Under the same assumptions of Lemma 2,

|g(ω)| ≤ κ1|ω|pmin + κ2|ω|pmax .

Proof The result is obvious by setting (ω1,ω2) = (ω, 0) in Lemma 2.

We now focus on bounding the generalized Lévy exponent G(ϕ) =
∫
Rd g(ϕ(r))dr

with no Gaussian part.

Lemma 3 (Control of G(ϕ)) Let V be a Lévy measure and define Asym = ∅ if V is
symmetric and Asym = {1} otherwise. For some 0 < p ≤ q ≤ 2 let A = {p, q} ∪
Asym and set pmin = min A and pmax = max A. Then, if V ∈ M (pmin, pmax), the
functional

G(ϕ) =
∫

Rd
g(ϕ(r))dr (36)
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is well-defined on L pmin ∩ L pmax and there exist κ1, κ2 ≥ 0 such that, for all ϕ and
ψ ∈ L pmin ∩ L pmax ,

|G(ϕ) − G(ψ)| ≤ κ1 Hpmin(ϕ,ψ) + κ2 Hpmax(ϕ,ψ). (37)

Proof we use Corollary 1 to prove that G is well-defined. Indeed,

∫

Rd
|g(ϕ(r))|dr ≤ κ1∥ϕ∥pmin

pmin + κ2∥ϕ∥pmax
pmax < +∞,

which proves that g(ϕ) ∈ L1. Then, we apply Lemmas 1 and 2 to conclude that

|G(ϕ) − G(ψ)| ≤
∫

Rd
|g(ϕ(r)) − g(ψ(r))|dr

≤ κ1

∫

Rd
h pmax(ϕ(r),ψ(r))dr + κ2

∫

Rd
h pmax(ϕ(r),ψ(r))dr

≤ κ1 Hpmax(ϕ,ψ) + κ2 Hpmax(ϕ,ψ).

⊓1

By including the Gaussian part, we now give the continuity condition in its general
form for the characteristic functional of innovation processes.

Proposition 4 (Continuity of the characteristic functional) Let f be a Lévy exponent
with triplet (µ, σ 2, V ) and let 0 < p ≤ q ≤ 2. We define

• Asym = ∅ if V is symmetric and {1} otherwise,
• A1 = ∅ if µ = 0 and {1} otherwise,
• A2 = ∅ if σ 2 = 0 and {2} otherwise,
• A = {p, q} ∪ Asym ∪ A1 ∪ A2,
• pmin = min A and pmax = max A.

If V ∈ M (pmin, pmax), then, the generalized Lévy exponent F(ϕ) =
∫
Rd f (ϕ(r))dr

is well-defined on L pmin ∩ L pmax and there exist ν1, ν2 ≥ 0 such that, for all ϕ and
ψ ∈ L pmin ∩ L pmax , we have that

|F(ϕ) − F(ψ)| ≤ ν1 Hpmin(ϕ,ψ) + ν2 Hpmax(ϕ,ψ). (38)

This implies that F(ϕ) is continuous over L pmin ∩ L pmax .

Proof We use Lemma 3 to justify that G(ϕ) =
∫
Rd g(ϕ(r))dr is well-defined over

L pmin ∩ L pmax and there exist κ1, κ2 > 0 such that

|G(ϕ) − G(ψ)| ≤ κ1 Hpmin(ϕ,ψ) + κ2 Hpmax(ϕ,ψ),
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where ϕ,ψ ∈ L pmin ∩ L pmax . Also, the inclusion of A1 and A2 in the definition of A
(and therefore pmin, pmax), imposes bounds on the Gaussian part as

|F(ϕ) − F(ψ)| =
∣∣∣∣jµ

(∫
(ϕ − ψ)

)
− σ 2

2
∥ϕ − ψ∥2

2 + G(ϕ) − G(ψ)

∣∣∣∣

≤ |µ|H1(ϕ,ψ) + σ 2

2
H2(ϕ,ψ) + κ1 Hpmin(ϕ,ψ) + κ2 Hpmax(ϕ,ψ)

≤ ν1 Hpmin(ϕ,ψ) + ν2 Hpmax(ϕ,ψ).

