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ABSTRACT

We study the statistics of wavelet coefficients of non-Gaussian
images, focusing mainly on the behaviour at coarse scales.
We assume that an image can be whitened by a fractional
Laplacian operator, which is consistent with an ||w|| =7 spec-
tral decay. In other words, we model images as sparse and
self-similar stochastic processes within the framework of
generalised innovation models. We show that the wavelet co-
efficients at coarse scales are asymptotically Gaussian even if
the prior model for fine scales is sparse. We further refine our
analysis by deriving the theoretical evolution of the cumulants
of wavelet coefficients across scales. Especially, the evolution
of the kurtosis supplies a theoretical prediction for the Gaus-
sianity level at each scale. Finally, we provide simulations
and experiments that support our theoretical predictions.

Index Terms—Wavelet statistics, innovation modelling,
sparse stochastic processes, self-similarity.

1. INTRODUCTION

Natural and biomedical images are known to be sparse in the
sense that their energy is concentrated in few coefficients in a
well-chosen transform domain [1]. This concentration effect
is especially noticeable in the wavelet domain and is often
used as justification for the deployment of ¢;-regularization
methods.

The empirical concept of sparsity can be formalised as
follows. A signal is statistically sparse if its density has heav-
ier tails than the Gaussian distribution [2]. It therefore implies
that a small fraction of all coefficients of a sparse signal car-
ries most of its energy. This definition highlights the limita-
tions of Gaussian priors and suggests using more refined sta-
tistical models to tackle practical image-processing tasks [3].

In this paper, we investigate the statistics of wavelet coef-
ficients of images within a non-Gaussian setting. At any scale
of a wavelet decomposition, wavelet coefficients are known
to be empirically sparse. However, at coarser scales, wavelet
coefficients correspond to a renormalized average of a large
number of image pixels. This fact is reminiscent of the set-
tings of the central limit theorem. It therefore suggests that the

This work was supported by the European Commission under the ERC
Grant ERC-2010-AdG 267439-FUN-SP.

978-1-4799-5751-4/14/$31.00 ©2014 |[EEE

6096

statistics of the wavelet coefficients are asymptotically Gaus-
sian at coarse scales, a conclusion that stands in contradiction
with the traditional assumption of sparsity.

In our framework, we consider a continuous-domain
probabilistic model of images using the theory of sparse
stochastic processes [4]. This is consistent with the observed
sparsity of natural images. Because of its fractal properties,
our model is also well-adapted to signals with an |wl|| ™"
spectral decay [5]. It is therefore appropriate for the study of
natural images [6, 7].

Our contributions in this paper are threefold. We first
give theoretical predictions of the statistical behaviour of
wavelet coefficients at coarse scales. Our main theoretical re-
sult shows that the asymptotic behaviour is indeed Gaussian.
Then, we quantify the Gaussianity by deriving the evolution
of the cumulants across scales. This analysis allows us to
directly obtain variance and kurtosis for a general (possibly
non-Gaussian) process. We thus generalise the results of Tafti
et al. [8] who focus on the variance of Gaussian self-similar
processes. Finally, we perform simulations to test the stability
of our theoretical predictions. We also provide experimen-
tal evidence that the wavelet coefficients of natural images
become Gaussian at coarser scales.

2. SELF-SIMILAR MODEL

We model an image by the discretized version of the contin-
uous-domain stochastic process s(r) indexed over r € RZ.
Further, we define the fractional Laplacian operator (—A)Y/2
for functions ¢ in the space of smooth and rapidly decreasing
functions S(R?) as

(=AY} = F - 1" Fle}l ()

where F de/rlotes the Fourier transform. Furthermore, we as-
sume that &2 whitens s. Mathematically speaking, s satisfies
the self-similar innovation model expressed as:

(=A)/25 = w, )

where w is an innovation process (continuous-domain white
noise) and v > 0 [4,9]. Essentially, the innovation process
w determines the underlying sparsity pattern of s whereas the
operator (—A)7/2 governs the correlation structure and the
level of self-similarity.
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The crucial point of (2) is that it allows for sparse proba-
bilistic models that are potentially a better fit than the Gaus-
sian ones for real-world images [7].

