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Abstract. It is well documented that natural images are compressible in wavelet bases and tend to exhibit
fractal properties. In this paper, we investigate statistical models that mimic these behaviors. We
then use our models to make predictions on the statistics of the wavelet coefficients. Following
an innovation modeling approach, we identify a general class of finite-variance self-similar sparse
random processes. We first prove that spatially dilated versions of self-similar sparse processes are
asymptotically Gaussian as the dilation factor increases. Based on this fundamental result, we show
that the coarse-scale wavelet coefficients of these processes are also asymptotically Gaussian, pro-
vided the wavelet has enough vanishing moments. Moreover, we quantify the degree of Gaussianity
by deriving the theoretical evolution of the kurtosis of the wavelet coefficients across scales. Finally,
we apply our analysis to one- and two-dimensional signals, including natural images, and show that
the wavelet coefficients tend to become Gaussian at coarse scales.

Key words. wavelet statistics, wide-sense self-similar processes, sparse processes, central-limit theorem, inno-
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1. Introduction. The statistical analysis of natural images is a subject of great interest
in image processing. The main motivation is that probabilistic models, generally combined
with a Bayesian approach, are effectual in the derivation of imaging algorithms. From an
observational point of view, the fundamental requirement for an acceptable model is its ability
to replicate certain empirical properties. Among such observations, we shall put emphasis on
compressibility and scale invariance [35, 36, 41, 46].

It is well-known that many natural images are compressible in some transform domain:
by applying a suitable transform (e.g., wavelets), the energy of the signal gets concentrated
in a small number of coefficients. In addition, the gray level intensities of images have finite
variance while the corresponding histograms generally exhibit heavy tails. These observations
have been validated practically for both first- and second-order marginals of the wavelet
coefficients of natural images [9, 45].

Another remarkable characteristic of natural images is their scale invariance [13, 36]. Intu-
itively, it implies that images look roughly the same if viewed with different levels of magnifica-
tion. Fractals are popular examples of scale-invariant objects since they can be well-described
as the superposition of the same pattern repeated at different scales. The scale invariance
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property is also deeply related to the polynomial decay of the power spectrum of natural im-
ages [19, 25, 30]. It is thus not surprising that numerous models driven by these observations
have been used in various problems in image reconstruction [1, 6, 8, 20, 22, 33].

1.1. From empirical observations to probabilistic models. The compressibility of nat-
ural images suggests that the use of Gaussian priors for deriving algorithms is not entirely
adequate. Solutions beyond the Gaussian hypothesis were offered by wavelet methods [29]
and by the compressed-sensing community [10, 15], which were initially deterministic. The
concept of compressibility was also formalized in a probabilistic setting [3, 11, 24]. In Bayesian
approaches, one traditionally models the marginal statistics of images—more generally, signals
that are more compressible than Gaussian samples—with heavy-tailed distributions. Among
the priors used, we mention generalized Gaussians [34], mixture of Gaussians, including
Bernoulli–Gaussians [5, 51], and α-stable distributions [1, 42]. For us, the compressibility
of images is modeled using infinitely divisible priors. Our motivation is that infinite divisi-
ble laws are in correspondence with random processes with independent increments [40, 43].
Hence, the family of infinitely divisible laws is the largest one we can use to model images
as random processes [12, 36]. Non-Gaussian infinitely divisible laws are shown to have fatter
tails than Gaussians [2].

The statistical scale invariance of natural images is captured by the concept of self-similar
random processes. Starting from the fractional Brownian motion (fBm) [31], the class of self-
similar processes has been considerably extended and applied to image processing [39]. The
most popular self-similar stochastic models, however, are Gaussian, due to the convenient
property that such processes are completely characterized by their second-order moments
[32, 38]. Yet, there are also known examples of non-Gaussian self-similar models including
symmetric α-stable models (SαS) [42, 44] and generalized Poisson processes [4, 25, 36].

1.2. Scope of the paper. Our goal in this paper is to introduce a unifying probabilis-
tic framework that combines the hypotheses of sparsity (thus, non-Gaussianity) and self-
similarity. We shall first establish a statistical model for the global image instead of its
wavelet coefficients. Developing a model for the complete image is expectedly more demand-
ing than the search for a local one. Other examples of global models include [12, 13, 23, 36].
The payoff is that it can provide us with deeper insights and predictions that can then be
confronted with real data. We give three arguments in favor of our approach. First, the model
contains the complete statistical information about the image; the same model can hence serve
as the starting point for deriving different statistical methods. Second, the proposed model is
inherently continuous: we define an image in the continuous domain and allow for any kind
of geometric transformation without the artefacts of a discrete theory. Third, a complete
model resolves the key aspects of first- or second-order statistics that can be missed by a local
approach; for instance, in the context of a self-similar model, the probability distribution of
the wavelet coefficients is expected to vary from one scale to the next unless the underlying
model is stable [42].

In continuation of our previous works, we develop a global mechanism that we call the
innovation model [53]. An image s is specified as the solution of the stochastic differential
equation Ls = w, where L is a linear shift-invariant operator, typically a pseudodifferential
operator [27, 28] called the whitening operator, and w is a white noise with finite variance but

D
ow

nl
oa

de
d 

02
/1

7/
16

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WAVELET STATISTICS OF SPARSE AND SELF-SIMILAR IMAGES 2953

Figure 1. Self-similar innovation model.

possibly non-Gaussian. The statistics of any finite-dimensional marginal—especially the first-
and second-order ones—are then deduced from the general theory. We reiterate that the main
goal of our model is to be coherent with the observed compressibility and scale invariance of
natural images. The efficiency of the innovation model in studying sparse signals is already
well-understood [2, 54, 55] and lies beyond the scope of this paper. Therefore, we propose a
continuous-domain innovation model that is particularly befitting self-similarity. We extend
preliminary works that were restricted to Gaussian [48, 49] or compound-Poisson priors [52],
or to specific whitening operators L [17, 47]. Our approach can be applied to any kind of
signals, not only images, as we develop our theory in any number of dimensions d ≥ 1. When
d ≥ 2, random processes are often called random fields [14, 16].

Our contributions are as follows:
(1) We specify a self-similar innovation model shown in Figure 1 and identify a particular

class of linear operators Lγ that ensure the wide-sense self-similar properties of the process
s (see section 3). The parameter γ ≥ 0 measures the degree of self-similarity of s. The
introduced class generalizes previously studied subclasses [17, 47, 48, 55].

(2) We provide a multiscale analysis of self-similar sparse processes by making the statistics
of every rescaled version of the processes explicit and studying the limit behavior (see section
4). We show that any rescaled self-similar sparse process is asymptotically Gaussian.

(3) We deduce the complete statistical properties of the wavelet decomposition of self-
similar sparse processes under the condition that the wavelet is admissible (see section 5). We
show that the wavelet coefficients at coarse scales also become Gaussian. We further quantify
the Gaussianity across scales by analyzing the cumulants of the process. In particular, we
obtain the theoretical evolution of the kurtosis across scales.

(4) We provide experimental validations of our theoretical results on synthetic and natural
images (see section 6). We show that synthetic data behave in accordance with our theoretical
predictions. Moreover, the predicted Gaussian behavior of wavelet coefficients at coarse scales
is qualitatively observed for different classes of natural images.

2. Preliminaries on the innovation model. We now introduce the mathematical notions
required to define self-similar innovation models.

2.1. Generalized random processes. The innovation model is defined in the framework
of generalized random processes [21], which is the extension of Schwartz’ theory of generalized
functions in a probabilistic setting. Thus, a random process s is not defined pointwise but
by its duality products 〈s, ϕ〉 with test functions ϕ ∈ S(Rd), the space of smooth and rapidly
decreasing functions.