To validate the last inequality, note that, if µ ̸= 0 (σ ̸= 0), then 1 ∈ [pmin, pmax]
(2 ∈ [pmin, pmax]). Hence, using Lemma 1, H1(ϕ,ψ) (H2(ϕ,ψ)) can be upper-
bounded by a linear combination of Hpmin(ϕ,ψ) and Hpmax(ϕ,ψ).

Finally, to ensure the continuity of F , we point out the fact that Hp(ϕn,ϕ) → 0 if
ϕn → ϕ in L p. ⊓1

4 Applications for Particular Classes of Operators

We use the previous results, mainly Theorem 5, for particular classes of differential
operators L (classical or fractional). For each case, we summarize the hypotheses on
w required in our results to define the sparse process s with Ls = w. We first review
the necessary steps for demonstrating the existence of s. As mentioned in Sect. 3.2, the
interpretation of the innovation model Ls = w is based on a characteristic functional
of the form

P̂s(ϕ) = exp
(∫

Rd
f (L∗−1ϕ(r))dr

)
. (39)

Let L be a linear operator defined on S (or a larger space) that has the adjoint opera-
tor L∗ such that its adjoint admits a linear left inverse L∗−1: S *→ L p ∩ Lq . Then,
the characteristic functional of Ls is P̂Ls(ϕ) = exp

(∫
Rd f (L∗−1L∗ϕ(r))dr

)
=

exp
(∫

Rd f (ϕ(r))dr
)

In other words, the operator L whitens the generalized process
s.

4.1 Self-Similar Sparse Processes

We are interested in defining GSP s such that Ls = w, where L = (−/)γ /2 is the
fractional Laplacian operator of order γ > 0. When w is a finite-variance innovation,
the process s is called a (second-order) self-similar because its correlation structures
are invariant to similarity transformations, due to the homogeneity of the fractional
Laplacian operator. In the Gaussian case, self-similarity is intimately tied to fractional
Brownian motions (fBm) [20]. The link between innovation models arising from frac-
tional Laplacian operators and fBm is studied in [30]. This indicates implicitly that such
processes are special cases of the present framework. For infinite-variance innovation
processes, we keep the terminology self-similar. Here, by applying the fundamental
results in [28], we extend the definition of Gaussian self-similar processes to the larger
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class of self-similar processes with infinite-divisible distributions derived from Lévy
noises.

The fractional Laplacian operator (−/)γ /2 is defined for ϕ ∈ S by (−/)γ /2ϕ =
F−1 (∥.∥γFϕ) where F (F−1, respectively) is the Fourier transform (the inverse
Fourier transform, respectively). It is linear, continuous from S to C∞, rotational-,
shift-, scale-invariant, and self-adjoint. Thus, we need to find its linear left inverse
operator(s). For 0 < γ < d, its natural (left and right) inverse is the well-known Riesz
potential Iγ . An extension for γ > d, γ /∈ N, called generalized Riesz potential,
is introduced in [28]. The main results concerning such operators can be found in
Theorem 1.1 of [28] which is summarized in Theorem 6.

Theorem 6 (Shift-invariant left inverse of (−/)γ /2) Let γ > 0 with (γ − d) /∈ N.
The operator Iγ with frequency response ∥ω∥−γ is the unique linear and continuous
operator from S to S′ that is shift- and scale-invariant. It is also a left inverse of the
fractional Laplacian operator on S, which implies that

∀ϕ ∈ S, Iγ (−/)γ /2ϕ = ϕ. (40)

In general, the output range of operators Iγ on ϕ ∈ S is not restricted to S or even
to an L p space. However, we can confine the range by limiting γ . More precisely,
by considering a generalization of the Hardy–Littlewood–Sobolev inequality for 1 ≤
p ≤ +∞, we can show that

Iγ (S) ⊂ L p ⇔ 0 < γ < d(1 − 1/p). (41)

Consequently,

• For γ < d, we have that Iγ (S) ⊂ L p iff. p > d
d−γ > 1.

• For d < γ ̸∈ N, we have that Iγ (S) ̸⊂ L p for all p ≥ 1.

Suppose now thatγ /∈ N. We denote by ⌊γ ⌋ the integer part ofγ and by ϵ(γ ) = γ−⌊γ ⌋
its fractional part. Following Theorem 1.2 of [28], we are able to define a correction of
Iγ from S to L p for all fixed p ≥ 1 such that (γ − d(1 − 1/p) /∈ N). It means that the
forbidden value for p have the form d

d+m−γ with m ∈ N. The constraint p ≥ 1 implies
that only a finite number of m are concerned. Indeed, we have necessary d+m−γ > 0
and m ≤ γ which means that ⌊γ ⌋ + 1 − d ≤ m ≤ ⌊γ ⌋.