2.1. The Whitening Operator: (—A)?/2

The operator (—A)?/2 defined in (1) is linear, shift-invariant,
and isotropic. Moreover, it is homogeneous of order v, im-
plying that

{Care) (2) =l a2 {e (2)) ®

forall ¢ € S(R?) and & # 0. Note that (3) qualifies (—A)7/2
as the suitable operator for analysis since scale-invariant prob-
ability models are commonly used for image processing [6].

To formally define the process s such that (—A)Y/%s = w,
one needs to specify the inverse L, of the fractional Laplacian.
This operator, named as Riesz potential, is well-defined for
v < 2 (classical Riesz potential) and is extended for non-
integer v > 2 in [10]. It is shift-invariant and homogeneous
of order (—), though I, can be unstable. According to [10],
we have that for a fixed ¢ € S(R?)

Ve WK < ), [ rpldr =0 1 () € LR,
“

where |k| = k1 + k2. This condition will be sufficient for our
analysis and encourages us to use functions ¢ with enough
vanishing moments.

2.2. The Innovation Process: w

Continuous-domain white noises, also called innovation pro-
cesses, are defined as generalised stochastic processes since
they cannot be defined pointwise [11]. This framework is
the stochastic counterpart of Schwartz’ theory of generalised
functions. The process w is thus observed through scalar
products {w, ¢) with test functions ¢ € S(R?). Note that
the scalar products yield conventional random variables.

Innovation processes are stationary processes with inde-
pendent values at every point. In this sense, they are the
proper generalisation of the discrete white noises that are col-
lection of independent and identically distributed (iid) ran-
dom variables. Throughout this work, we shall focus on the
finite-variance and symmetric innovation processes (i.e., the
random variables (w, ) have a finite variance and a symmet-
ric pdf for all ¢) by arguing that these properties are empiri-
cally fulfilled for natural images [7].

At this point, some mathematical concepts on which we
shall base our derivation need to be explained. We first note
that w is completely specified by its characteristic functional,
defined for ¢ € S(R?) as

Fule)=[o] —exp ([ flotmar).
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where f(-) is the corresponding Lévy exponent of w. For in-
stance, in the Gaussian case, f(w) = —o2w?/2 and hence
ﬁw(ga) = e~ 29 193, The complete characterisation of ad-
missible Lévy exponents is described in [4].

Because of the finite variance and symmetry of w, one can
show that the functional 3/7:,] can be extended continuously
over the function space L?(R?) [4]. This means that we can
give a meaning to random variables (w, ) for ¢ € L?(R?).
Moreover, the characteristic function of (w, ) for a fixed ¢
can be directly deduced from (5) as being equal to

E[é“w@ﬂ::é%mww)=ema(éfﬂw¢@»m). ©)

We also recall the basic fact that there is a one-to-one cor-
respondence between the Lévy exponents and the infinitely
divisible (id) probability densities p;q [4]. This relation is
given by /() = F{p,4}(w). By identifying the Taylor ex-
pansions in the previous equation, we obtain that the nth cu-
mulant of piq, if it exists, is equal to x,, = (—j)”fm (0).

2.3. Self-Similar Processes: (—A)/2s = w

We fix here a finite-variance and symmetric innovation pro-
cess w and v > 0 with (v — 2) ¢ N. Under these conditions,
we can define the process s as the solution of (2) (see [9],
Section 4). Moreover, if 1 is a smooth function such that
Y = (—A)"/2¢p with ¢ € L*(R?), then 1 satisfies (4). Con-
sequently, (2) is formally equivalent to

(5,9) = (5. (=A)20) = (=A)"?5,0) = (w,¢) (7)

using the self-adjoint property of (—A)Y/2 and the extension
of (w,-) for functions in L?(R?). Simply put, the statistics
of the random variable (s, ) are deduced from the ones of
(w, ¢) using (6) with ¢ = ¢.

