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a Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
b Sharif University of Technology, Theran, Iran

Received 9 February 2016; received in revised form 30 August 2016; accepted 31 August 2016
Available online 5 October 2016

Abstract

In this paper, we study the Besov regularity of a general d-dimensional Lévy white noise. More precisely,
we describe new sample paths properties of a given noise in terms of weighted Besov spaces. In particular,
we characterize the smoothness and integrability properties of the noise using the indices introduced by
Blumenthal, Getoor, and Pruitt. Our techniques rely on wavelet methods and generalized moments estimates
for Lévy noises.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is dedicated to the study of the regularity of a general d-dimensional Lévy white
noise (also called Lévy noise, or simply noise, throughout the paper) in terms of Besov spaces.
It is a continuation of our previous work [13]. A random process is traditionally defined as a
collection (X t ) of random variables indexed by t ∈ R, with some adequate properties. For
instance, Lévy processes are described as stochastically continuous random processes with
independent and stationary increments [1,35]. However, it is not possible to define the Lévy
noise in the traditional framework. In the 1D setting, it is tempting to introduce a Lévy noise as
the derivative of a Lévy process, but the well-known issue is that the derivative of a non-trivial
Lévy process does not have a pointwise interpretation.
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An alternative way of introducing random processes is based on the abstract theory of mea-
sures on function spaces, as developed by Bogachev [5] among others. In this context, a random
process is a random variable that takes values in a function space endowed with the adequate
measurable structure. In this spirit, Gelfand [15] and Itô [21] have independently introduced the
concept of generalized random processes, defined as random elements in the Schwartz space
of generalized functions [40]. This approach was more extensively exposed in [16, Chapter 3]
and [22]. The Schwartz space has the advantage of being stable by (weak) differentiation: it
therefore includes the d-dimensional Lévy noise, but also all its (partial) derivatives.

Measuring regularity with Besov spaces. Since we are considering processes that have no
pointwise interpretation, we should consider function spaces with negative smoothness. When
talking about the regularity of random processes, the Sobolev or the Hölder regularities are
natural concepts that come into mind. In order to be more general, we will investigate the Besov
regularity of a Lévy noise. Besov spaces include both Sobolev and Hölder spaces, and provide a
finer measure of the regularity of a function [45,46]. Evaluating the Besov regularity of random
processes over Rd requires the introduction of weights, since they are generally not decreasing
towards infinity. Thereafter, we therefore consider weighted Besov spaces or local Besov spaces.

Regularity of Lévy noise and related processes. To the best of our knowledge, the Besov reg-
ularity of d-dimensional Lévy noise has never been addressed in full generality. Kusuoka [25]
estimated the weighted Sobolev regularity of the Gaussian noise, while Veraar [49] obtained com-
plete results on the local Besov regularity of the Gaussian noise. However, these works are based
on intrinsic Gaussian methods and are not easily extended to the non-Gaussian case. In [13],
we derived new results on the Besov regularity of the symmetric-α-stable (SαS) noise on the
d-dimensional torus. This paper is an extension of [13] in two ways: (1) we consider a noise over
Rd and deduce the local results as corollaries, and (2) we extend the results for a general Lévy
noise beyond the SαS setting.

Other important works on the Besov regularity of 1-dimensional Lévy processes must also be
mentioned. The pioneer works concern the Brownian motion [3,8,33]; see also [30] for exten-
sions to more general Gaussian processes, including fractional Brownian motion. Stable Lévy
processes were studied in [8,32]. Note that Rosenbaum [32] used wavelet techniques similar to
ours. The case of general Lévy processes was extensively studied by Schilling, both in the lo-
cal [36] and weighted cases [37,38]. Herren obtained similar local results in [18]. These authors
rely on two indices introduced in [4,31] for the study of non-stable Lévy processes while also
providing results for a more general class of Markov processes. Those indices also play a crucial
role in the present study. For a comprehensive survey on the Besov regularity of Lévy processes,
we refer the reader to [6].

2. Preliminaries

2.1. Generalized processes and the Lévy noise

The stochastic processes of this paper are defined in the framework of generalized random
processes [16, Chapter 3]. In particular, this allows us to consider a Lévy noise as a well-defined
random process.

The Schwartz space of infinitely smooth and rapidly decaying functions on Rd is denoted by
S(Rd). It is endowed with the topology associated with the following notion of convergence: A
sequence (ϕn) of functions in S(Rd) converges to ϕ ∈ S(Rd) if, for every multiindex α ∈ Nd and
every ρ ≥ 0, the functions x → |x|

ρDα
{ϕn}(x) converge to x → |x|

ρDα
{ϕ}(x) in L2(Rd), where
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|·| is the Euclidean norm on Rd . The space S(Rd) is a nuclear Fréchet space [42, Section 51]. The
topological dual of S(Rd) is the space S ′(Rd) of tempered generalized functions. A cylindrical
set of S ′(Rd) is a subset of the form

u ∈ S ′(Rd), (⟨u, ϕ1⟩, . . . , ⟨u, ϕn⟩) ∈ B

, (1)

where n ≥ 1, ϕ1, . . . , ϕn ∈ S(Rd), and B is a Borel subset of Rn . We denote by Bc


S ′(Rd)


the cylindrical σ -field of S ′(Rd), defined as the σ -field generated by the cylindrical sets. Then,
S ′(Rd),Bc(S ′(Rd))


is a measurable space. We fix the probability space (Ω ,F ,P).

Definition 1. A generalized random process is a measurable function

s : (Ω ,F) →


S ′(Rd),Bc(S ′(Rd))


. (2)

Its probability law is the measure on S ′(Rd), image of P by s. For every B ∈ Bc


S ′(Rd)

,

Ps(B) = P({ω ∈ Ω , s(ω) ∈ B}). (3)

The characteristic functional of s is defined for every ϕ ∈ S(Rd) by

Ps(ϕ) =


S ′(Rd )

ei⟨u,ϕ⟩dPs(u). (4)

A generalized random process is a random element of the space of tempered generalized func-
tions. The characteristic functional is the infinite-dimensional generalization of the characteristic
function. It characterizes the law of s in the sense that

Ps1 = Ps2 ⇔ Ps1 = Ps2 , (5)

which we denote by s1
(d)
= s2 (where (d) stands for equality in distribution). Since the space S(Rd)

is nuclear, the Minlos–Bochner theorem [16,29] gives a complete characterization of admissible
characteristic functionals.

Theorem 1 (Minlos–Bochner Theorem). A functional P on S(Rd) is the characteristic
functional of a generalized random process s if and only if it is continuous and positive-definite
over S(Rd) and satisfies P(0) = 1.

Lévy processes are random processes index by R with stationary and independent increments.
They are deeply related to infinitely divisible random variables [35]. For the same reasons, there
is a one-to-one correspondence between infinitely divisible laws and the family of Lévy noises.
An infinitely divisible random variable X can be decomposed as X = X1 + · · · + X N for
every N ≥ 1 where the Xn are independent and identically distributed (i.i.d.). The characteristic
function of an infinitely divisible random variable can be written as

ΦX (ξ) = exp(Ψ(ξ)) (6)

with Ψ a suitable continuous function [35, Section 7]. The function Ψ—the continuous log-
characteristic function of the infinitely divisible random variable X—is called a Lévy exponent
(also known as a characteristic exponent). We say moreover that Ψ satisfies the ϵ-condition if
the moment E[|X |

ϵ
] of X is finite for some ϵ > 0.
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A Lévy exponent Ψ can be uniquely represented by its Lévy triplet (γ, σ 2, ν) as [35, Theo-
rem 8.1]

Ψ(ξ) = iγ ξ −
σ 2ξ2

2
+


R\{0}

(eiξ x
− 1 − iξ x1|x |≤1)ν(dx), (7)

where γ ∈ R, σ 2
≥ 0, and ν is a Lévy measure, that is, a measure on R \ {0} such that

R\{0}
inf(1, x2)ν(dx) < ∞. This is the well-known Lévy–Khintchine decomposition. We re-

mark also that ℜΨ ≤ 0.
Let X = (X1, . . . , X N ) be a vector of i.i.d. infinitely divisible random variables with common

Lévy exponent Ψ . By independence, the characteristic function of X is

ΦX(ξ) = exp


N

n=1

Ψ(ξn)


(8)

for every ξ = (ξ1, . . . , ξN ) ∈ RN . A Lévy noise can be seen as the generalization of this principle
in the continuous domain, up to the replacement of the sum in (8) by an integral.