We distinguish two cases, depending if γ < d or γ > d. For γ < d, we have
⌊γ ⌋ + 1 forbidden values, that are

p(d, γ , k) = d
d + 1 − ϵ(γ ) − k

, 1 ≤ k ≤ ⌊γ ⌋ + 1. (42)

For γ > d, we have d forbidden values, given by

p(d, γ , k) = d
d + 1 − ϵ(γ ) − k

, 1 ≤ k ≤ d. (43)
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In general, we have k(d, γ ) = min(⌊γ ⌋ + 1, d) forbidden values for p. There-
fore, [1,+∞]\{p(d, γ , 1), . . . , p(d, γ , k(d, γ ))} is composed of k(d, γ )+1 intervals
given by

C(d, γ , k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
1, d

d−ϵ(γ )

)
if k = 0,

(
d

d+1−ϵ(γ )−k , d
d−ϵ(γ )−k

)
if k ∈ {1, . . . , k(d, γ ) − 1},

(
d

d+1−ϵ(γ )−k(d,γ ) ,+∞
]

if k = k(d, γ ).

(44)

For instance, if d = 1, then, k(1, γ ) = 1 and there is only one forbidden value, with
p = 1

1−ϵ(γ ) . Also, the two intervals are C(1, γ , 0) =
[
1, 1

1−ϵ(γ )

)
and C(1, γ , 1) =

( 1
1−ϵ(γ ) ,+∞

]
. Similarly, for d = 2, there are two intervals if γ < 1 and three

otherwise.
We modify Iγ to guarantee some L p stability, for k ∈ {0, . . . , k(d, γ )}, by

F(Iγ ,k{ϕ})(ω) = ∥ω∥−γ

⎛

⎝Fϕ(ω) −
∑

|j|≤⌊γ ⌋−k

∂ jFϕ(0)

j
!ωj

⎞

⎠ . (45)

Note that such operators are no longer shift-invariant. This can be cast as the cost of
obtaining an L p-stable operator.

Proposition 5 (L p-stable left inverse of (−/)γ /2) Let d ∈ N∗, γ ∈ (0,+∞) \ N,
and k ∈ {0, . . . , k(d, γ )}.
• The operator Iγ ,k is continuous linear and scale-invariant from S to L p, for all

p ∈ C(d, γ , k). Moreover, it is a left inverse of the Laplacian operator (−/)γ /2.
• For fixed p ∈ C(d, γ , k), Iγ ,k is the unique linear and scale-invariant left inverse

of (−/)γ /2 from S to L p.
• If p and q are in distinct C(d, γ , k) sets, then the Laplacian operator (−/)γ /2 has

no linear and scale-invariant left inverse from S to L p ∩ Lq.

Proof The first two claims are direct rewritings of Theorem 1.2 in [28] by noting that,
for p ̸= p(d, γ , k) for all k,

p ∈ C(d, γ , k) ⇔
⌊
γ − d

(
1 − 1

p

)⌋
= ⌊γ ⌋ − k. (46)

The last claim follows from the uniqueness property and states that the conditions for
restricting the range to L p and Lq are incompatible. ⊓1
We are now able to give admissibility conditions between γ and a Lévy exponent f
to define processes whitened by fractional Laplacian.

Proposition 6 Let γ ∈ (0,+∞)\N and f be a Lévy exponent with triplet (µ, σ 2, V ).
Define pmin and pmax as in Theorem 5 and let k be such that pmin and pmax ∈
C(d, γ , k). Then, there exists a generalized stochastic process s with
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P̂s(ϕ) = exp
(∫

Rd
f (Iγ ,kϕ(r))dr

)
(47)

for ϕ ∈ S. The process s is a broadly self-similar sparse process (self-similar Gaussian
process, respectively) if V ̸≡0 (if V ≡0, respectively).

Proposition 6 can be interpreted as follows: there exists a process s, such that
⟨s,ϕ⟩ = ⟨w, Iγ ,kϕ⟩ = ⟨I ∗

γ ,kw,ϕ⟩. In other words, (−/)γ /2s = w.