The space S(Rd) is associated with its usual nuclear Fréchet topology [50]. Let S ′(Rd) be

D
ow

nl
oa

de
d 

02
/1

7/
16

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2954 JULIEN FAGEOT, EMRAH BOSTAN, AND MICHAEL UNSER

the topological dual of S(Rd), more commonly referred as the space of tempered generalized
functions. We endow S ′(Rd) with the strong topology and denote by B(S ′(Rd)) the corre-
sponding Borelian σ-field. Let (Ω,A,P) be a probability space, A being a σ-field on Ω and
P a probability measure on A.

A generalized random process (over Ω) is a measurable map

(2.1) s : (Ω,A)→ (S ′(Rd),B(S ′(Rd))).

As such, s is a random element of the space S ′(Rd). The probability law of s, denoted by
Ps, is the image measure of P by s; that is, the probability measure on S ′(Rd) defined by
Ps(B) = P({ω ∈ Ω, s(ω) ∈ B}) for every Borelian set B ∈ B(S ′(Rd)). The characteristic
functional of s is the infinite-dimensional Fourier transform of its probability law, defined as

(2.2) P̂s(ϕ) = E[ei〈s,ϕ〉] =
∫
S′(Rd)

ei〈u,ϕ〉dPs(u) ∀ϕ ∈ S(Rd).

The characteristic functional characterizes the law of s. The following fundamental result,
known as the Minlos–Bochner theorem [21, section III-2.6, Theorem 5], fully describes the
characteristic functionals of generalized random processes.

Theorem 2.1. A functional P̂ : S(Rd)→ C is the characteristic functional of a generalized

random process s if and only if P̂(0) = 1 and P̂ is continuous and positive-definite over
S(Rd).

For more details on the definition of generalized random processes and the correspondence
between s, its probability law Ps and its characteristic functional P̂s, we refer the reader
to [26] and [21, Chapter III].

For fixed ϕ1, . . . , ϕn ∈ S(Rd), the real random vector X = (〈s, ϕ1〉, . . . , 〈s, ϕn〉) is called a
finite-dimensional marginal of s. Its characteristic function ΦX can be deduced from (2.2) by
the relation

(2.3) ΦX(ξ) = P̂s(ξ1ϕ1 + · · ·+ ξnϕn) ∀ξ = (ξ1, . . . , ξn) ∈ R
n.

A generalized random process s is said to have a finite variance if E[〈s, ϕ〉2] <∞ for any
ϕ ∈ S(Rd), which is the hypothesis that is made throughout this paper. A real random vector
X is symmetric if its probability law satisfies PX(B) = PX(−B) for every Borelian B. By
extension, a generalized random process s is said to be symmetric if (〈s, ϕ1〉, . . . , 〈s, ϕn〉) is
symmetric for any ϕ1, . . . , ϕn ∈ S(Rd).

Two processes s1 and s2 are equal in law, which we denote by s1
d
= s2 (d for distribution),

if they have the same probability law, or equivalently the same characteristic functional. We
deduce from (2.3) that this is equivalent with the equality in law of the finite-dimensional
marginals of the two processes.

Definition 2.2. Let sn, n ∈ N, and s be generalized random processes. We say that sn
converges in law to s, and denote it by

sn
d−→

n→∞ s,

if the underlying measures Psn are weakly converging to Ps, which means that, for any
B ∈ B(S ′(Rd)), Psn(B) −→

n→∞ Ps(B).
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The space S(Rd) being nuclear, the weak convergence of probability measures is equivalent
to the pointwise convergence of the characteristic functionals [7, Theorem 4.5], meaning that

(2.4) P̂sn(ϕ) −→n→∞ P̂s(ϕ) ∀ϕ ∈ S(Rd).

This result is the generalization of the Lévy continuity theorem to infinite dimensional real
random variables (see [37] for more details).

2.2. Innovation processes. Continuous-domain white noises, also called innovation pro-
cesses, cannot be defined pointwise. This is one of the main justifications for the introduction
of the framework of generalized random processes. Innovation processes are in correspondence
with infinite divisible random variables [53, Chapter IV]. A real random variable X is said to

be infinitely divisible if, for every n, it can be decomposed as X
d
= X1+ · · ·+Xn, where the Xk

are independently and identically distributed (i.i.d.) and
d
= denotes the equality in law (or in

distribution). A function f : R→ C is said to be a Lévy exponent if it is the log-characteristic
function of a infinitely divisible random variable X, that is,

(2.5) ΦX(ξ) = exp(f(ξ)) ∀ξ ∈ R.

If, moreover, X has a finite variance, we say by extension that f is a finite-variance Lévy
exponent. The Lévy–Khintchine theorem [43, Theorem 8.1] ensures that we can decompose
f as

(2.6) f(ξ) = iμξ − σ2

2
ξ2 +

∫
R

(eiξt − 1− iξt1|t|≤1)V (dt) ∀ξ ∈ R,

with μ ∈ R, σ2 ≥ 0, and V a Lévy measure; that is, a measure on R such that
∫
R
min(1, t2)V (dt)

< ∞ and V ({0}) = 0. We call (μ, σ2, V ) the Lévy triplet associated with f . The infinite di-
visible random variable X with Lévy triplet (μ, σ2, V ) has a finite variance if and only if
m2(V ) =

∫
R2 t

2V (dt) <∞, in which case

(2.7) Var(X) = σ2 +m2(V ).

Furthermore, X is symmetric if and only if μ = 0 and V (B) = V (−B) for every Borelian B,
in which case we say by extension that f and V are symmetric.

If f is a finite-variance Lévy exponent, then the functional

(2.8) ϕ 	→ exp

(∫
Rd

f(ϕ(r))dr

)
was shown to be well-defined, continuous, and positive-definite over S(Rd), taking value 1
at ϕ = 0 [17, Theorem 3]. Theorem 2.1 therefore ensures then that this functional is the
characteristic functional of a generalized random process. This allows for the definition of
finite-variance innovation processes on S ′(Rd).

Definition 2.3. A finite-variance innovation process w on S ′(Rd) is a generalized random
process with characteristic functional

(2.9) P̂w(ϕ) = exp

(∫
Rd

f(ϕ(r))dr

)
∀ϕ ∈ S(Rd),
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Table 1
Examples of innovation processes with their associated Lévy exponent and pdf.

Innovation process f(ξ) pid(x)

Gaussian −σ2ξ2

2
1√
2πσ

e−x2/2σ2

Laplace − log(1 + b2ξ2) 1
2b
e−|x|/b

Student no closed form
Γ( ν+1

2
)√

πΓ( ν
2
)
(1 + x2)−

ν+1
2

where f is a finite-variance Lévy exponent.
Since our goal in this paper is to develop a second-order theory, we shall only consider

finite-variance innovation processes.

Innovation processes are stationary; that is, w(· − r0)
d
= w for every r0 ∈ R

d. It is also
independent at every point, meaning that 〈w,ϕ1〉 and 〈w,ϕ2〉 are independent when ϕ1 and
ϕ2 have disjoint supports. Consider an innovation w ∈ S ′(Rd) with Lévy triplet (μ, σ2, V ).
The variance of 〈w,ϕ〉 is (σ2 +m2(V ))‖ϕ‖22 for every ϕ ∈ S(Rd). By extension, we call the
quantity σ2w = σ2 + m2(V ) the variance of w. Moreover, w is symmetric as a generalized
random process (see section 2.1) if and only if μ = 0 and V is symmetric as a Lévy measure.

We distinguish between two types of innovations w:
(i) Gaussian innovations (or Gaussian white noise) with variance σ2 corresponding to

the Lévy exponent f(ξ) = −σ2ξ2

2 . In this case, one has that P̂w(ϕ) = e−
σ2‖ϕ‖22

2 , where

‖ϕ‖2 =
(∫

Rd ϕ(r)
2dr
)1/2

. In particular, for every ϕ ∈ S(Rd), the real random variable 〈w,ϕ〉
is Gaussian with variance σ2‖ϕ‖22.