Definition 2. A Lévy white noise is a generalized random process w with characteristic func-
tional of the form

Pw(ϕ) = exp


Rd
Ψ(ϕ(x))dx


(9)

for every ϕ ∈ S(Rd), where Ψ is a Lévy exponent that satisfies the ϵ-condition.

I.M. Gelfand and N. Ya. Vilenkin have proved that the functional (9) is a valid characteristic
functional on D(Rd), the space of compactly supported and infinitely smooth functions, without
the ϵ-condition on Ψ [16]. The Schwartz condition is sufficient to extend this result to S(Rd)

[12, Theorem 3]. Recently, R. Dalang and T. Humeau have shown that this condition is also nec-
essary: A noise with Lévy exponent that does not satisfy the Schwartz condition is almost surely
not in S ′(Rd) [9, Theorem 3.13].

A Lévy noise is stationary, in the sense that w
(d)
= w(· − x0) for every x0 ∈ Rd . It is moreover

independent at every point, meaning that ⟨w, ϕ⟩ and ⟨w,ψ⟩ are independent whenever ϕ and
ψ ∈ S(Rd) have disjoint supports. In 1-D, we recover the usual notion of white noise, since w
is the derivative in the sense of generalized functions of the Lévy process with the same Lévy
exponent. This principle can be extended to any dimension d ≥ 2: The d-dimensional Lévy noise
is the weak derivative Dx1 · · · Dxd {s} of the d-dimensional Lévy sheet s [9].

2.2. Weighted Sobolev and Besov spaces

Our goal is to characterize the smoothness of a Lévy white noise in terms of weighted Besov
spaces. All our results related to Besov spaces require the corresponding intermediate result for
Sobolev spaces which we introduce in Section 2.2.1.

2.2.1. Weighted Sobolev spaces

We set ⟨x⟩ =


1 + |x|2. The Fourier transform of f ∈ S ′(Rd) is denoted by f . For τ ∈ R,

we define Lτ (the Bessel operator of order τ ) as the pseudo-differential operator with Fourier
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multiplier ⟨·⟩
τ . In Fourier domain, we write

Lτ {ϕ}(ω) := ⟨ω⟩
τϕ(ω) (10)

for every ω ∈ Rd and ϕ ∈ S(Rd). When τ > 0, the operator Iτ = L−τ is called a Bessel
potential [17]. The operator Lτ is self-adjoint, linear, and continuous from S(Rd) to S(Rd),
since its Fourier multiplier is infinitely smooth and bounded by a polynomial. It can therefore be
extended as a linear and continuous operator from S ′(Rd) to S ′(Rd).

Definition 3. Let τ, ρ ∈ R. The Sobolev space of smoothness τ is defined by

W τ
2 (R

d) :=


f ∈ S ′(Rd), Lτ { f } ∈ L2(Rd)


(11)

and the Sobolev space of smoothness τ and decay ρ is

W τ
2 (R

d
; ρ) :=


f ∈ S ′(Rd), ⟨·⟩

ρ f ∈ W τ
2 (R

d)

. (12)

We also set L2(Rd
; ρ) := W 0

2 (R
d
; ρ).

We summarize now the basic properties on weighted Sobolev spaces that are useful for our
work, with short proofs for the sake of completeness. More details can be found in [44]; in
particular, in Chapter 6, a broader class of weighted spaces with their embedding relations is
considered.

Proposition 1. The following properties hold for weighted Sobolev spaces.

• For ρ, τ ∈ R, W τ
2 (R

d
; ρ) is a Hilbert space for the scalar product

⟨ f, g⟩W τ
2 (Rd ;ρ) :=


Lτ {⟨·⟩ρ f },Lτ {⟨·⟩ρg}


L2(Rd )

. (13)

We denote by ∥ f ∥W τ
2 (Rd ;ρ) = ⟨ f, f ⟩

1/2
W τ

2 (Rd ;ρ)
the corresponding norm.

• For ρ ∈ R fixed and for every τ1 ≤ τ2, we have the continuous embedding

W τ2
2 (R

d
; ρ) ⊆ W τ1

2 (R
d
; ρ). (14)

• For τ ∈ R fixed and for every ρ1 ≤ ρ2, we have the continuous embedding

W τ
2 (R

d
; ρ2) ⊆ W τ

2 (R
d
; ρ1). (15)

• For ρ, τ ∈ R, the operator Lτ,ρ : f → ⟨·⟩
ρLτ { f } is an isometry from L2(Rd) to

W −τ
2 (Rd

; −ρ).

• The dual space of W τ
2 (R

d
; ρ) is W −τ

2 (Rd
; −ρ) for every τ, ρ ∈ R.

• We have the countable projective limit

S(Rd) =


τ,ρ∈R

W τ
2 (R

d
; ρ) =


n∈N

W n
2 (R

d
; n). (16)

• We have the countable inductive limit

S ′(Rd) =


τ,ρ∈R

W τ
2 (R

d
; ρ) =


n∈N

W −n
2 (Rd

; −n). (17)
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Proof. The space W τ
2 (R

d
; ρ) inherits the Hilbertian structure of L2(Rd). For τ1 ≤ τ2 and

ρ1 ≤ ρ2, we have moreover the inequalities,

∥ f ∥W
τ1
2 (Rd ;ρ)

≤ ∥ f ∥W
τ2
2 (Rd ;ρ)

, (18)

∥ f ∥W τ
2 (Rd ;ρ1)

≤ ∥ f ∥W τ
2 (Rd ;ρ2)

, (19)

from which we deduce (14) and (15). The relation

∥Lτ,ρ f ∥W−τ
2 (Rd ;−ρ) = ∥L−τ {⟨·⟩

−ρLτ,ρ f }∥L2(Rd ) = ∥ f ∥L2(Rd ) (20)

proves that Lτ,ρ is an isometry. For every f, g ∈ L2(Rd), we have that

⟨Lτ {⟨·⟩ρ f },L−τ {⟨·⟩
−ρg}⟩L2(Rd ) = ⟨ f, g⟩L2(Rd ). (21)

Since W τ
2 (R

d
; ρ) = {Lτ {⟨·⟩ρ f }, f ∈ L2(Rd)}, we easily deduce the dual of W τ

2 (R
d
; ρ) from

(21). Finally, we can reformulate the topology on S(Rd) as (16). This implies directly (17). �

2.2.2. Weighted Besov spaces
Following H. Triebel [45], our definitions of weighted Besov spaces are based on wavelets.

More traditionally, Besov spaces are introduced through the Fourier transform; see for instance
[43]. The use of wavelets is equivalent and is more convenient for our purpose.

Let us first introduce the relevant wavelet bases. We denote by j ≥ 0 the scaling index and
m ∈ Zd the shifting index. Consider ψF and ψM, which are the father and mother wavelet of
a wavelet basis for L2(R), respectively. We set G0

= {M, F}
d and G j

= G0
\ (F, . . . , F) for

j ≥ 1. For a gender G = (G1, . . . ,Gd) ∈ G0 and for every x = (x1, . . . , xd) ∈ Rd , we define

ψG(x) =

d
i=1

ψGi (xi ). (22)

Proposition 2 (Section 1.2.1, [45]). For every integer r0 ≥ 0, there exist compactly supported
wavelets ψF and ψM with at least r0 continuous derivatives such that

ψ j,G,m, j ≥ 0,G ∈ G j ,m ∈ Zd (23)

is an orthonormal basis of L2(Rd), where

ψ j,G,m := 2 jd/2ψG(2 j
· −m) (24)

and ψG is defined according to (22).