Proof We apply Theorem 5 with T = Iγ ,k , which is continuous on L pmin ∩ L pmax ,
according to Proposition 5.

We examine the construction of the innovation models in Proposition 6 for Lévy–
Schwartz measures V with finite first-order moment µ∞

1 (V ) < +∞.

• Gaussian case. Suppose that
(
γ − d

2

)
̸∈ N. Then, there exists k = ⌊d/2+1−ϵ(γ )⌋

such that Iγ ,k is continuous from S to L2. Thus, according to Proposition 6, the

functional P̂s(ϕ) = exp
(

−σ 2∥Iγ ,kϕ∥2
2

2

)
defines a process s which is whitened by

(−/)γ /2.
• Laplace case. The Lévy measure VL of a Laplacian law verifies VL ∈ M (1, 1).

Let pmin = pmax = 1. Proposition 6 applies with the operator Iγ ,0 for γ /∈ N.
• Compound Poisson case. Suppose that V ∈ M (1, 0). Then, as in the Laplace case,

the operator Iγ ,0 is admissible for all γ /∈ N.
• SαS. Let 1 ≤ α < 2 and γ /∈ N with (γ − d (1 − 1/α)) /∈ N. Then, there exists

k = ⌊d(1 − 1/α) + 1 − ϵ(γ )⌋ such that Iγ ,k(S) ⊂ Lα . According to Proposition
6, there exists s with P̂s(ϕ) = exp(−∥Iγ ,kϕ∥αα) and (−/)γ /2s = w with w an
α-stable innovation process.

We depict in Fig. 2 some examples of self-similar processes in dimension d = 2.
Dark intensities correspond to the highest values of the simulated process, while bright
ones correspond to the smallest.

4.2 Directional Sparse Processes

Our goal is to define directional stochastic processes on S′ using oriented differential
operators. This consists of defining proper left inverse operators for derivative oper-
ators of the form Duϕ = ⟨▽ϕ, u⟩ = u1D1ϕ + · · · + udDdϕ, where u stands for the
direction. For this purpose, we extend the one-dimensional results of [33] to higher
dimensions. We start with first-order operators L = Du −αId with α ∈ C and u ∈ Rd .

We denote by (ek) the canonical basis of Rd . For u ∈ Rd\{0}, pu⊥(r) = r− ⟨u,r⟩
∥u∥2

2
u is

the orthogonal projection on u⊥ = {v | ⟨u, v⟩ = 0}. Recall that ∥r∥2
2 = ⟨u, r⟩2∥u∥2

2 +
∥pu⊥(r)∥2

2. Since Du = ∥u∥2Du/∥u∥2 , we assume now that ∥u∥2 = 1, without loss of
generality.
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Fig. 2 Self-similar processes

4.2.1 Left Inverse Operators of L = Du − αId

Let u ∈ Rd with norm ∥u∥2 = 1. We separately investigate the cases of ℜ(α) ̸= 0
and ℜ(α) = 0, as they result in stable and marginally stable left inverses, respectively.

Left Inverse Operators in the Stable Case

Since the case of ℜ(α) > 0 is very similar to ℜ(α) < 0, we first study the causal case.
Therefore, we assume that ℜ(α) < 0 and we define ρu,α by

⟨ρu,α,ϕ⟩ =
∫ +∞

0
eαtϕ(tu)dt. (48)
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We further define the operator Iu,α on S as Iu,α = ρu,α ∗ϕ. In one dimension, ρu,α is a
causal exponential function in the classical sense as was introduced in [33]. However,
for d ≥ 2, it is a generalized function.

Proposition 7 The continuous operator Iu,α is LSI and continuous from S to S. Fur-
thermore, it is the inverse of the partial differential operator (Du −αId) on S, meaning
that

Iu,α(Du − αId)ϕ = (Du − αId)Iu,αϕ = ϕ, ∀ϕ ∈ S. (49)

Proof First, because |⟨ρu,α,ϕ⟩| ≤ ∥ϕ∥∞
∫ +∞

0 |eαt |dt = ∥ϕ∥∞/(−ℜ(α)), we have
that ρu,α ∈ S′. This confirms that Iu,α is well-defined on S.