(ii) The non-Gaussian innovations (or Lévy white noises) which are characterized by non-
Gaussian infinitely divisible laws. Their tail is necessarily fatter than that of a Gaussian [2,
Theorem 7]. These can therefore be used as a model for sparsity. For this reason, a non-
Gaussian innovation is also called a sparse innovation process [53].

It can be convenient to characterize an innovation through its canonical distribution
pid(x) = F−1{exp(f(·))}(x), which represents the probability density function, when it ex-
ists, of the infinitely divisible random variable X = 〈w, rect〉 (see section 3.3). Examples of
innovation processes, including the ones that are used in section 6, are given in Table 1.

3. Self-similar innovation model. We first introduce some notation. Consider a linear
operator L continuous from S(Rd) to S ′(Rd), for the topologies introduced in section 2.1. The
adjoint L∗ of L is the linear operator defined by

(3.1) 〈L∗ϕ1, ϕ2〉 = 〈Lϕ2, ϕ1〉 ∀ϕ1, ϕ2 ∈ S(Rd).

In the two duality products above, the first element is in S ′(Rd) and the second in S(Rd),
so the duality products are well-defined. The operator L∗ is therefore also continuous from
S(Rd) to S ′(Rd).

For r0 ∈ R
d, the translation operator Tr0 is Tr0{ϕ} = ϕ(· − r0) with ϕ ∈ S(Rd). For

a > 0, the scaling operator Sa is Sa{ϕ} = a−d/2ϕ(·/a) with ϕ ∈ S(Rd). We have the relations
T ∗
r0 = T −1

r0 = T−r0 and S∗
a = S−1

a = Sa−1 . Translation and scaling operators are extended to
S ′(Rd) by duality.
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A linear operator L continuous from S(Rd) to S ′(Rd) is said to be shift-invariant if LTr0 =
Tr0L for all r0 ∈ R

d, and homogeneous of order γ (or γ-homogeneous) with γ ∈ R if LSa =
a−γSaL for all a > 0.

3.1. Linear processes. In this section, we identify the class of processes s solutions of the
general innovation model. We base our definition in the following result, which extends the
domain of continuity of the characteristic functional of an innovation process.

Proposition 3.1. Let w ∈ S ′(Rd) be an innovation with Lévy triplet (μ, σ2, V ). Then, P̂w

is well-defined, continuous, and positive-definite in L1(Rd) ∩ L2(Rd). If w is, moreover, sym-
metric, the same result holds in L2(Rd).

The result is a corollary of [17, Proposition 4] for the case of finite-variance innovations.
The positive definiteness comes from [17, Proposition 2].

Consider a linear shift-invariant operator L from S(Rd) to S ′(Rd) and an innovation w on
S ′(Rd). We assume that there exists a linear operator L∗−1 with the following properties:

(i) The operator L∗−1 is a left-inverse of L∗, meaning that

(3.2) L∗−1L∗{ϕ} = ϕ ∀ϕ ∈ S(Rd).

(ii) The operator L∗−1 is continuous from S(Rd) to L1(Rd) ∩ L2(Rd). If w is symmetric,
this second condition is relaxed and we only assume the continuity from S(Rd) to L2(Rd).

Under condition (ii) and thanks to Proposition 3.1, the functional ϕ 	→ P̂w(L
∗−1ϕ) is

well-defined, continuous, and positive-definite over S(Rd), and takes value 1 for ϕ = 0. Then,
according to Theorem 2.1, there exists a generalized random process s with characteristic
functional

(3.3) P̂s(ϕ) = exp

(∫
Rd

f(L∗−1{ϕ}(r))dr
)
.

We call s a linear process and summarize the above situation with the notation

(3.4) s = L−1w.

The crucial point for our analysis is that the “whitened” process Ls satisfies, for all
ϕ ∈ S(Rd),

(3.5) P̂Ls(ϕ) = E[ei〈Ls,ϕ〉] = E[ei〈s,L
∗ϕ〉] = P̂s(L

∗ϕ) = P̂w(L
∗−1L∗ϕ) = P̂w(ϕ),

which means that Ls
d
= w.

The conditions under which we can define a left-inverse operator L∗−1 such that (ii) is
fulfilled is not the subject of this paper and was investigated in [17, 47, 53]. However, some
examples will be detailed below for the case of self-similar processes.

3.2. Self-similar sparse processes. For the definition of the self-similar innovation model
(see Figure 1), we restrict ourselves to the case of operators L = Lγ that are shift-invariant
and γ-homogeneous. The geometrical invariances of L are related to the statistical invariances
of s. Thus, this leads us to the definition of sparse processes with self-similar properties.

Definition 3.2. A generalized random process s is said to be wide-sense self-similar of order
γ ≥ 0 if the processes aγSas and s have the same second-order statistics for every a > 0; that
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is, if for every a > 0,

(3.6) E[〈aγSas, ϕ1〉〈aγSas, ϕ2〉] = E[〈s, ϕ1〉〈s, ϕ2〉] ∀ϕ1, ϕ2 ∈ S(Rd).

The notion of self-similarity for generalized random processes was introduced in [14] in
the Gaussian case. See also [53, section 7.5] for more details. We give sufficient conditions
under which a linear process is wide-sense self-similar.

Proposition 3.3. Let s = L−1w be a linear process with characteristic functional P̂s(ϕ) =

P̂w(L
∗−1ϕ). We assume that L = Lγ is γ-homogeneous and L∗−1 = L∗−1

γ is (−γ)-homogeneous
for some fixed γ ≥ 0. Then the linear process s = L−1

γ w is wide-sense self-similar.
Remark that, since L∗−1

γ is only a left-inverse, we cannot in general deduce the (−γ)-
homogeneity of L∗−1

γ from the γ-homogeneity of Lγ .

Proof. For two functions ϕ1, ϕ2 ∈ S(Rd), we have

(3.7) E[〈s, ϕ1〉〈s, ϕ2〉] = E[〈w,L∗−1
γ ϕ1〉〈w,L∗−1

γ ϕ2〉] = σ2w〈L∗−1
γ ϕ1,L

∗−1
γ ϕ2〉

with σ2w the variance of w. Therefore, for a > 0 and ϕ1, ϕ2 ∈ S(Rd), we get

E[〈aγSas, ϕ1〉〈aγSas, ϕ2〉] = a2γE[〈s, Sa−1ϕ1〉〈s, Sa−1ϕ2〉]
= σ2wa

2γ〈L∗−1
γ {Sa−1ϕ1},L∗−1

γ {Sa−1ϕ2}〉
(i)
= σ2w〈Sa−1L∗−1

γ ϕ1, Sa−1L∗−1
γ ϕ2〉

(ii)
= σ2w〈L∗−1

γ ϕ1,L
∗−1
γ ϕ2〉

= E[〈s, ϕ1〉〈s, ϕ2〉],

where (i) comes from the (−γ)-homogeneity of L∗−1
γ and (ii) from the fact that Sa−1 = (Sa)

∗.
In effect, we have proved (3.6) which means that s is wide-sense self-similar.

Proposition 3.3 motivates the following definition.
Definition 3.4. Consider a linear process s = L−1w with characteristic functional P̂s(ϕ) =

P̂w(L
∗−1ϕ). If, moreover, the operator L = Lγ is γ-homogeneous and L∗−1 = L∗−1

γ is (−γ)-
homogeneous for some γ ≥ 0, we say that

(i) s = L−1
γ w is a self-similar Gaussian process of order γ if w is a Gaussian innovation;

or
(ii) s = L−1

γ w is a self-similar sparse process of order γ if w is a non-Gaussian—i.e.,
sparse—innovation.

The good news is that the operators Lγ that are used in practice admit a left-inverse that
satisfies the conditions of Definition 3.4, as illustrated in the following examples.