Concretely, [45] considers separable Daubechies wavelets with the adequate regularity. For
τ, ρ ∈ R and 0 < p, q ≤ ∞, the Besov sequence space bτp,q(ρ) is the collection of sequences

λ = {λ j,G,m, j ≥ 0,G ∈ G j ,m ∈ Zd
} (25)

such that

∥λ∥bτp,q (ρ) :=


j≥0

2 jq(τ−d/p)


G∈G j


m∈Zd

⟨2− j m⟩
ρp

|λ j,G,m|
p

q/p
1/q

, (26)

with the usual modifications when p and/or q = ∞.
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Definition 4. Let τ, ρ ∈ R and 0 < p, q ≤ ∞. Fix

r0 > max(τ, d(1/p − 1)+ − τ) (27)

and set (ψ j,G,m) a wavelet basis of L2(Rd) with regularity r0. The weighted Besov space
Bτp,q(Rd

; ρ) is the collection of generalized function f ∈ S ′(Rd) that can be written as

f =


j,G,m

2− jd/2λ j,G,mψ j,G,m (28)

with λ = (λ j,G,m) ∈ bτp,q(ρ), where the convergence holds unconditionally in S ′(Rd).

This definition is usually introduced as a characterization of Besov spaces. When (28) occurs,
the representation is unique and we have that [45, Theorem 1.26]

λ j,G,m = 2 jd/2
⟨ f, ψ j,G,m⟩. (29)

To measure a given Besov regularity (fixed p, q , τ , and ρ), we should select a wavelet with
enough regularity for the wavelet coefficients to be well-defined for f ∈ Bτp,q(Rd

; ρ). This is
the meaning of (27). Under this condition, and for f ∈ Bτp,q(Rd

; ρ), the quantity

∥ f ∥Bτp,q (Rd ;ρ) :=


j≥0

2 j (τ−d/p+d/2)q


G∈G j


m∈Zd

⟨2− j m⟩
ρp

|⟨ f, ψ j,G,m⟩|
p

q/p
1/q

(30)

is finite, with the usual modifications when p and/or q = ∞. The quantity (30) is a norm
for p, q ≥ 1, and a quasi-norm otherwise. In any case, the Besov space is complete for its
(quasi-)norm, and is therefore a (quasi-)Banach space. We have moreover the equivalence [11,
Theorem 4.2.2]

f ∈ Bτp,q(R
d
; ρ) ⇔ ⟨·⟩

ρ f ∈ Bτp,q(R
d) (31)

with Bτp,q(Rd) := Bτp,q(Rd
; 0) the classical (non-weighted) Besov space. The family of weighted

Besov spaces includes the weighted Sobolev spaces due to the relation [11, Section 2.2.2]

Bτ2,2(R
d
; ρ) = W τ

2 (R
d
; ρ). (32)

Weighted Besov spaces are embedded, as we show in Proposition 3.

Proposition 3. We fix τ0, τ1, ρ0, ρ1 ∈ R and 0 < p0, q0, p1, q1 ≤ ∞. We assume that

τ0 > τ1 and ρ0 ≥ ρ1. (33)

If, moreover, we have that

p0 ≤ p1 and τ0 − τ1 ≥ d


1
p0

−
1
p1


(34)

or

p1 ≤ p0 and ρ0 − ρ1 > d


1
p1

−
1
p0


, (35)

then we have the continuous embedding

Bτ0
p0,q0

(Rd
; ρ0) ⊆ Bτ1

p1,q1
(Rd

; ρ1). (36)
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Proof. A proof of the sufficiency of (34) can be found in [11, Section 4.2.3]. However, we could
not find any precise statement of embeddings between Besov spaces for p1 ≤ p0 in the literature,
so we provide our own proof for the sufficiency of (35).

First, the parameter q is dominated by parameters τ and p in the sense that, for every τ ≥ 0,
ϵ > 0, and 0 < p, q, r ≤ ∞, we have the embedding [46, Proposition 2, Section 2.3.2]

Bτ+ϵp,q (R
d
; ρ) ⊆ Bτp,r (R

d
; ρ). (37)

Note that Triebel considers unweighted spaces in [46], but the extension to the weighted case is
obvious. Hence, we restrict ourselves to the case q0 = q1 = q. Fix λ = {λ j,G,m, j ≥ 0,G ∈

G j ,m ∈ Zd
}. Due to the Hölder inequality, as soon as 1/a + 1/b = 1, we have, for every j ≥ 0

and G ∈ G j , that
m∈Zd

⟨2− j m⟩
ρ1 p1 |λ j,G,m|

p1

≤


m∈Zd

⟨2− j m⟩
(ρ1−ρ0)p1b

1/b 
m∈Zd

⟨2− j m⟩
ρ0 p1a

|λ j,G,m|
p1a

1/a

. (38)

We choose a = p0/p1 ≥ 1, thus (ρ1 −ρ0)p1b = (ρ1 −ρ0)/(1/p1 − 1/p0) < −d by using (35),
and


m∈Zd ⟨2− j m⟩

(ρ1−ρ0)p1b < ∞. Since ap1 = p0, we rewrite (38) as
m∈Zd

⟨2− j m⟩
ρ1 p1 |λ j,G,m|

p1

1/p1

≤ C


m∈Zd

⟨2− j m⟩
ρ0 p0 |λ j,G,m|

p0

1/p0

(39)

with C > 0 a finite constant. Using (26), this implies that ∥λ∥b
τ1
p1,q (ρ1)

≤ C ′
∥λ∥b

τ0
p0,q (ρ0)

and

consequently the corresponding embedding between Besov sequence spaces. Finally, (36) is a
consequence of the isomorphism between Besov sequence spaces and Besov function spaces in
Definition 4 (see [45, Theorem 1.26] for more details on the isomorphism). We let the reader
adapt the proof when p and/or q are infinite. �

If the only knowledge provided to us is that the generalized function f is in S ′(Rd),
then this is not enough to set the regularity r0 of the wavelet used to characterize the Besov
smoothness of f . However, if we have additional information on f , for instance its inclusion in
a Sobolev space, then the situation is different. Proposition 4 gives a wavelet-domain criterion to
determine if a generalized function f , known to be in W τ0

2 (R
d
; ρ0), is actually in a given Besov

space Bτp,q(Rd
; ρ). Moreover, we also know that any f ∈ S ′(Rd) is in some Sobolev space

W τ0
2 (R

d
; ρ0) because of (17).

Proposition 4. Let τ, τ0, ρ, ρ0 ∈ R and 0 < p, q ≤ ∞. We set

u > max(|τ0| , |τ − d(1/p − 1/2)+|). (40)

Then, the generalized function f ∈ W τ0
2 (R; ρ0) is in Bτp,q(Rd

; ρ) if and only if


j≥0

2 j (τ−d/p+d/2)q


G∈G j


m∈Zd

⟨2− j m⟩
ρp

|⟨ f, ψ j,G,m⟩|
p

q/p

< ∞, (41)

with (ψ j,G,m) a wavelet basis of L2(Rd) of regularity u, with the usual modifications when p
and/or q = ∞.
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Proof. Let τ1 < min(τ0, τ − d(1/p − 1/2)+) and ρ1 ≤ min(ρ0, ρ − d(1/p − 1/2)+). Then,
according to Proposition 3, we have the embeddings

Bτp,q(R
d
; ρ) ⊆ W τ1

2 (R
d
; ρ1) and W τ0

2 (R
d
; ρ0) ⊆ W τ1

2 (R
d
; ρ1).