The derivative of ρu,α in the sense of generalized functions is

⟨Duρu,α,ϕ⟩ = −⟨ρu,α, Duϕ⟩

= −
∫ +∞

0
eαt {Duϕ}(tu)dt

= −
[
ϕ(tu)eαt ]+∞

0 + α⟨ρu,α,ϕ⟩
[using an integration by parts]

= ϕ(0) + α⟨ρu,α,ϕ⟩,

meaning that (Du − αId)ρu,α = δ. Consequently, in Fourier domain, we have that

1 = D̂uρu,α(ω) − αρ̂u,α(ω)

= (j⟨ω, u⟩ − α)̂ρu,α(ω).

This implies

̂ρu,α ∗ ϕ(ω) = ρ̂u,α(ω)ϕ̂(ω) = ϕ̂(ω)

j⟨ω, u⟩ − α
.

Consequently, ̂ρu,α ∗ ϕ and ρu,α ∗ ϕ belong to S. Moreover, we know that the LSI
operator ϕ *→ u ∗ ϕ for u ∈ S′, is continuous from S into itself iff. u ∈ O′

C or,
equivalently, iff. û ∈ OM , the space of slowly increasing and infinitely differentiable
functions (see [25] for more details). Since in our case ρ̂u,α ∈ OM , we conclude that
Iu,α is continuous.

Finally, we can write that

(Du − αId)Iu,αϕ = (Du − αId)(ρu,α ∗ ϕ) = ((Du − αId)ρu,α) ∗ ϕ = δ ∗ ϕ = ϕ,

Iu,α(Du − αId)ϕ = ρu,α ∗ ((Du − αId)ϕ) = ((Du − αId)ρu,α) ∗ ϕ = ϕ.

⊓1

Following [33], we can transpose this result for ℜ(α) > 0 (anti-causal case) by
defining ρu,α(r) = ρu,−α(−r). With this choice, we can show in a similar way that
Proposition 7 also holds for ℜ(α) > 0.
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Left Inverse Operators in the Marginally Stable Case

Suppose now that α = jω0 is purely imaginary, with ℜ(α) = 0. The natural candidate
for (Du−jω0Id)−1 is again the convolution operator defined by the kernel ρu,jω0 where

⟨ρu,jω0 ,ϕ⟩ =
∫ +∞

0
ejω0tϕ(tu)dt.

In other words,

Iu,jω0ϕ(r) = ejω0⟨r,u⟩
∫ ⟨r,u⟩

−∞
e−jω0τ ϕ(pu⊥(r) + τu)dτ. (50)

The adjoint of Iu,jω0 is given by

I ∗
u,jω0

ϕ(r) = (ρu,jω0(−·) ∗ ϕ)(r) = e−jω0⟨r,u⟩
∫ +∞

⟨r,u⟩
ejω0τ ϕ(pu⊥(r) + τu)dτ. (51)

These I ∗
u,jω operators are shift-invariant. However, their impulse responses are not

rapidly decreasing (their Fourier transforms are not in OM ). Consequently, they are
not stable and cannot define valid characteristic functionals in (39). Here, we propose
a modification inspired by [33] to overcome the instability problem. We define

Ju,ω0ϕ(r) = Iu,jω0ϕ(r) − {Iu,jω0ϕ}(pu⊥(r))ejω0⟨r,u⟩ (52)

= ejω0⟨r,u⟩
∫ ⟨r,u⟩

0
e−jω0τ ϕ(pu⊥(r) + τu)dτ. (53)

The modified operator Ju,ω0 is continuous from S to C∞ and is a right inverse of
(Du − jω0Id). Indeed,

(
Iu, jω0ϕ − Ju,ω0ϕ

)
(r) = Iu,jω0ϕ(pu⊥(r))ejω0⟨r,u⟩ ∈ Ker(Du −

jω0Id).
The adjoint operator of Ju,ω0 , denoted by J ∗

u,ω0
, is defined by the relation

∀ϕ,ψ ∈ S, ⟨Ju,ω0ϕ , ψ⟩ = ⟨ϕ , J ∗
u,ω0

ψ⟩. (54)

Proposition 8 The operator J ∗
u,ω0

satisfies the relation

J ∗
u,ω0

ϕ(r) = I ∗
u,jω0

ϕ(r) − 1⟨r,u⟩≤0e−jω0⟨r,u⟩
∫ +∞

−∞
ejω0τ ϕ(pu⊥(r) + τu)dτ. (55)