Example 1. Let γ > 0. The fractional Laplacian operator (−Δ)γ/2 is a pseudodifferential
operator with symbol ‖·‖γ . Hence, it is defined for ϕ ∈ S(Rd) by

(3.8) (−Δ)γ/2{ϕ} = F−1 {‖ · ‖γF{ϕ}} ,

where F (F−1, respectively) denotes the Fourier transform (the inverse Fourier transform,
respectively). The fractional Laplacian is shift-invariant, γ-homogeneous, and self-adjoint. Its
inverse operator is the Riesz potential Iγ , defined for 0 < γ < d by the relation

(3.9) Iγ{ϕ} = F−1
{
‖ · ‖−γF{ϕ}

}
∀ϕ ∈ S(Rd)
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and extended for noninteger γ > d in [47]. However, the Riesz potential can be unstable, with

the consequence that the functional ϕ 	→ P̂w(Iγϕ) will generally not be well-defined on S(Rd).
The study of corrected versions of Iγ that are stable in given Lp-spaces (1 ≤ p ≤ ∞) is done
in [47, Theorem 1.2]. More precisely, it is shown that, for fixed p ≥ 1 and noninteger γ > 0
such that (γ − d− d

p ) /∈ N, there exists a unique left inverse operator of (−Δ)γ/2, denoted by

Tγ , that is linear, (−γ)-homogeneous, and continuous from S(Rd) to Lp(Rd). This allows us
to define self-similar sparse processes s = ((−Δ)γ/2)−1w of order γ; see [17, section 4.1]. An
additional property is that the fractional Laplacian is isotropic, so is the self-similar sparse
process s.

Example 2. The partial-derivative operator Dx1 (or, more generally, Dxj with 1 ≤ j ≤ d)
is linear, shift-invariant, and 1-homogeneous. Its adjoint is (−Dx1). The natural inverse
operator of (−Dx1) is

(3.10) Ix1{ϕ}(r) =
∫ +∞

r1

ϕ(τ, r2, . . . , rd)dτ

for all ϕ ∈ S(Rd) and r = (r1, . . . , rd) ∈ R
d. Again, it is (−1)-homogeneous but unstable. As

shown in [17, section 4.2], the operator Tx1 defined for all ϕ ∈ S(Rd) and r = (r1, . . . , rd) ∈ R
d

by

(3.11) Tx1{ϕ}(r) =
∫
R

(1τ≥r1 − 1r1≥0)ϕ(τ, r2, . . . , rd)dτ

is a left inverse operator of (−Dx1) that is (−1)-homogeneous and continuous from S(Rd)
to L1(Rd) ∩ L2(Rd). We can therefore define the self-similar sparse process s = D−1

x1 w for
any innovation w. Using the same principle, we can more generally define self-similar sparse
processes s = (Dn)−1w of order |n| for any innovation w, where Dn = Dn1

x1 · · ·Dnd
xd

and |n| =
n1 + · · · + nd. The operator Dn is not isotropic for d ≥ 2, and allows for the construction of
nonisotropic self-similar sparse processes.

3.3. Extended domain of linear processes. One can always observe an innovation process
w or a self-similar sparse process s through windows ϕ ∈ S(Rd). Our goal here is to extend
the definition of the duality products 〈w,ϕ〉 and 〈s, ϕ〉 to analysis functions ϕ that are not
necessarily smooth neither rapidly decreasing.

We know with Proposition 3.1 that P̂w is continuous over L1(Rd) ∩ L2(Rd). Thus, for ϕ

a fixed function in L1(Rd)∩L2(Rd), the function ξ 	→ P̂w(ξϕ) is continuous, positive-definite
in R, and takes values 1 at ξ = 0. From the Bochner theorem, it is therefore the characteristic
function of a real random variable denoted by 〈w,ϕ〉.

In particular, the function rect = 1[0,1]d is in L1(Rd)∩L2(Rd), so the real random variable
X = 〈w, rect〉 is always well-defined. Note that its characteristic function is

(3.12) P̂X(ξ) = P̂w(ξrect) = exp

(∫
Rd

f(ξrect(r))dr

)
= ef(ξ) ∀ξ ∈ R,

where f is the Lévy exponent of w. We can now extend the definition domain of linear
processes from the one of innovation processes.

Definition 3.5. Let s = L−1w be a linear process. The function ψ is said to be admissible
(relatively to s) if there exists φ ∈ L1(Rd)∩L2(Rd) with ψ = L∗φ. In this case, we can define

D
ow

nl
oa

de
d 

02
/1

7/
16

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2960 JULIEN FAGEOT, EMRAH BOSTAN, AND MICHAEL UNSER

the real random variable 〈s, ψ〉 by the relation

(3.13) 〈s, ψ〉 = 〈s,L∗φ〉 = 〈Ls, φ〉 = 〈w,φ〉.

More generally, we can define the real random vector (〈s, ψk〉)1≤k≤n using the same ap-
proach, assuming that the ψk are admissible. Note that the extension of the definition domain
of w and s is done in a weak sense, meaning in law. For our purpose, this is sufficient because
our main results concern convergence in law of generalized processes or of real random vectors.
Extended definition domains allow, moreover, for the multiscale analysis of sparse processes
with nonsmooth wavelets (see section 5).

4. Statistical evolution of sparse processes across scales. From now on, we assume that
s = L−1

γ w is a self-similar sparse process. Since s is a random element of S ′(Rd), we can

consider its scaling transformation Sa−1s by the relation, for ϕ ∈ S(Rd),

(4.1) 〈Sa−1s, ϕ〉 = 〈s, S∗
a−1ϕ〉 = 〈s, Saϕ〉.

In this section, we study the evolution of Sa−1s with a > 0.

4.1. Characteristic functionals across scales. We first characterize the process Sa−1s by
using characteristic functional.

Proposition 4.1. Let s = L−1
γ w be a self-similar sparse process of order γ ≥ 0. Then the

characteristic functional of the process Sa−1s is

(4.2) P̂Sa−1s(ϕ) = exp

(
ad
∫
Rd

f(aγ−
d
2L∗−1

γ {ϕ}(r))dr
)
.

Proof. Using (4.1), we have P̂Sa−1s(ϕ) = P̂s(Saϕ). Moreover, because L∗−1
γ is (−γ)-

homogeneous, we deduce that

(4.3) L∗−1
γ Saϕ = aγSaL

∗−1
γ ϕ = aγ−

d
2 {L∗−1

γ ϕ}
( ·
a

)
.

Replacing L∗−1ϕ by aγ−
d
2 {L∗−1

γ ϕ}( ·
a ) in (3.3), we obtain (4.2) after the change of variable

r← r
a .

4.2. Coarse-scale behavior of sparse processes. We shall now show that the rescaled
versions Sa−1s of a self-similar sparse process s converge to a Gaussian process when a→∞,
up to a renormalization. The result is essentially a generalization of the central-limit theorem
for real random vectors to the case of self-similar processes.

4.2.1. Self-similar Gaussian processes. The Gaussian innovation process of variance σ2,
denoted by wσ2 , is the generalized random process with characteristic functional P̂wσ2 (ϕ) =

exp(−σ2

2 ‖ϕ‖22). Its Lévy exponent is f(ξ) = −σ2ξ2

2 and its Lévy triplet is (0, σ2, 0). When
(L, wσ2) is compatible, we denote sL,σ2 = L−1wσ2 . Recall that when (Lγ , wσ2) is γ-compatible,
sLγ ,σ2 is called a self-similar Gaussian process.
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4.2.2. Limit theorem for self-similar sparse processes. The process Sa−1s is a rescaled
version of s. Increasing a is equivalent to observing s against dilated analysis functions. We
obtain the limit behavior for a → +∞ in the sense of the convergence in law (see Definition
2.2), which is the main result of this paper.

Theorem 4.2. Let s = L−1
γ w be a self-similar sparse process of order γ ≥ 0. We define the

quantities

σ2w = σ2 +m2(V ) = σ2 +

∫
R

t2V (dt),(4.4)

μw = μ+ μV = μ+

∫
|t|>1

tV (dt).(4.5)

We distinguish two cases.
• If w is symmetric, then

(4.6) a−γSa−1s
d−→

a→+∞ sLγ ,σ2w
.