Condition (40) implies that we can apply Definition 4 into the space W τ1
2 (R

d
; ρ1). In particular,

if (ψ j,G,m) is the wavelet basis of Definition 4 with regularity u, and for every function
f ∈ W τ1

2 (R
d
; ρ1), then the wavelet coefficients ⟨ f, ψ j,G,m⟩ are well-defined. Moreover, we have

the characterization

f ∈ Bτp,q(R
d
; ρ) ⇔ ∥ f ∥Bτp,q (Rd ;ρ) < ∞

for f ∈ W τ1
2 (R

d
; ρ1) and, therefore, for f ∈ W τ1

2 (R
d
; ρ0). �

3. Moment estimates for the Lévy noise

Our goal in this section is to obtain bounds for the pth moments of the random variable
⟨w, ϕ⟩, where w is a Lévy noise and ϕ ∈ S(Rd). The bounds are related to the moments of ϕ.
For instance, for a symmetric α-stable noise wα , it is known [13, Lemma 2] that, for p > 0,

E

|⟨wα, ϕ⟩|

p
= C p,α∥ϕ∥

p
α , (42)

where C p,α is a finite constant if and only if α = 2 (Gaussian case), or p < α < 2 (non-Gaussian
case).

3.1. Indices of a Lévy noise

To generalize (42) for non-stable white noise, we consider the indices introduced in [4,31],
which are classical tools to estimate the moments of Lévy processes [10,24,27].

Definition 5. Let Ψ be a Lévy exponent. We consider the two intervals

I0 =


p ∈ [0, 2], lim sup

|ξ |→0

Ψ(ξ)
|ξ |p < ∞


, (43)

I∞ =


p ∈ [0, 2], lim sup

|ξ |→∞

Ψ(ξ)
|ξ |p < ∞


. (44)

The indices are defined by

β0 = sup I0, β∞ = inf I∞. (45)

Proposition 5. Consider a Lévy exponent Ψ with intervals I0 and I∞ as in (43) and (44). Then,
for β̃0 ∈ I0 and β̃∞ ∈ I∞, we have the inequality

Rd
|Ψ(ϕ(x))|dx ≤ C


∥ϕ∥

β̃0

β̃0
+ ∥ϕ∥

β̃∞

β̃∞


(46)

for all ϕ ∈ L β̃0
(Rd)


L β̃∞

(Rd) and some constant C > 0.
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Proof. The functions ξ → |Ψ(ξ)| and ξ → |ξ |β̃0 + |ξ |β̃∞ are both continuous, the second one
being non-vanishing on R \ {0} and dominating the first one at zero and at infinity up to some
constant. Therefore, there exists a constant C > 0 that satisfies

|Ψ(ξ)| ≤ C

|ξ |β̃0 + |ξ |β̃∞


.

Integrating the latter equation over x ∈ Rd with ξ = ϕ(x), we obtain (46). �

3.2. Moment estimates for ⟨w, ϕ⟩

We estimate the moments of a random variable by relaying the fractional moments to the char-
acteristic function. Proposition 6 can be found for instance in [10,26,28] with some variations.
For the sake of completeness, we recall the proof, similar to the one of [10].

Proposition 6. For a random variable X with characteristic function ΦX and 0 < p < 2, we
have the relation

E[|X |
p
] = cp


R

1 − ℜ(ΦX )(ξ)

|ξ |p+1 dξ ∈ [0,∞], (47)

for some finite constant cp > 0, where ℜ(z) denotes the real part of z ∈ C.

Proof. For p ∈ (0, 2), we have, for every x ∈ R,

h(x) =


R
(1 − cos(xξ))

dξ

|ξ |p+1 =


R
(1 − cos(u))

du

|u|p+1


|x |

p, (48)

which is obtained by the change of variable u = xξ . Applying this relation to x = X and

denoting cp =


R(1 − cos(u)) du

|u|p+1

−1
, we have by Fubini’s theorem that

E[|X |
p
] = cpE


R
(1 − cos(ξ X))

dξ

|ξ |p+1


(49)

= cp


R
(1 − ℜ(E[eiξ X

]))
dξ

|ξ |p+1 (50)

= cp


R

1 − ℜ(ΦX )(ξ)

|ξ |p+1 dξ. � (51)

Theorem 2. Consider a Lévy noise w with indices β0 and β∞. Then, for every ϕ ∈ S(Rd) and
0 < p < β0, we have the inequality

E

|⟨w, ϕ⟩|

p
≤ C


∥ϕ∥

p
β̃0

+ ∥ϕ∥
p
β̃∞


(52)

for some constant C > 0, with β̃0 ∈ I0, β̃∞ ∈ I∞, and p < β̃0, β̃∞. Moreover, the result is still
valid for p = β̃0 = β̃∞ = 2 if β0 = 2 ∈ I0 (finite-variance case).

Proof. We start with a preliminary property: There exists a constant C > 0 such that, for every
z ∈ C with ℜ(z) ≤ 0, we have that

|1 − ez
| ≤ C


1 − e−|z|


. (53)
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Indeed, the function h(z) =
|1−ez

|

1−e−|z| is easily shown to be bounded for ℜ(z) ≤ 0 by a continuity
argument.

Defining X = ⟨w, ϕ⟩, the characteristic function of X is

ΦX (ξ) = exp


Rd
Ψ(ξϕ(x))dx


. (54)

Moreover, from Proposition 5, we have that
Rd

|Ψ(ξϕ)| ≤ C

∥ϕ∥

β̃0

β̃0
|ξ |β̃0 + ∥ϕ∥

β̃∞

β̃∞

|ξ |β̃∞


. (55)

We therefore have that

1 − ℜ(ΦX )(ξ) ≤ |1 − ΦX (ξ)|

(i)
≤ C


1 − exp


−

 Ψ(ξϕ)


(i i)
≤ C


1 − exp


−


|Ψ(ξϕ)|


(i i i)
≤ C ′


1 − exp(−∥ϕ∥

β̃0

β̃0
|ξ |β̃0) exp(−∥ϕ∥

β̃∞

β̃∞

|ξ |β̃∞)


(iv)
≤ C ′


1 − exp(−∥ϕ∥

β̃0

β̃0
|ξ |β̃0)


+


1 − exp(−∥ϕ∥

β̃∞

β̃∞

|ξ |β̃∞)

, (56)

where (i) comes from (53), (ii) and (iii) from the fact that x → 1 − e−x is increasing, (iii) from
(55), and (iv) from the remark that (1 − xy) ≤ (1 − x)+ (1 − y). Finally, by a simple change of
variable that for α ∈ (0, 2) and p < α, there exists a constant cp,α such that

R

1 − e−|xξ |α

|ξ |p+1 dξ = cp,α|x |
p. (57)

Applying this result with x = ∥ϕ∥β̃0
, α = β̃0 and x = ∥ϕ∥β̃∞

, α = β̃∞, respectively, we deduce
using (47) that

E[|X |
p
] = cp


R

1 − ℜ(ΦX )(ξ)

|ξ |p+1 dξ ≤ C ′′


∥ϕ∥

p
β̃0

+ ∥ϕ∥
p
β̃∞


, (58)

ending the proof.
The finite-variance case (for which β0 = 2 ∈ I0) cannot be deduced with the same arguments,

since (47) is not valid any more. However, we know in this case that

E[⟨w, ϕ⟩
2
] = σ 2

∥ϕ∥
2
2 + γ 2


Rd
ϕ

2

≤ σ 2
∥ϕ∥

2
2 + γ 2

∥ϕ∥
2
1, (59)

where σ 2 and γ are the variance and the mean of the infinitely divisible random variable with the
same Lévy exponent asw [48, Proposition 4.15], respectively. Hence, the result is still valid. �

We take advantage of Theorem 2 in a slightly less general form and apply it to wavelets, which
are rescaled versions of an initial function at resolution j = 0. Specifically, for ϕ ∈ S(Rd),
j ≥ 0, and m ∈ Zd , we set ϕ j,m = 2 jd/2ϕ(2 j

· −m).
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Corollary 1. Let w be a Lévy noise with indices β0 and β∞. We assume either that β∞ < β0,
or that β∞ = β0 ∈ I∞


I0. We fix p < β ∈ I0


I∞. Then, there exists a constant C such that,

for every ϕ ∈ S(Rd), j ≥ 0, and m ∈ Zd ,

E

|⟨w, ϕ j,m⟩|

p
≤ C2 jdp(1/2−1/β)

∥ϕ∥
p
β . (60)

Moreover, this result is still valid if p = β = 2 ∈ I0.