3. MULTISCALE ANALYSIS

Now that the self-similar process s is well-defined, we charac-
terise the statistics of its wavelet coefficients. Specifically, we
prove that the wavelet coefficients are becoming Gaussian as
the scale gets coarser. To obtain this result, we start by intro-
ducing the wavelet decomposition of self-similar processes.

3.1. Wavelet Decomposition of Self-Similar Processes

Let us assume that (—A)?/2s = w with v > 0, (y — 2) ¢
N, and w a finite-variance and symmetric innovation process.
We choose a two-dimensional non-separable wavelet ¢ with
vanishing moments up to order |y|. Then, Condition (4) is
fulfilled and ¢ = 1,% € L?(R?) is such that ¢ = (—A)7/2¢.

We define )
Yara(r) = =0 (= = 10) ®)

a a
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for all ¢ > 0 and ro € R2 as the shifted and dilated version
of 1. Note that ||1g r,||2= [|?||2. The wavelet coefficients
(S, 1q,ry) Of the process s are random variables.

We now specify the characteristic function and the pdf of
the wavelet coefficients.

Theorem 1. Under the previous assumptions on s and ) with
¥ = (=A)"/2¢, we have that

E |:ejw(57¢avr0>i| = exp <a2/ f(wa'y_lqﬁ(r))dr) . (9)
R2

Moreover, the pdf of (S, a.r,) does not depend on rq and can
be computed via

pala) = FH {e @O @), 0)

where f4(w) = [po f (wd(r)) dr is a valid Lévy exponent.

Proof. Using the shift-invariance and the (—v)-homogeneity

of I, we have I {¢ar,} = a” 'L, {9} (3 — ro) or, equiva-
lently

Vary = (—A)7/2 {oﬂ_lqﬁ (5 - ro) } . (11)

The same calculation as for equation (7) gives (s, %qr,) =
(w,a""1¢ (E - r0)>. Injecting this in (6), we obtain the de-
sired result after the substitution r < (% —ro) in the integral.
The pdf can be directly derived from here. The fact that fy is
an admissible Lévy exponent was shown in [4]. O

One fundamental implication of Theorem 1 is that the
statistics of (s,1)4.r,) do not depend on the translation fac-
tor ro. Since we limit ourselves to first-order statistics within
this work, we shall drop the shift parameter r in the remain-
ing sections.

3.2. Statistics of Wavelet Coefficients at Coarse Scales

We are now interested in the statistical behaviour of the
wavelet coefficients when a — 400, which corresponds to
coarser scales. The next theorem states that these are asymp-
totically Gaussian even with a sparse innovation process.

Theorem 2. Under the conditions of Theorem 1, we have

(s,%a) £,

a” a—+o0o

N(0,°¢]13), (12)

where L denotes the convergence in law.

The proof requires technical developments and is omit-
ted in the interest of space. It essentially consists in prov-

ing the pointwise convergence log (E [ejw(s"/’aw “W]) . I)m

_a2lglzw?
5.

Fundamentally, Theorem 2 formalizes the intuitive expec-
tation of observing a Gaussian behaviour (up to an adapted
normalization) at coarser scales, since there the wavelet func-
tion gets wider and combines more data additively.
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a) Laplace innovation

Fig. 1. Illustration of a single realisation of self-similar pro-
cesses used in the experiments.

3.3. Cumulants of Wavelet Coefficients

Theorem 2 ensures that the coarser wavelet coefficients are
becoming Gaussian. It is also interesting to quantify the level
of Gaussianity across scales. To do so, we retain the cumu-
lants as our indicator of Gaussianity. We provide here the the-
oretical prediction for the evolution of the cumulants across
scales, with a special emphasis on the variance and the kurto-
sis.