• If w is not symmetric, then L∗−1
γ (S(Rd)) ⊂ L1(Rd) and we can define v ∈ S ′(Rd) by

〈v, ϕ〉 = 〈1,L∗−1
γ ϕ〉 for every ϕ ∈ S(Rd). Then,

(4.7) a−γSa−1s− μwad/2v
d−→

a→+∞ sLγ ,σ2w
.

The proof is provided in Appendix A. The key ingredient is the equivalence between
the convergence in law of generalized random processes and the pointwise convergence of the
corresponding characteristic functionals, as expressed in (2.4).

The distinction between the nonsymmetric and the symmetric cases can be shortly ex-
plained. For a nonsymmetric innovation, the quantity E[〈w,ϕ〉] = μw

∫
Rd ϕ is in general

nonzero and we have to compensate this drift, which is done in Theorem 4.2 by introducing
the function v. On the other hand, for a symmetric innovation, μw = 0 and it is therefore
useless to introduce v.

The important consequence of Theorem 4.2 is that, under appropriate normalization, the
statistics of wide-sense self-similar sparse processes are becoming Gaussian at coarse scales,
despite the property that these processes are initially sparse and non-Gaussian.

5. Wavelet analysis of self-similar sparse processes. In this section, we use our previous
results to deduce the statistics of the wavelet coefficients of self-similar sparse processes. We
discretize the scale parameter a according to a geometric progression to fit with the traditional
wavelet theory [29]. We denote by ρ > 0 the dilation factor and consider scale parameter of
the form ρj with j ∈ Z. (In practice, we chose ρ = 2 or

√
2.) Given a wavelet function ψ on

R
d, we define for j ∈ Z and r0 ∈ R

d,

(5.1) ψj,r0 =
1

ρjd/2
ψ

(
·
ρj
− r0

)
= SρjTr0ψ.
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5.1. Self-similar sparse processes and admissible wavelets. Let s = L−1
γ w be a self-

similar sparse process of order γ ≥ 0. For ψ = L∗φ an admissible wavelet (see Definition 3.5),
we can define the real random variables 〈s, ψj,r0〉 for every (j, r0) ∈ Z×R

d, called the wavelet
coefficients of s. Since

(5.2) 〈s, ψj,r0〉 = 〈s, SρjTr0ψ〉 = 〈Sρ−js,Tr0ψ〉,

the study of the processes Sa−1s can be translated into results on the wavelet coefficients of s
at different scales j by setting a = ρj .

We say that a function ψ has vanishing moments until order k ∈ N if for every α =
(α1, . . . , αd) ∈ N

d such that |α| = α1 + · · · + αd ≤ k, we have
∫
Rd r

αψ(r)dr = 0. For a
self-similar sparse process s, the condition on the wavelet ψ to be admissible is closely related
to the existence of vanishing moments. We have indeed the following proposition.

Proposition 5.1. Let γ ≥ 0. Consider Lγ, a linear, shift-invariant, and γ-homogeneous
operator, continuous from S(Rd) to S ′(Rd), and ψ a wavelet such that ψ = L∗

γφ with φ ∈
L1(Rd) ∩L2(Rd). We assume that the Fourier multiplier L̂γ of Lγ and the Fourier transform

φ̂ of φ are (�γ�− 1) times differentiable, where �γ� is the smallest integer larger than or equal
to γ. Then, ψ has vanishing moments until order (�γ� − 1).

Proof. The operator L∗
γ is shift-invariant and γ-homogeneous; hence, its Fourier multiplier

L̂∗
γ exists and satisfies for all ω ∈ R

d and a > 0,

(5.3) aγL̂∗
γ(ω) = L̂∗

γ(aω).

Moreover, for ϕ a function with a sufficiently smooth Fourier transform, we have the relation

(5.4)

∫
Rd

rαϕ(r)dr = (−i)|α|Dα{ϕ̂}(0).

Because ψ̂(ω) = L̂∗
γ(ω)φ̂(ω) and taking advantage of the Leibniz rule, showing that Dα{L̂∗

γ}(0)
= 0 for |α| ≤ (�γ�−1) is enough to deduce that ψ has vanishing moments until order (�γ�−1).
Applying the operator Dα to (5.3), which is possible because L̂∗

γ(ω) = L̂γ(−ω) and φ̂ are reg-

ular enough by assumption, and setting ω = 0, we have aγ−|α|Dα{L̂∗
γ}(0) = Dα{L̂∗

γ}(0) for

all a > 0. Since γ > |α|, with a→ 0, we get Dα{L̂∗
γ}(0) = 0 and the result follows.

The assumptions of Proposition 5.1 are satisfied by a vast majority of shift-invariant and
homogeneous operators, including all the examples in section 3. In particular, the Fourier
multipliers have the adequate regularity. Under some conditions of regularity, Proposition
5.1 says that the vanishing moments are a necessary condition to be admissible. Moreover,
a large collection of wavelets with enough vanishing moments are admissible in the sense
of Definition 3.5. For more details about the properties and the construction of admissible
wavelets, see [53, section 6.5].

5.2. Statistics of wavelet coefficients. First, we focus on the wavelet coefficients of the in-
novation process w. Let ψ be in L1(Rd)∩L2(Rd). Then, because 〈w,ψj,r0〉 = 〈Sρ−jw,Tr0ψ〉 =
〈Sρ−jw,ψ〉, the last equality being in law, the characteristic function Φj,r0 of 〈w,ψj,r0〉 satisfies,D
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for all ξ ∈ R,

(5.5) Φj,r0(ξ) = exp

(
ρjd
∫
Rd

f(ρ−jd/2ξϕ(r))dr
)
.

For a fixed j, Φj,r0 does not depend on r0, which implies that the wavelet coefficients of an
innovation process at a given scale are identically distributed. This result can be extended to
self-similar sparse processes.

Proposition 5.2 (wavelet coefficients of sparse processes). Let s = L−1
γ w be a self-similar

sparse process of order γ ≥ 0 with admissible wavelet ψ = L∗
γφ. The characteristic func-

tion of the wavelet coefficient X = 〈s, ψj,r0〉 is

(5.6) ΦX(ξ) = exp

(
ρjd
∫
Rd

f(ρj(γ−d/2)ξφ(r))dr
)

∀ξ ∈ R.

Proof. This result is a direct consequence of Proposition 4.1. From (2.3), the characteristic

function of X is given by ΦX(ξ) = P̂s(ξψj,r0). We apply (4.2) with a = ρj and ϕ = ξψ(·−r0)
to obtain

(5.7) ΦX(ξ) = exp

(
ρjd
∫
Rd

f(ρj(γ−d/2)ξL∗−1
γ {ψ(· − r0)}(r))dr

)
.

Moreover, because L∗
γ is stationary, ψ(· − r0) = {L∗

γφ}(· − r0) = L∗
γ{φ(· − r0)}. Hence,

(5.8) L∗−1
γ {ψ(· − r0)} = L∗−1

γ {L∗
γ{φ(· − r0)}} = φ(· − r0).

We substitute (5.8) in (5.7) and make the change of variable r← r− r0 to obtain (5.6).
From (5.6), we deduce that the wavelet coefficients at the scale j are identically distributed.

5.3. Wavelet coefficients at coarse scales. The convergence result in Theorem 4.2 im-
plies that the wavelet coefficients of a self-similar sparse process are becoming Gaussian when
the scale j goes to infinity.