Proof. Remark first that the assumptions on β0 and β∞ imply that I0


I∞ ≠ ∅. We apply
Theorem 2 with β̃∞ = β̃0 = β. In particular, we have that E


|⟨w, ϕ j,m⟩|

p


≤ C∥ϕ j,m∥
p
β . The

result follows from the relation

∥ϕ j,m∥
p
β = 2 jdp/2


Rd

|ϕ(2 j x − m)|βdx
p/β

= 2 jdp(1/2−1/β)
∥ϕ∥

p
β , (61)

the last equality being obtained by the change of variable y = 2 j x − m. The result is still valid
for p = β = 2 for which we can still apply Theorem 2. �

3.3. Application of moment estimates to the extension of ⟨w, ϕ⟩ for non-smooth functions

A generalized random process s is a random variable from Ω to S ′(Rd). Alternatively, it
can be seen as a linear and continuous map1 from S(Rd) to the space L0(Ω) of real random
variables, that associates to ϕ ∈ S(Rd) the random variable ⟨s, ϕ⟩. The space L0(Ω) is a
Fréchet space associated with the convergence in probability. We also define the spaces L p(Ω)
for 0 < p < ∞ associated for p ≥ 1 (p < 1, respectively) with the norm (the quasi-norm,
respectively) ∥X∥L p(Ω) = (E[|X |

p
])1/p. See [22, Section 2.2] for more details.

To measure the Besov regularity of a Lévy noise, we shall consider random variables ⟨w, ϕ⟩

for test functions ϕ not in S(Rd). We handle this by extending the domain of test functions
through which one can observe a generalized random process.

Lemma 1. Let 0 < p, β < ∞. Consider a generalized random process s. We assume that, for
all ϕ ∈ S(Rd),

E[|⟨s, ϕ⟩|
p
] ≤ C∥ϕ∥

p
β (62)

for some constant C > 0. Then, we can extend s as a linear and continuous map from Lβ(Rd)

to L0(Ω). Moreover, (62) remains valid for ϕ ∈ Lβ(Rd).

Before proving this result, we remark that it immediately implies Corollary 2.

Corollary 2. Under the conditions of Corollary 1, we can extend ⟨w, ϕ⟩ for ϕ ∈ Lβ(Rd).
Moreover, (60) remains valid for any ϕ ∈ Lβ(Rd).

Proof of Lemma 1. The result is deduced by applying a standard density argument. Specifically,
since S(Rd) is dense in Lβ(Rd) (well-known for β ≥ 1 and easily extended for β < 1), we can
approximate a function ϕ ∈ Lβ(Rd) by a sequence (ϕn) of functions in S(Rd). Then, (⟨s, ϕn⟩)

1 This is not as obvious as it might seem in infinite-dimension, and is again due to the nuclear structure of S(Rd ).
For the links between E ′-valued random variables and linear functionals from E to L0(Ω) (with E ′ the dual of E), see
[22, Section 2.3], in particular Theorems 2.3.1 and 2.3.2.
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is a Cauchy sequence in L p(Ω) and therefore converges to some random variable ⟨s, ϕ⟩, due to
the relation

E[|⟨s, ϕn⟩ − ⟨s, ϕm⟩|
p
] = E[|⟨s, ϕn − ϕm⟩|

p
] ≤ C∥ϕn − ϕm∥

p
β . (63)

We easily show that the limit does not depend on the sequence (ϕn) so that ⟨s, ϕ⟩ is uniquely
defined. Finally, (62) is still valid for ϕ ∈ Lβ(Rd) by continuity of s from Lβ(Rd) to L p(Ω). �

4. Measurability of weighted Besov spaces

A generalized random process is a measurable function from Ω to S ′(Rd), endowed with the
cylindrical σ -field Bc(S ′(Rd)). In the next sections, we shall investigate in which Besov space
(local or weighted) is a given Lévy noise. Here, we first show that this question is meaningful in
the sense that any Besov space Bτp,q(Rd

; ρ) is measurable in S ′(Rd).

Proposition 7. For every 0 < p, q ≤ ∞ and τ, ρ ∈ R, we have that

Bτp,q(R
d
; ρ) ∈ Bc


S ′(Rd)


, (64)

with Bc


S ′(Rd)


the cylindrical σ -field on S ′(Rd).

The proof of this result is very similar to the one of [13, Theorem 4], except we work now
over Rd and deal with weights. In particular, we shall rely on [13, Lemma 1].

Proof. We obtain the desired result in three steps. We treat the case p, q < ∞ and let the reader
adapt the proof for p and/or q = ∞.

• First, we show that W τ
2 (R

d
; ρ) ∈ Bc


S ′(Rd)


for every τ, ρ ∈ R. Let (hn)n∈N be an

orthonormal basis of L2(Rd), with hn ∈ S(Rd) for all n ≥ 0. (We can for instance consider
the Hermite functions, based on Hermite polynomials, see [41, Section 2] or [22, Section 1.3]
for the definitions.) The interest of having basis functions in S(Rd) is that we have the
characterization

L2(Rd) =


f ∈ S ′(Rd),


n∈N

|⟨ f, hn⟩|
2 < ∞


. (65)

More generally, with the notations of Section 2.2.1, f ∈ W τ
2 (R

d
; ρ) if and only if Lτ {⟨·⟩ρ f } ∈

L2(Rd), from which we deduce that

W τ
2 (R

d
; ρ) =


f ∈ S ′(Rd),


n∈N

|⟨ f, ⟨·⟩ρLτ {hn}⟩|
2 < ∞


. (66)

We can therefore apply [13, Lemma 1] with α = 2, S = N, and ϕn = ⟨·⟩
ρLτ {hn}, to deduce

that W τ
2 (R

d
; ρ) ∈ Bc(S ′(Rd)).