Proof We define

A(ϕ,ψ) = ⟨Iu,jω0ϕ(pu⊥(r))ejω0⟨r,u⟩, ψ(r)⟩,

B(ϕ,ψ) = ⟨ϕ(r) , 1⟨r,u⟩≤0e−jω0⟨r,u⟩
∫ +∞

−∞
ejω0τψ(pu⊥(r) + τu)dτ ⟩.
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The Eq. (55) is equivalent (as we can see from (52) and (54)) to A(ϕ,ψ) = B(ϕ,ψ).
We fix (u1 = u, u2, · · · , ud) an orthonormal basis of Rd . Especially, we have
pu⊥(r) = ⟨r, u2⟩u2 + · · · + ⟨r, ud⟩ud . Then,

A(ϕ,ψ) =
∫

Rd

(
ejω0⟨r,u⟩

∫

R
1τ≤0e−jω0τψ(pu⊥(r) + τu)dτ

)
ψ(r)dr

=
∫

Rd+1
1τ≤0ejω0r1 e−jω0τ ϕ(τu1 + r2u2 + · · · + rdud)

ψ(r1u1 + r2u2 + · · · + rdud)dτdr1 · · · drd

[because (u1, · · · , ud) is an orthonormal basis]
=

∫

Rd+1
1r ′

1≤0ejω0τ
′
e−jω0r ′

1ϕ(r ′
1u1 + r2u2 + · · · + rdud)

ψ(τ ′u1 + r2u2 + · · · + rdud)dτ ′dr ′
1dr2 · · · drd

[using the change of variables (r1, τ ) = (τ ′, r ′
1)]

=
∫

Rd
ϕ(r)

(
1⟨r,u⟩≤0e−jω0⟨r,u⟩

∫

R
ejω0τ

′
ψ(τ ′u + pu⊥(r))dτ ′

)
dr

= B(ϕ,ψ).

⊓1

Denote the modulation operators by Mu,ω0ϕ(r) = ejω0⟨r,u⟩ϕ(r) Then it is not difficult
to check that

Iu, jω0ϕ = Mu,ω0 Iu,0 Mu,−ω0ϕ,

I ∗
u, jω0

ϕ = Mu,−ω0 I ∗
u,0 Mu,ω0ϕ,

Ju,ω0ϕ = Mu,ω0 Ju,0 Mu,−ω0ϕ,

J ∗
u,ω0

ϕ = Mu,−ω0 J ∗
u,0 Mu,ω0ϕ. (56)

Note that Ju,ω0 preserves the regularity, with Ju,ω0ϕ ∈ C∞. On the contrary, its adjoint
creates discontinuities along the hyperplane ⟨r, u⟩ = 0, while it preserves the decay
properties, as we can see in Proposition 9.

Proposition 9 (Properties of J ∗
u,ω0

) The following properties hold for the adjoint
operator J ∗

u,ω0
defined above:

• The adjoint operator J ∗
u,ω0

is continuous from L∞,α to L∞,α−1 for α > 1.
• The adjoint operator J ∗

u,ω0
is linear and continuous from R into itself, and it is a

left inverse of the operator (Du − jω0Id)∗ on S.

Proof Because of the modulation equalities in (56), we only need to prove the claims
for ω0 = 0. Let r ∈ {⟨r, u⟩ ≥ 0} and α > 1. Then,
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|J ∗
u,0ϕ(r)| =

∣∣∣∣

∫ +∞

⟨r,u⟩
ϕ(pu⊥(r) + τu)dτ

∣∣∣∣

≤ ∥ϕ∥∞,α

∫ +∞

⟨r,u⟩

dτ
1 + ∥pu⊥(r) + τu∥α2

= ∥ϕ∥∞,α

∫ +∞

⟨r,u⟩

dτ

1 +
√

∥pu⊥(r)∥2
2 + τ 2

α

[using orthogonality of pu⊥(r) and τu]

≤ ∥ϕ∥∞,α

∫ +∞

⟨r,u⟩

dτ
1 + (2−1/2(∥pu⊥(r)∥2 + τ ))α

[using concavity of
√

.]