Proposition 5.3 (central-limit theorem for wavelet coefficients). Let s = L−1
γ w be a symmet-

ric—that is, with w a symmetric innovation—self-similar sparse process of order γ ≥ 0 with
admissible wavelet ψ = L∗

γφ. Then, for every (j1, . . . , jn) ∈ Z
n and (r0,1, . . . , r0,n) ∈ (Rd)n,

(5.9)
(〈s, ψj1+j,r0,1〉, . . . , 〈s, ψjn+j,r0,n〉)

ρjγ
d−→

j→+∞
(〈sLγ ,σ2w

, ψj1,r0,1〉, . . . , 〈sLγ ,σ2w
, ψjn,r0,n〉),

with σ2w = σ2 +m2(V ) and sLγ ,σ2w
the self-similar Gaussian process defined in section 4.2.1.

In particular, when j → +∞, (〈s, ψj,r0,1〉, . . . , 〈s, ψj,r0,n〉) converges to a Gaussian vector,
under the appropriate normalization.

Proof. We have already seen that 〈s, ψj0+j,r0〉 = 〈Sρ−js, Sρj0Tr0ψ〉 = 〈Sρ−js, ψj0,r0〉. More-

over, from Theorem 4.2 we have
S
ρ−j s

ρjγ
d−→

j→+∞
sLγ ,σ2w

. This implies the convergence of the

finite-dimensional marginal

(5.10)

(〈
Sρ−js

ρjγ
, ψjk,r0,k

〉)
1≤k≤n

d−→
j→+∞

(
〈sLγ ,σ2w

, ψjk,r0,k〉
)
1≤k≤n ,

which is a rewriting of (5.9).
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5.4. Evolution of the cumulants. Let X be a real random variable with characteristic
function ΦX . When E[|X|k] < ∞ for all k ∈ N, we have the series expansion log ΦX(ξ) =∑

n∈N
κn(X)
n! (iξ)n. The coefficients κn(X) are called the cumulants of X. If we only assume

that E[|X|N ] <∞ for a fixed N ≥ 1, then log ΦX admits the truncated Taylor expansion at 0

(5.11) log ΦX(ξ) =
N∑
n=0

κn(X)

n!
(iξ)n + o(ξN ),

and the cumulants up to order N are still well-defined. Especially, provided that they exist,
we have κ1(X) = E[X] and κ2(X) = Var(X). Our goal in this section is to give conditions
such that the cumulants of a sparse process exist, and to see how they evolve with scale.

Definition 5.4. A generalized random process s has finiteNth moments if for all ϕ ∈ S(Rd),
E[|〈s, ϕ〉|N ] <∞.

We recall that for every innovation process w, the real random variable 〈w, rect〉 is well-
defined with characteristic function exp(f(ξ)) where f is the Lévy exponent of w (see sec-
tion 3.3).

Proposition 5.5. Let N ≥ 2. The self-similar sparse process s = L−1
γ w has finite N th

moments if

(5.12) E[|〈w, rect〉|N ] <∞.
Moreover, for any admissible function ψ = L∗

γφ with φ ∈ L1(Rd)
⋂
L2(Rd)

⋂
LN (Rd), we have

if (5.12) holds, then E[|〈s, ψ〉|N ] <∞.
Proof. The proof is based on the tools developed in [53, Chapter 9]. An infinitely di-

visible random variable X with Lévy measure VX has a finite Nth moment if and only if∫
|t|>1|t|NVX(dt) < ∞ [53, Theorem 9.9]. Hence, the condition E[|〈w, rect〉|N ] < ∞ implies

that
∫
|t|>1|t|NV (dt) <∞, where V is the Lévy measure of w.

For ϕ ∈ L1(Rd) ∩ L2(Rd) ∩ LN (Rd), we know that the real random variable 〈w,ϕ〉 is
well-defined (see section 3.3) and infinitely divisible with Lévy measure given by Vϕ(B) =∫
ϕ(r)�=0 V

(
B
ϕ(r)

)
dr for any Borelian set B ⊂ R, where B/a = {x ∈ R, ax ∈ B} [53, Theorem

9.1]. With a slight abuse of notation, we denote Vϕ(dt) =
∫
ϕ(r)�=0 V

(
dt
ϕ(r)

)
dr. Then, we have∫

|t|>1
|t|NVϕ(dt) ≤

∫
R

|t|NVϕ(dt)

=

∫
R

∫
ϕ(r)�=0

|t|NV
(

dt

ϕ(r)

)
dr

=

∫
R

∫
ϕ(r)�=0

|uϕ(r)|NV (du)dr

=

(∫
R

|u|NV (du)

)
‖ϕ‖NN

<∞,(5.13)

where the finiteness comes from ϕ ∈ LN (Rd) and∫
R

|u|NV (du) ≤
∫
|t|>1
|u|NV (du) +

∫
|t|≤1

u2V (du) <∞.
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Hence, for any ϕ ∈ L1(Rd) ∩ L2(Rd) ∩ LN (Rd), the real random variable 〈w,ϕ〉 has a finite
Nth moment.

We can apply this result to the process s. For ϕ ∈ S(Rd), the real random variable 〈s, ϕ〉
has Lévy measure VL∗−1

γ ϕ with L∗−1
γ ϕ ∈ L1(Rd) ∩ L2(Rd) ∩ LN (Rd), we deduce that

E[|〈s, ϕ〉|N ] = E[|〈w,L∗−1
γ ϕ〉|N ] <∞.

This proves that the process s has finite Nth moments.
Similarly, if ψ = L∗

γφ is admissible with φ ∈ LN (Rd), the Lévy measure of 〈s, ψ〉 is Vφ and

φ ∈ L1(Rd) ∩ L2(Rd) ∩ LN (Rd) by assumption. Again, we deduce that

E[|〈s, ψ〉|N ] = E[|〈w,φ〉|N ] <∞,

as expected.
Proposition 5.6 (cumulants of sparse processes across scales). Let N ≥ 2. Consider s =

L−1
γ w to be a self-similar sparse process of order γ ≥ 0 with admissible wavelet ψ = L∗

γφ

and φ ∈ LN (Rd). Then, we have, for 1 ≤ n ≤ N ,

(5.14) κn(j) = κn(〈s, ψj,r0〉) = (−i)nf (n)φ (0)ρj(n(γ−
d
2)+d),

where fϕ(ξ) =
∫
Rd f(ξϕ(r))dr.

Proof. Using Proposition 5.2, we know that the characteristic function of X = 〈s, ψj,r0〉
satisfies log ΦX(ξ) = ρjd

∫
Rd f(ξρ

j(γ− d
2)φ(r))dr = ρjdfφ(ξρ

j(γ−d/2)). By taking the derivative
of order n and putting ξ = 0, we obtain (5.14).

We deduce from Proposition 5.6 that the variance of 〈s, ψj,r0〉 is finite if s has finite 2nd-
moments, in which case

(5.15) Var(〈s, ψj,r0〉) = κ2(j) = −f (2)L∗−1
γ ψ

(0)ρ2jγ .

In particular, the variance of the wavelet coefficient goes to∞ at coarse scales when γ > 0. We
rely this with the fact that, as is well-known, a self-similar sparse process s satisfies ‖s‖2 =∞,
which can be interpreted as an infinite energy. However, in most of the practical situations,
typically for image processing, this effect disappears since the scale j is bounded below by
some limit scale J0.

Similarly, the kurtosis of 〈s, ψj,r0〉, denoted by μ(j) is well-defined if s has finite 4th-
moments, in which case

(5.16) μ(j) =
κ4(j)

κ22(j)
=

f
(4)

L∗−1
γ ψ

(0)(
f
(2)

L∗−1
γ ψ

(0)
)2ρ−jd = μ(0)ρ−jd.

Remarkably, μ(j)/μ(0) does not depend on γ. We define the decay rate of the kurtosis τ by
the relation log μ(j)/μ(0) = τj. From (5.16), we have τ = −d. Moreover, we see that the
choice of a wavelet ψ, under the assumption that it is admissible, only affects the value of
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κn(0) in (5.14) in the sense that κn(j)/κn(0) is independent of ψ. As such, the choice of a
wavelet has only a small impact on the evolution of the cumulants of s across scales.