• For any τ, ρ ∈ R, the cylindrical σ -field of W τ
2 (R

d
; ρ) is the σ -field Bc(W τ

2 (R
d
; ρ))

generated by the sets
u ∈ W τ

2 (R
d
; ρ), (⟨u, ϕ1⟩, . . . , ⟨u, ϕn⟩) ∈ B


, (67)

where N ≥ 1, ϕ1, . . . , ϕN ∈ W −τ
2 (Rd

; −ρ), and B is a Borelian subset of RN . Then,
W τ

2 (R
d
; −ρ) ∈ Bc(S ′(Rd)) implies that

Bc(W
τ
2 (R

d
; ρ)) ⊂ Bc(S ′(Rd)). (68)
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• Finally, we show that Bτp,q(Rd
; ρ) ∈ Bc(W

τ1
2 (R

d
; ρ1)) for some τ1, ρ1 ∈ R. Coupled with

(68), we deduce (64).
Fix τ1 ≤ τ + d (1/2 − 1/p) and ρ1 < ρ + d (1/p − 1/2). According to Proposition 3, we

have the embedding Bτp,q(Rd
; ρ) ⊆ W τ1

2 (R
d
; ρ1). Now, we can rewrite Proposition 4 (with

τ0 = τ1 and ρ0 = ρ1) as

Bτp,q(R
d
; ρ) =

 f ∈ W τ1
2 (R

d
; ρ1),


j,G


m

|⟨ f, 2 j (τ−d/p+d/2)
⟨2− j m⟩

ρψ j,G,m⟩|
p

q/p

< ∞

 . (69)

Again, we apply [13, Lemma 1] with S = {( j,G), j ∈ Z,G ∈ G j }, n = ( j,G),
Tn = T( j,G) = Zd , ϕn,m = ϕ j,G,m = ⟨2 j (τ−d/p+d/2)

⟨2− j m⟩
ρψ j,G,m⟩, α = p, and β = q/p,

to deduce that Bτp,q(Rd
; ρ) ∈ Bc(W

τ1
2 (R

d
; ρ1)). Remark that, strictly speaking, Lemma 1

in [13] is stated for Tn finite, but the proof is easily adapted to Tn countable. �

Proposition 7 suggests that the framework of generalized random processes is particularly
well-suited to addressing regularity issues. By comparison, we recall that the space C(Rd) of
continuous functions is not measurable with respect to the topological σ -field on the space of
(pointwise) functions from Rd to R, while we have that

C(Rd) ∈ Bc(D′(Rd)), (70)

which is the cylindrical σ -field of the space of generalized functions (not necessarily tem-
pered) [14, Proposition III.3.3]. See [7] for a discussion on the measurability of function spaces
and the advantages of generalized random processes.

5. The Lévy noise on weighted Sobolev spaces

In order to characterize the Besov smoothness of a Lévy noise, we first obtain information on
their Sobolev smoothness.

Proposition 8. A Lévy noise w with indices β0 > 0 and β∞ is in the weighted Sobolev space
W −τ

2 (Rd
; −ρ) if

ρ >
d

β0
and τ >

d

2
. (71)

Proof. As we have seen in Proposition 1, we have the countable projective limit

S(Rd) =


τ,ρ∈R

W τ
2 (R

d
; ρ) =


n∈N

W n
2 (R

d
; n).

We are in the context of [19, Theorem A.2]. It implies in particular that, if, for some ρ0 ∈ R,

• the characteristic functional Pw of w is continuous over L2(Rd
; ρ0), and

• the identity operator I is Hilbert–Schmidt from W τ
2 (R

d
; ρ) to L2(Rd

; ρ0),
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then w ∈ W −τ
2 (Rd ,−ρ) =


W τ

2 (R
d
; ρ)

′
almost surely. For the rest of the proof, we therefore

fix ρ > d
β0

and τ > d
2 . We also set ρ0 such that

d


1
β0

−
1
2


< ρ0 < ρ −

d

2
. (72)

The lower bound on ρ0 will imply the continuity of Pw on L2(Rd
; ρ0) while the upper bound

will be sufficient to ensure that the identity is Hilbert–Schmidt.

Continuity of Pw. Fix ϵ > 0 small enough such that

β0 − ϵ > 0 and ρ0 > d


1

β0 − ϵ
−

1
2


. (73)

Applying Proposition 5 with β̃∞ = 2 and β̃0 = β0 − ϵ, we deduce that
Rd

|Ψ(ϕ(x))|dx ≤ C

∥ϕ∥

β̃0

β̃0
+ ∥ϕ∥

2
2


. (74)

Since ρ0 > d


1
β0

−
1
2


≥ 0, we have that ∥ϕ∥

2
L2(Rd )

≤ ∥ϕ∥
2
L2(Rd ;ρ0)

. Moreover, using the

Hölder inequality, we get

∥ϕ∥
β̃0

β̃0
=


Rd

|ϕ(x)|β̃0dx ≤


Rd
(|ϕ(x)|β̃0⟨x⟩

ρ0β̃0)pdx


Rd
⟨x⟩

−ρ0β̃0qdx (75)

for any 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1. Setting p = 2/β̃0 ≥ 1, we have q =
2

2−β̃0
.

Therefore,

∥ϕ∥
β̃0

β̃0
≤


Rd


|ϕ(x)|⟨x⟩

ρ0
2 dx


Rd

⟨x⟩
−

2β̃0ρ0
2−β̃0 dx, (76)

the last integral being finite due to (73), which implies that 2β̃0ρ0

2−β̃0
> d. Finally, injecting (76) into

(74), we obtain the inequalities

| log Pw(ϕ)| ≤


Rd

|Ψ(ϕ(x))|dx ≤ C ′
∥ϕ∥

2
L2(Rd ;ρ0)

. (77)

This implies that Pw is well-defined over L2(Rd
; ρ0) and continuous at ϕ = 0. Since Pw is

positive-definite, it is therefore continuous over L2(Rd
; ρ0) [20].

Hilbert–Schmidt condition. The identity is actually a compact operator, and therefore a
Hilbert–Schmidt one, from W τ

2 (R
d
; ρ) to L2(Rd

; ρ0), under the conditions that τ > d/2
and ρ − ρ0 > d/2. This is a special case of a general result on compactness in weighted
Triebel–Lizorkin spaces [11, Section 4.2.3]. �

6. The Lévy noise on weighted Besov spaces

We investigate here the Besov smoothness of a Lévy noise over the complete domain Rd .
The paths of a nontrivial white noise w are never included in Bτp,q(Rd), since their is no decay
at infinity. For this reason, and as for Sobolev spaces, we consider the weighted Besov spaces,
introduced in Section 2.2. The main course of this section is to prove Theorem 3.
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Theorem 3. Consider a Lévy noisew with indices β0 > 0 and β∞. Let 0 < p, q ≤ ∞, τ, ρ ∈ R.
If

ρ >
d

min(p, β0)
and τ > d


1 −

1
max(p, β∞)


, (78)

then w ∈ B−τ
p,q(Rd

; −ρ) a.s.

Proof. We start with some preliminary remarks.

• First of all, it is sufficient to prove (78) for p = q , the other cases being deduced by the
embedding relations B−τ+ϵ

p,p (Rd
; −ρ) ⊆ B−τ

p,q(Rd
; −ρ) already seen in (37). Therefore, a

different parameter q can always be absorbed at the cost of an arbitrarily small smoothness,
which is still possible in our case since the condition on τ in (78) is a strict inequality. For the
same reason, it is admissible to consider that p < ∞.

• Second, we know from Proposition 8 that, for a fixed ϵ > 0 and with probability 1,

w ∈ W −d/2−ϵ

2


Rd

; −
d

β0
− ϵ


. (79)

From now on, we fix p = q, τ, ρ. We can apply Proposition 4 with τ0 = −d/2 − ϵ and
ρ0 = d( 1

β0
−

1
2 ) + ϵ. We set u according to (40) and consider (ψ j,G,m) a wavelet basis with

regularity r0 thereafter.