Proposition 1. Under the assumptions of Theorem 2, the fol-
lowing results hold.

m The nth cumulant k., (a) of (s,1¥q) exists if E [|(s, ©)|"]
is finite for all p € S(R?).

m Assuming the existence of ky(a), we have that
fn(a) = ()" £57 (0)a"O7D¥2, (13)
where [y is defined in Theorem 1.

m Assuming the existence of k2(a) and rk4(a), the vari-
ance 0*(a) = k2 (a) and the kurtosis n(a) = :24(((;1))2 of
the wavelet coefficients are given by

o*(a) —£52(0)a>, (14)
£570)
n(a) = fq(ﬁz)(())a % (15)

Proof. The condition of existence of the cumulants is demon-
strated in [4] and is related to the differentiability of f(-) at
0. We rewrite (9) as log(®,(w)) = a®fs(a?"'w), where @,
denotes the characteristic function of (s, 1,). The cumulants,
if they exist, give the Taylor expansion of log(®,) at 0, that
is, 10g(®4(w)) = X,o1 fn(a) 925, Then, (13) is derived
from the identification of the two Taylor expansions. Finally,

(14) and (15) are clear consequences of (13). ]
In the Gaussian case, we have that f,(w) = —0?||¢||3w?
and then f4(0) = 0 for n > 3. Proposition 1 implies that

the nth cumulant (if it exists) of the random variable {8:%a)

a”
Fn(a) o 27 n the limit, we have that a>~" — 0 for
any a— 00

n > 3. This is consistent with Theorem 2 in the sense that the
asymptotic cumulants are equal to the Gaussian ones, so that,
Kn = 0forn > 2.

is
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Fig. 2. Normalised histograms (in log scale) of the wavelet
coefficients at fine (solid) and coarse scales (dashed) for Bar-
bara and Broccoli.

Table 1. Estimation of the parameter .

Innovation ¥ Yest
Laplace 1 | 0.995
Compound Poisson 1 | 0.994
Compound Poisson 0.5 | 0.494

4. NUMERICAL RESULTS

We now let experimental results corroborate our theoretical
findings. In order to satisfy the requirements of our anal-
ysis, we use the isotropic polyharmonic wavelets developed
in [12], with a sufficiently large order. These wavelets enjoy
a fast FFT-based implementation. We use a quincunx sub-
sampling scheme that involves a single quasi-isotropic mother
wavelet.

To test our predictions, we generate three different self-
similar processes, each being realised on a (512 x 512)
grid. For the first process, we consider a Laplace innovation
whereas a compound Poisson innovation is used for the two
others. We compute the variance of the wavelet coefficients
at each scale (averaged over 100 realisations), from which
we regress the slope. The empirical results are then com-
pared against the theoretical values (see (14)). To validate the
Gaussian behaviour, we compute the normalised kurtosis at
each scale. We also test our predictive framework on natural
images of size (512 x 512) (see Figure 2). To have enough
samples for conducting statistical estimation, we dilate the
wavelet function at every scale as the image size is kept fixed.

In Table 1, we provide the estimated « values. The fact
that are very close to the theoretical ones confirms the valid-
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Fig. 3. Evolution of the shape parameter and the kurtosis.

ity of our generalised result for evolution of the variance of
the non-Gaussian innovations. Also, we see from Figure 3
that the kurtosis curves converge to 0, as predicted by (15),
including the ones of the natural images used in the experi-
ments. We note that the behaviour of the normalised kurtosis
n(a)/n(1) does not depend on the innovation process and the
v parameter, as formalised by our theory. By looking at the
histograms given in Figure 2, we confirm the Gaussiannity of
the coarse-scale coefficients in a qualitative manner. For fur-
ther validation, we fit a generalised Gaussian distribution to
the wavelet coefficients and obtain the shape parameter (ex-
ponent p) via a maximum-likelihood estimation. We notice
that the shape parameter goes to 2, which is consistent with
the convergence of the kurtosis to 0.

In other words, a Gaussian behaviour is confirmed both
for the simulated processes and for the natural images. This
suggests that our stochastic self-similar models can provide
predictive insights for particular types of natural images.

5. CONCLUSION

Our purpose in this work has been to derive theoretical predic-
tions for the evolution of the statistics of wavelet coefficients.
We proved an asymptotic Gaussian behaviour at coarser
scales. We based our investigation on a continuous-domain
and stochastic model adapted for sparse and self-similar
signals. Our experiments showed that our framework is in
agreement with observations for certain images.
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