For the Gaussian case, we have fφ(ξ) = −‖φ‖22ξ2
2 . Thus, κn(j) = 0 for all n ≥ 3 and all

j ∈ Z, and the kurtosis μj = 0 for all j ∈ Z. Moreover, in the general case, when the kurtosis
is well-defined, we have μ(j) −→

j→+∞
0. This is consistent with the results of Theorem 4.2:

at coarse scales, the kurtosis of wavelet coefficients vanishes. We retain the kurtosis as an
estimation of the degree of Gaussianity of the wavelet coefficients: the closer it is to 0, the
more Gaussian it is.

The results of this section are presented for wavelet functions. However, our framework
can be applied for any function ψ that is admissible. In practical terms, this means that one
is allowed to use functions that are not necessarily wavelets, provided that ψ = L∗

γφ for some

φ ∈ L1(Rd) ∩ L2(Rd).

6. Experimental results. To corroborate our theoretical development, we have performed
one- and two-dimensional experiments where all numerical schemes are implemented in MAT-
LAB.

6.1. Simulations on synthetic data. First, we analyzed the wavelet coefficients of Lévy
processes. Such processes are defined for d = 1 and generated by choosing the first-order
derivative operator Lγ = D [55, section VI]. In this case, all wavelet functions are admissible,
since the said condition is equivalent to having vanishing moments until order 0—meaning
that

∫
R
ψ(r)dr = 0.

Lévy processes of length 215 were generated, where we considered a Laplace innovation
(see Table 1). The processes were synthesized by integrating a discrete white noise, subject
to the standard boundary condition s(0) = 0. To assess the effect of operating with different
wavelets, we used two distinct wavelet transforms, namely, Haar and Daubechies 4. Both are
implemented in nonredundant fashion and follow a dyadic scale progression—i.e., ρ = 2; see
section 5.

We performed 2,000 realizations. For each realization, the variance and kurtosis of the
wavelet coefficients at each scale were computed. The wavelet coefficients at the boundaries
were excluded to avoid boundary effects. Empirical mean of the variance and kurtosis were
obtained by simply averaging the variance and kurtosis values over all the realizations. It was
observed that the variance values had insignificant fluctuation around the mean. By contrast,
the kurtosis had a much larger variability as documented in Figure 2. We then regressed the
parameters γ (self-similarity order) and τ (decay rate of the kurtosis) by using the empirical
mean of the variance and kurtosis. Decomposition levels 2 to 8 were used for the regression.

Considering (5.15) in logarithmic scale, the computation of γ was performed through a
simple linear regression. As for the τ parameter, we used (5.16) and carried out a nonlinear
least-squares fitting provided by the standard Levenberg–Marquardt algorithm. Besides the
issue of variability, a potential difficulty is that the kurtosis value gets closer to zero as the
number of decomposition levels increases. Therefore, the approach for computing τ is observed
to be more stable and robust than performing a linear regression (in a logarithmic scale).
Finally, we compared the computed γ and τ values to the theoretical expectations.

Based on the results illustrated in Table 2, one sees that the regressed γ values are very
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Results for Haar wavelet
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Figure 2. Evolution of the variance and the kurtosis. Analysis of one-dimensional Lévy processes with
Laplace innovation. Vertical bars represent one empirical standard deviation. Dashed curves illustrate appro-
priate polynomial fits to the empirical mean.

Table 2
Regression results for parameters γ and τ based on the empirical mean of the variance and the kurtosis.

Reported numbers correspond to the analysis of one-dimensional Lévy processes with Laplace innovation by
using different wavelets.

Haar wavelet Daubechies 4 wavelet

True γ True τ Regressed γ Regressed τ Regressed γ Regressed τ

1 −1 0.99 −1.08 0.99 −1.05

close to the theoretical ones. This confirms the generality of our approach for non-Gaussian
Lévy processes, extending in particular the results on the fractional Brownian motion of [49].
Further, we observe that the estimates of the decay rate of the kurtosis are also close to the
expected value, which is (−1). By looking at the illustrations given in Figure 2, one sees that
the kurtosis values are converging to 0 for the considered process. Notice that the choice of
different wavelets affects only the constant factor μ(0) given in (5.16). As formalized by our
theory, the decay rate does not depend on this factor.

In the second part of our experiments, we generated two-dimensional self-similar sparse
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Table 3
Regression results for parameters γ and τ based on the empirical mean of the variance and the kurtosis.

Reported numbers correspond to the analysis of two-dimensional self-similar sparse processes with Student’s
t-innovation for different orders of self-similarity.

True γ True τ Regressed γ Regressed τ

0.8
-2

0.79 −2.03
1.5 1.49 −2.04

10 8 6 4 2 0 2 4 6 8 10
8

7

6

5

4

3

2

1

0

40 30 20 10 0 10 20 30 40
8

7

6

5

4

3

2

1

0

1

Figure 3. Realizations of self-similar sparse processes driven by Student’s t-innovation and their normalized
histogram (in logarithmic scale) of the expansion coefficients at the second decomposition level (solid) and at
the eighth decomposition level (dashed). The horizontal axis represent the value of the expansion coefficient,
whereas the vertical one denotes the frequency. On left: γ = 0.8. On right: γ = 1.5.

processes, each being realized on a (1,024× 1,024) grid. The self-similar operator was chosen
to be the fractional Laplacian operator specified in (3.8). For synthesizing the processes, a
discrete version of the inverse fractional Laplacian operator was applied to a discrete white
noise in the Fourier domain. We considered the self-similarity orders γ = 0.8 and 1.5 and a
Student’s t-innovation with a large enough ν parameter (see Table 1) to ensure the existence
of the kurtosis. Realizations of such processes are given in Figure 3. As for the analysis,
we operated with the Laplacian-of-Gaussian (LoG) kernel ψ = ΔG, where G is a zero-mean
Gaussian function with unit variance. The wavelet is isotropic and admissible for γ < 2, since
ψ = −(−Δ)γ/2{(−Δ)1−γ/2G}. This is in fact related to ψ having vanishing moments until
order 1 (see Proposition 5.1).

Similar to our previous experiments, computations of the mean variance and the mean
kurtosis of the expansion coefficients were obtained though averaging over 2,000 realizations
at every scale. The processes were analyzed using the LoG kernel with the dilation factor
ρ =

√
2. The expansion coefficients at the boundaries were again discarded by applying a

sufficiently large cropping. To have enough samples for statistical estimation (especially at
coarser scales), subsampling operations were omitted.1 We computed the parameters γ and
τ as described in the one-dimensional experiments. We then compared the regressed γ and
τ values and the theoretical ones (see Table 3). We also tested our framework on different
natural images of size (512 × 512) (see Figure 4).

The results of our experiments reveal that the γ and τ values, estimated in two-dimensional
contents, are again close to the true ones, further supporting over previous assertions. For the
sake of completeness, the mean variance and the mean kurtosis of the expansion coefficients
is illustrated in Figure 5. At this point, we stress that the decay rate of the kurtosis is

1This type of expansion is also known as the scale-space representation in the image-processing community.
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Figure 4. Natural images used in the experiments and their normalized histograms (in logarithmic scale)
of the expansion coefficients at the second decomposition level (solid) and at the eighth decomposition level
(dashed). The horizontal axis represents the value of the expansion coefficient, whereas the vertical one denotes
the frequency. On left, from top to bottom: Artery cells, Barbara, Crowd, Lena. On right, from top to bottom:
Texture, Man, Peppers, Zelda.

independent of γ.

6.2. Simulations on natural image. As for natural images, we confirm the Gaussianity
of the coarse-scale coefficients in a qualitative manner by looking at the histograms (in loga-
rithmic scale) in Figure 4. We observe that the given histograms fit a quadratic curve—what
we expect for a Gaussian signal—more closely at coarse scales than at fine scales. This is
corroborated by the plots in Figure 6: the decay of the kurtosis indicates an increasingly
Gaussian behavior at coarse scales.