First case: β∞ < β0 or β∞ = β0 ∈ I0


I∞. We fix p < β ∈ I∞


I0. We are by assumption
in the conditions of Corollary 1. In particular, Corollary 2 applies: The random variable ⟨w, ϕ⟩

is well-defined for any ϕ ∈ Lβ(Rd). In particular, since β ∈ (0, 2], the Daubechies wavelets
ψ j,G,m, which are compactly supported and in L2(Rd), are in Lβ(Rd), so that the random
variables ⟨w,ψ j,G,m⟩ are well-defined and (60) is applicable to them. We shall show that
w ∈ B−τ

p,p(Rd
; −ρ) a.e. if

ρ > d/p and τ > d(1 − 1/β). (80)

To show that w ∈ B−τ
p,p(Rd

; −ρ) with probability 1, it is sufficient to show that

E

∥w∥

p
B−τ

p,p(Rd ;−ρ)


=


j≥0

2 j (−τp−d+dp/2)


G∈G j ,m∈Zd

E[|⟨w,ψ j,G,m⟩|
p
]

⟨2− j m⟩ρp

 < ∞. (81)

The noisew being stationary, E[|⟨w,ψ j,G,m⟩|
p
] does not depend on the shift index m. Moreover,

using (60) with a = 2− j , we have that

E[|⟨w,ψ j,G,m⟩|
p
] ≤ C2 j pd(1/2−1/β)

∥ψG∥
p
β . (82)

Hence, we deduce that

E

∥w∥

p
B−τ

p,p(Rd ;−ρ)


≤ C ′


j≥0

2 j (−τp−d+dp−dp/β)


m∈Zd

⟨2− j m⟩
−ρp, (83)

where C ′
= C


G∈G0 ∥ψG∥

p
β is a finite constant. The sum


m∈Zd ⟨2− j m⟩

−ρp is finite if and
only if ρ > d/p, in which case there exists a constant C0 > 0 such that

m∈Zd

⟨2− j m⟩
−ρp

∼
j→∞

C02 jd . (84)
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Indeed, we have the convergence of the Riemann sums

1
nd


m∈Zd

m
n

−ρp
−→
n→∞


Rd

⟨x⟩
−ρpdx < ∞ (85)

and (84) is proved setting 2 j
= n, for C0 =


Rd ⟨x⟩

−ρpdx. Finally, for ρ > d/p, the quantity

E

∥w∥

p
B−τ

p,p(Rd ;−ρ)


is finite if

j≥0

2 j (−τp+dp−dp/β) < ∞, (86)

which happens when

τ − d + d/β > 0. (87)

We have shown that w ∈ B−τ
p,p(Rd

; −ρ) under the conditions of (80), as expected. We now split
the domain of p:

• if p ≤ β∞, by choosing β close enough to β∞ (or equal if β0 = β∞), we obtain that
w ∈ B−τ

p,p(Rd
; −ρ) if ρ > d/p and τ > d − d/β∞;

• if β∞ < p < β0, by choosing β close enough to p, we obtain that w ∈ B−τ
p,p(Rd

; −ρ) if
ρ > d/p and τ > d − d/p.

We summarize the situation by w ∈ B−τ
p,p(Rd

; −ρ) if ρ > d/p and τ > d − d/max(p, β∞),
which corresponds to (78) for p < β0. Finally, the case p ≥ β0 is deduced from the result for
p < β0 (by considering values of p arbitrarily close to β0) and the embedding (34).

Second case: general (β0, β∞). A Lévy noise w can be decomposed as

w = w1 + w2, (88)

where w1 and w2 are independent, w1 is a compound-Poisson noise, and w2 is finite-variance.
To see that, we invoke the Lévy–Itô decomposition, see for instance [35, Chapter 4]. It means
in particular that β0(w1) = β0 > 0 and β∞(w1) = 0. Therefore, w1 is covered by the first
case. Moreover, β∞(w2) = β∞ and β0(w2) = 2 ∈ I0(w2). Again, w2 is covered by the first
case. Indeed, it is obvious if β∞ < 2. But if β∞ = 2, we have that β∞(w2) = β0(w2) = 2 ∈

I0(w2)


I∞(w2). Hence, w is the sum of two processes w1 and w2 that are in B−τ
p,q(Rd

; −ρ)

under the conditions (78). Besov spaces being linear spaces, these conditions are also sufficient
for w. �

7. The Lévy noise on local Besov spaces

The space of infinitely smooth and compactly supported functions is denoted by D(Rd). Its
topological dual is D′(Rd), the space of generalized functions, not necessarily tempered. In
the same way that we defined generalized random processes over S ′(Rd), we can also define
generalized random processes over D′(Rd). This is actually the original approach of Gelfand
and Vilenkin in [16]. As we briefly saw in Section 2.1, the class of Lévy white noises over
D′(Rd) is strictly larger than the one over S ′(Rd). A Lévy noise over D′(Rd) is also in S ′(Rd) if
and only if its Lévy exponent satisfies the Schwartz condition [9] or, equivalently, if and only if
its index β0 is not 0. Until now, we have only considered a Lévy white noise for which β0 ≠ 0.
Since we shall now focus on the local Besov smoothness of a given noise, the two equivalent
conditions are now superfluous.



1616 J. Fageot et al. / Stochastic Processes and their Applications 127 (2017) 1599–1621

Definition 6. Let τ ∈ R and 0 < p, q ≤ ∞. The local Besov space Bτ,loc
p,q (Rd) is the collection

of functions f ∈ D′(Rd) such that f × ϕ ∈ Bτp,q(Rd) for every ϕ ∈ D(Rd).

The weighted and local Besov regularities are linked according to Proposition 9.

Proposition 9. Let τ, ρ ∈ R, 0 < p, q ≤ ∞. We have the continuous embedding

Bτp,q(R
d
; ρ) ⊆ Bτ,loc

p,q (Rd). (89)

The local regularity of a Lévy noise is directly obtained from the previous results, essentially
up to the case of compound-Poisson noise with β0 = 0. Before stating the main result of this
section, we therefore have to analyze the compound-Poisson case.

Definition 7. A compound-Poisson noise is a Lévy noise with a Lévy exponent of the form

Ψ(ξ) = exp

λ(Pjump(ξ)− 1)


, (90)

where λ > 0 is called the Poisson parameter and Pjump is a probability law on R \ {0} called the
law of jumps.

Compound-Poisson random variables are infinitely divisible [35], so that (90) defines a valid
Lévy exponent.

Lemma 2. Let τ ∈ R and 0 < p, q ≤ ∞. Consider a compound-Poisson noise w. If

τ > d


1 −

1
p


, (91)

then w ∈ B−τ,loc
p,q (Rd).

Proof. Let λ and Pjump be the Poisson parameter and the law of jumps of w, respectively. The
compound-Poisson noise w can be written as

w =


n∈N

akδ(· − xk), (92)

where (ak) are i.i.d. with law Pjump and (xk) are such that the number of xk in any Borelian
B ∈ Rd is a Poisson random variable with parameter λµ(B), µ denoting the Lebesgue measure
on Rd . This result can be seen as a consequence of the Lévy–Itô decomposition where (92) is
the form of the Poisson random measure part of the decomposition. We refer to [47, Theorem 1]
for a proof of the equivalence between (90) and (92) in the framework of generalized random
processes. For ϕ ∈ D(Rd), the function ϕ being compactly supported, the generalized random
process w×ϕ =


n∈N anϕ(xn)δ(·−xn) is almost surely a finite sum of shifted Dirac functions.

Hence, it has the Besov regularity of a single Dirac function, which is precisely (91); see
[39, p. 164]. �

Corollary 3. Let 0 < p, q ≤ ∞, τ ∈ R. Consider a Lévy noise w with indices β0, β∞. If

τ > d


1 −

1
max(p, β∞)


, (93)

then w ∈ B−τ,loc
p,q (Rd) a.s.
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Proof. The case β0 > 0 is a direct consequence of Theorem 3 and Proposition 9. Let us assume
now that β0 = 0. Again, we can split w as w1 + w2, where w1 is compound-Poisson and w2 is
finite-variance. For w2, we can still apply Theorem 3. We can therefore restrict our attention to
the case of compound-Poisson noises with β0 = 0. But we have seen that the compound-Poisson
case – regardless of β0 – was covered in Lemma 2. Since β∞ = 0 for compound-Poisson noises,
Lemma 2 is consistent with (93), finishing the proof. �

8. Discussion and examples

8.1. Discussion and comparison with known results

Sobolev regularity of a Lévy noise. It is noteworthy to observe that the results in Sections 5
and 6, while based on very different techniques, yield exactly the same estimates when applied
to Sobolev spaces. Indeed, by applying Theorem 3 with p = q = 2, we recover exactly (71) due
to the relations min(2, β0) = β0 and max(2, β∞) = 2. Theorem 3 is therefore the generalization
of Proposition 8, from Sobolev to Besov spaces.