≤ ∥ϕ∥∞,α

∫ +∞

(⟨r,u⟩+∥pu⊥ (r)∥2)/
√

2

dν
1 + να

≤ 23/2α

α − 1
∥ϕ∥∞,α

1
1 + 2−(α−1)/2(⟨r, u⟩ + ∥pu⊥(r)∥2)α−1

[using
∫ +∞

x

dν
1 + να

≤ 2α
(α − 1)(1 + xα−1)

for x ≥ 0]

≤ 23/2α

α − 1
∥ϕ∥∞,α

1

1 + 2−(α−1)/2∥r∥α−1
2

[using ⟨r, u⟩ + ∥pu⊥(r)∥2 ≥
√

⟨r, u⟩2 + ∥pu⊥(r)∥2
2 = ∥r∥2].

Finally, we remark that (1+∥r∥α−1
2 ) ≤ 2(α−1)/2(1+2−(α−1)/2∥r∥α−1

2 ), which yields

∣∣∣J ∗
u,0ϕ(r)(1 + ∥r∥α−1

2 )
∣∣∣ ≤ Cα∥ϕ∥∞,α.

The same inequality holds for ⟨r, u⟩ < 0 which ensures the continuity from L∞,α to
L∞,α−1 for α > 1. Because R = ⋂

α>0 L∞,α , the previous bounds for all α > 1
imply that J ∗

u,0 is continuous from R into itself. Moreover, for ⟨r, u⟩ ≥ 0 we have that

J ∗
u,0D∗

uϕ(r) = −
∫ +∞

⟨r,u⟩
Duϕ (r + (τ − ⟨r, u⟩) u) dτ

= − [ϕ (r + (τ − ⟨r, u⟩) u)]∞τ=⟨r,u⟩
= ϕ(r).

We get the same result for ⟨r, u⟩ < 0, which confirms that J ∗
u,0 is a left inverse of D∗

u.
⊓1
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4.2.2 Existence of Directional Sparse Processes

Upto this point, we have covered the first-order directional differential operators. In
general, a directional differential operator L can be decomposed as

L = (Dv1 − jω1Id) · · · (Dvq − jωq Id)(Du1 − α1Id) · · · (Dup − αpId)

= Lcritical LLSI, (57)

where ℜ(αi ) ̸= 0. According to Proposition 7, each of the factors in LLSI has an
S-continuous adjoint left inverse. By composing these operators, we can define a
continuous adjoint left inverse L∗−1

LSI for LLSI. Similarly, the results of Proposition
9 can be employed to form a continuous operator L∗−1

critical from S to R. Since the
constituents of L∗−1

critical are not shift-invariant, different composition orders may result
in different operators. However, all of them are valid adjoint left inverse operators for
Lcritical.

Finally, L∗−1 = L∗−1
criticalL

∗−1
LSI is a left inverse operator of L∗ = L∗

LSIL
∗
critical, con-

tinuous from S to R, linear, but not shift-invariant in general. Next, we define GSP
based on such L.

Proposition 10 Let f be a Lévy exponent with V ∈ M (0+, 2), let L be a directional
differential operator, and let L∗−1 stand for its adjoint left inverse defined above. Then,
there exists a generalized stochastic process s on S such that

P̂s(ϕ) = exp
(∫

Rd
f (L∗−1ϕ(r))dr

)
. (58)

The resulting process s is called a directional sparse process (a directional Gaussian
process, respectively) if V ̸≡0 (if V ≡ 0, respectively).

Proof Let 0 < ϵ ≤ 1 such that V ∈ M (ϵ, 2). As mentioned earlier, L∗−1 is continuous
from S to R and, therefore, from S to Lϵ ∩ L2. We can now apply Theorem 5 with
pmin = ϵ and pmax = 2 to complete the proof. ⊓1

In summary, for all directional differential operators L, we can define the process
s = L−1w if V is a Lévy–Schwartz measure. For instance, we can define the classical
one-dimensional Lévy processes (with the point of view of generalized stochastic
processes) with L = D as in [33]. We can also define the d-dimensional Mondrian
process with L = D1 · · · Dd and V ∈ M (0+, 0) which corresponds to a Poisson
innovation process (see Table 2), as was done in [31] for d = 2.

Let d = 2. We consider in Fig. 3 the case L = (Du − αId)(Dv − βId) for some
real numbers α,β and vectors u = (2, 1) and v = (2,−1). Dark and bright colors
indicate large and small values in the simulated realizations, respectively. Note that
the first three processes are non-stationary due to the non shift-invariance of the left
inverse of DuDv.
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Fig. 3 Directional Gaussian or sparse processes
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