While the qualitative behavior is as expected, the observed rate of decay of the kurtosis is
not quite as strong as predicted by the theory. First of all, the experiments on synthetic data
have shown that the estimations based on the kurtosis are highly variable (see Figures 2 and
5). In Figure 6, the kurtosis is computed from a single estimate—the analyzed natural image,
which makes the quantitative interpretation of the decay rate possibly problematic. In spite
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Figure 5. Evolution of the variance and the kurtosis. Analysis of two-dimensional self-similar sparse
processes with Student’s t-innovation. Vertical bars represent one empirical standard deviation. Dashed curves
illustrate appropriate polynomial fits to the empirical mean.

Scale
 21 23/2  22 25/2  23 27/2  24 

N
or

m
al

iz
ed

 k
ur

to
si

s

0

0.2

0.4

0.6

0.8

1
Artery cells
Barbara
Crowd
Lena
Texture
Man
Peppers
Zelda
Theoretical

Figure 6. Evolution of the kurtosis of the expansion coefficients of the natural images used in the experi-
ments.
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of this uncertainty on the estimation, one sees in Figure 6 that the decay of the kurtosis of
natural images deviate from the theoretical curve. This suggests that on top of self-similarity
and sparsity, additional features need to be incorporated into the stochastic model to better
capture the statistical properties of natural images.

7. Conclusion. This paper has been motivated by the search of stochastic models that
are phenomenologically consistent with the compressibility and scale invariance properties of
natural images. To that purpose, we modeled an image as a random process that can be
transformed to a sparse white noise (i.e., an innovation process) by applying a homogeneous
operator Lγ . The parameter γ denotes the self-similarity order of the process. We established
and explained the mathematical framework that allows one to generate self-similar sparse
processes. This development was followed by the analysis of such processes. In section 4,
we studied the rescaled versions of self-similar sparse processes. We showed that the dilated
versions of these processes are asymptotically Gaussian. The evolution of the process across
scales had direct implications on the statistics of its wavelet coefficients. We further quantified
in section 5 the degree of Gaussianity of the wavelet coefficients by providing the theoretical
evolution of the kurtosis across scales. Finally, we tested our predictions in one- and two-
dimensional settings. Our numerical simulations showed that the developed formalism is very
well-matched to synthetic data. We also observed qualitatively a Gaussian behavior at coarse
scales for natural images. Despite this good qualitative behavior, the evolution of the kurtosis
of natural images were observed to deviate from the exact predicted decay rate. In this regard,
the proposed framework can be seen as a first step towards a more precise stochastic model
for natural images.

Appendix A. Proof of Theorem 4.2. In order to prove Theorem 4.2, we shall first control
the Lévy exponent f with the following result.

Lemma A.1. Let w ∈ S ′(Rd) be an innovation, f being its Lévy exponent, and let (μ, σ2, V )
be its Lévy triplet. We recall the notation μw = μ +

∫
|t|>1 tV (dt) and σ2w = σ2 +

∫
R
t2V (dt).

Then we have, for all ξ ∈ R,

(A.1)
∣∣f(ξ)− iμwξ

∣∣ ≤ σ2wξ2.
Proof. From (2.6), we know that

f(ξ)− iμwξ = −
σ2ξ2

2
+

∫
R

(eitξ − 1− iξt1|t|≤1)V (dt)−
∫
R

iξt1|t|>1V (dt)

= −σ
2ξ2

2
+

∫
R

(eiξt − 1− iξt)V (dt).(A.2)

Using |eix − 1− ix| ≤ x2, we therefore deduce that

∣∣f(ξ)− iμwξ
∣∣ ≤ σ2ξ2

2
+

∫
R

t2ξ2V (dt) ≤ σ2wξ2.

Proof of Theorem 4.2. We first treat the nonsymmetric case. The characteristic functional
of s = L−1

γ w is P̂s(ϕ) = P̂w(L
∗−1
γ ϕ) with L∗−1

γ a (−γ)-homogeneous left-inverse of L∗
γ ,D
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continuous from S(Rd) to L1(Rd) ∩ L2(Rd) (see section 3.2). In particular, L∗−1
γ (S(Rd)) ⊂

L1(Rd) and we can define v ∈ S ′(Rd) as

〈v, ϕ〉 = 〈1,L∗−1
γ ϕ〉 =

∫
Rd

L∗−1
γ {ϕ}(r)dr ∀ϕ ∈ S(Rd).

Theorem 4.2 can be seen as a generalization of the central-limit theorem for self-similar
sparse processes. Let X be a finite-variance infinitely divisible random variable with Lévy
exponent f and Lévy triplet (μ, σ2, V ). The mean of X is then μX = μ +

∫
|t|>1 tV (dt) and

its variance σ2X = σ2 + m2(V ). The central-limit theorem is equivalent to the pointwise
convergence

(A.3) τf

(
ξ√
τ

)
− i
√
τμXξ −→

τ→∞ −
σ2Xξ

2

2
∀ξ ∈ R.

Thanks to (2.4), we know that the convergence in law of generalized random processes is
equivalent with the pointwise convergence of the corresponding characteristic functionals.
Therefore, (4.7) is equivalent with

(A.4) P̂a−γSa−1s−μwad/2v(ϕ) −→a→∞ exp

(
−
σ2w‖L∗−1

γ ϕ‖22
2

)
.

Let ϕ ∈ S(Rd). We have

log P̂a−γSa−1s−μwad/2v(ϕ) = log P̂a−γSa−1s(ϕ)− iμwa
d/2〈v, ϕ〉

= log P̂s(a
−γSaϕ)− iμwa

d/2〈v, ϕ〉
(i)
= log P̂w(L

∗−1
γ {a−γSaϕ}) − iμwa

d/2〈1,L∗−1
γ ϕ〉

(ii)
= log P̂w(SaL

∗−1
γ ϕ)− i〈μwad/2,L∗−1

γ ϕ〉
= log P̂Sa−1w−μwad/2(L

∗−1
γ ϕ),(A.5)

where (i) is deduced from the relation P̂s(·) = P̂w(L
∗−1
γ ·) and (ii) by (−γ)-homogeneity.

Based on (A.5) and since L∗−1
γ (S(Rd)) ⊂ L1(Rd) ∩ L2(Rd), we obtain (A.4) if we prove that,

for all ϕ ∈ L1(Rd) ∩ L2(Rd),

(A.6) log P̂Sa−1w−μwad/2(ϕ) −→a→∞ −
σ2w‖ϕ‖22

2
.

We have, for all ϕ ∈ L1(Rd) ∩ L2(Rd),

log P̂Sa−1w−μwad/2(ϕ) =
∫
Rd

adf(a−d/2ϕ(r))dr− iμwa
d/2

∫
Rd

ϕ(r)dr

=

∫
Rd

(
adf(a−d/2ϕ(r)) − iμwa

d/2ϕ(r)
)
dr.
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Applying (A.3) with τ = ad and ξ = ϕ(r) we obtained that, for all r ∈ R
d,

(A.7) adf(a−d/2ϕ(r)) − iμwa
d/2ϕ(r) −→

a→+∞ −
σ2wϕ(r)

2
.

Moreover, applying (A.1) with ξ = a−d/2ϕ(r), we have, for all r ∈ R
d,

(A.8)
∣∣adf(a−d/2ϕ(r)) − iμwa

d/2ϕ(r)
∣∣ ≤ σ2wϕ(r)2,

which is integrable because ϕ ∈ L2(Rd). Finally, we deduce (A.6) using the Lebesgue
dominated-convergence theorem, which finishes the nonsymmetric case.

The symmetric case is almost identical and actually simpler. The first difference is that
L∗−1
γ is not necessarily continuous in L1(Rd), also we cannot introduce the generalized function
v. However, since μw = 0 for a symmetric innovation, there is no need to compensate the
drift by introducing v. We can therefore follow the same proof with μw = 0.

Acknowledgment. The authors would like to thanks the three anonymous reviewers for
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