Interestingly, the Sobolev smoothness parameter τ of a Lévy noise does not depend on the
noise: The universal sufficient condition is τ > d/2. Moreover, we conjecture that this condition
is also necessary, in the sense that w ∉ W τ

2 (R
d
; ρ) with probability 1 for τ ≥ d/2 for any ρ and

any noise w. The situation is different when considering Besov smoothness for p ≠ 2.

Hölder regularity of a Lévy noise. We obtain the Hölder regularity of the Lévy noise by setting
p = q = ∞ in Theorem 3. Because min(∞, β0) = β0 and max(∞, β∞) = ∞, we deduce
Corollary 4.

Corollary 4. The Lévy noise w with indices β0 > 0 and β∞ is in the weighted Hölder space
H−τ (Rd

; −ρ) if

ρ > d/β0, τ > d. (94)

Similar to the Sobolev regularity, the Hölder regularity of a Lévy noise that we obtained is
independent of the noise type. However, the Gaussian noise has a local Hölder regularity of (−τ)
for every τ > d

2 [49]. It means that our bounds for the regularity are suboptimal for the Gaussian
case. By contrast, we conjecture that the condition τ > d is optimal for non-Gaussian Lévy
noises.

The regularity of a Lévy noise for general p. Fixing the parameters p = q > 0, we define

τp(w) = min{τ ∈ R, w ∈ B−τ,loc
p,p (Rd) a.s.}. (95)

The quantity τp(w) measures the regularity of the Lévy noise w for the L p-(quasi-)norm. In

Corollary 3, we have seen that τp(w) ≤ d


1
max(p,β∞)

− 1


, a quantity that does not depend on

β0. We conjecture that

τp(w) = d


1

max(p, β∞)
− 1


(96)

for a non-Gaussian noise. If this is true, then the quantity max(p, β∞) is a measure of the
regularity of a Lévy noise for the L p-(quasi-)norm.
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(a) 0 < β∞ < 1. (b) 1 < β∞ < 2.

Fig. 1. Besov localization of a general Lévy white noise. A noise process is almost surely in a given local Besov space
Bτ,loc

p,q (Rd ) if (1/p, τ ) is located in the shaded region.

We summarize the local results of Corollary 3 with the diagram of Fig. 1. We use the classical
(1/p, τ )-representation, which is most convenient for visualization. We indeed see in (96) that
the parameters 1/p and τ are linked with a linear relation for p ≤ β∞.

Our results can be compared with previous ones for Lévy processes. Since for d = 1, a Lévy
process is the integrated version of the corresponding Lévy noise, its regularity can be obtained
simply by adding 1 to the one of the noise. This allows us to recover the local regularity results
obtained by several authors for Lévy processes or subfamilies. In particular, our results are in
agreement with [18, Theorem 3.2] (that is restricted to the case p ≥ 1) and [36, Theorem 1.1].
To summarize, a Lévy process is in Bτ,loc

p,p (R) almost surely if

τ <
1

max(p, β∞)
. (97)

Weights and Lévy noises. As for the regularity, we can define for p = q > 0 the optimal weight

ρp(w) = min{ρ ∈ R, ∃τ ∈ R, w ∈ B−τ
p,p(R

d
; ρ) a.s.}. (98)

According to Theorem 3, we have that ρp(w) ≤
d

min(p,β0)
. We conjecture that

ρp(w) =
d

min(p, β0)
(99)

for every noise w with infinite variance (typically if β0 < 2).
If this conjecture is true, then ρ∞(w) = d/β0. When β0 goes to 0, we need stronger and

stronger weights to include the Lévy noise into the corresponding Hölder space. The limit case
is β0 = 0 for which we only have local results. Indeed, polynomial weights are not increasing
fast enough to compensate the erratic behavior of the noise. This is consistent with the fact that
a Lévy noise with β0 = 0 is not tempered [9].

8.2. Besov regularity of some specific noises

Let us now apply our results to important subfamilies of Lévy noises. We start by recalling the
indices of the considered white noise. We give in Table 1 the Lévy exponent and the probability
density of the underlying infinitely divisible law, when they can be expressed in a closed form.
All the considered distributions are known to be infinitely divisible. For Gaussian, SαS, or
compound-Poisson noises, this can be easily seen from the definition. For the others, it is a
non-trivial fact, and we refer to [35] for more details and references to literature. The (1/p, τ )-
representations of the Besov regularity of Lévy noises of Table 1 are given in Fig. 2.
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Table 1
Blumenthal–Getoor indices of Lévy exponent.

Lévy noise Parameter Ψ(ξ) pid(x) β0 β∞ cf.

Gaussian σ 2 > 0 −σ 2ξ2/2 e−x2/2σ2
√

2πσ2
2 2 [49]

Pure drift γ ∈ R iγ ξ δ(· − γ ) 1 1
SαS α ∈ (0, 2) −|ξ |α – α α [34]
Sum of SαS α, β ∈ (0, 2) −|ξ |α − |ξ |β – min(α, β) max(α, β) [34]
Laplace – − log(1 + ξ2) 1

2 e−|x | 2 0 [23]
Sym-gamma c > 0 −c log(1 + ξ2) – 2 0 [23]
Poisson λ > 0 λ(eiξ

− 1) – 2 0
Compound-Poisson λ > 0,PJ λ(PJ (ξ)− 1) – variable 0 [48]

Inverse Gaussian – – e−x
√

2πx3/2 1x≥0 2 1/2 [2]

We moreover remark that any combination of β0 and β∞ is possible, as stated in Proposi-
tion 10.

Proposition 10. For every β0, β∞ ∈ [0, 2], there exists a Lévy noise with indices β0 and β∞.

Proof. We shall define the Lévy exponent Ψ of w, and therefore w itself, by its Lévy triplet
according to (7). When γ = σ 2

= 0 and ν is symmetric, the Lévy white noise with Lévy triplet
(0, 0, ν) has indices given by [10, Section 3.1]

β∞ = inf
p∈[0,2]


|x |≤1

|x |
pν(dx) < ∞


,

β0 = sup
p∈[0,2]


|x |>1

|x |
pν(dx) < ∞


. (100)

For 0 < β0 ≤ 2 and 0 ≤ β∞ < 2, we set

νβ0(x) = |x |
−(β0+1)1|x |>1, νβ∞(x) = |x |

−(β∞+1)1|x |≤1.

Moreover, for β0 = 0 and β∞ = 2, we set

ν0(x) = (1 + | log x |)−2
|x |

−11|x |>1, ν2(x) = (1 + | log x |)−2
|x |

−31|x |≤1.

For 0 ≤ β0, β∞ ≤ 2 and defining νβ∞

β0
= νβ0 + νβ∞ , we see easily that

R\{0}

inf(1, x2)ν
β∞

β0
(dx) < ∞,

so that νβ∞

β0
is a Lévy measure. Based on (100), we also see that the associated indices are β0 and

β∞. �
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(a) Gaussian. (b) Cauchy (SαS, α = 1).

(c) Sym-gamma. (d) Compound-Poisson.

(e) Inverse Gaussian.

Fig. 2. Besov localization of specific Lévy white noises. A noise process is almost surely in a given Besov space
Bτ,loc

p,q (Rd ) if (1/p, τ ) is located in the shaded region.
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[42] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
[43] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, 1978.
[44] H. Triebel, Theory of Function Spaces. III, in: Monographs in Mathematics, vol. 100, Birkhäuser Verlag, Basel,
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