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Abstract

Although this thesis contributes to the theory of random processes, it is motivated
by signal processing applications, mainly the stochastic modeling of sparse signals.
Specifically, we provide an in depth investigation of the innovation model, under
which a signal is described as a random process s that can be linearly and deter-
ministically transformed into a white noise. The noise represents the unpredictable
part of the signal—called its innovation—and is a member of the family of Lévy
white noises, which includes both Gaussian and Poisson noises. In mathematical
terms, s satisfies the equation

Ls = w, (1)

where L is a differential operator and w a Lévy noise. The problem is therefore
to study the solutions of stochastic differential equations driven by Lévy noises.
Gaussian models usually fail to reproduce the empirical sparsity observed in real-
world signals. By contrast, Lévy models offer a wide range of random processes
going from typically non-sparse (Gaussian) to very sparse ones (Poisson), and with
many sparse signals standing between these two extremes.

Our contributions can be divided in four parts. First, the cornerstone of our
work is the theory of generalized random processes. Within this framework, all the
considered random processes are seen as random tempered generalized functions
and can be observed through smooth and rapidly decaying windows. This allows
us to define the solutions of (1), called generalized Lévy processes, in the most
general setting. Then, we identify two limit phenomenons: the approximation of
generalized Lévy processes by their Poisson counterparts, and the asymptotic be-
havior of generalized Lévy processes at coarse and fine scales. In the third part, we
study the localization of Lévy noise in notorious function spaces (Hölder, Sobolev,
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Besov). As an application, we characterize the local smoothness and the asymp-
totic growth rate of the Lévy noise. Finally, we quantify the local compressibility of
the generalized Lévy processes, understood as a measure of the decreasing rate of
their approximation error in an appropriate basis. From this last result, we provide
a theoretical justification of the ability of the innovation model (1) to represent
sparse signals.

The guiding principle of our research is the duality between the local and asymp-
totic properties of generalized Lévy processes. In particular, we highlight the rele-
vant quantities, called the local and asymptotic indices, that allow quantifying the
local regularity, the asymptotic growth rate, the limit behavior at coarse and fine
scales, and the level of compressibility of the solutions of generalized Lévy processes.

Keywords: Lévy white noise, sparse stochastic processes, stochastic differential
equations, generalized random processes, infinite divisibility, convergence in law,
Besov regularity, N -term approximation, wavelets bases.



Résumé

Si notre travail prend place dans le domaine des processus stochastiques, cette
thèse a été motivée par des problématiques issues du traitement du signal, en
particulier pour la modélisation stochastique des signaux parcimonieux. Il s’est
agit d’étudier mathématiquement le modèle d’innovation. Celui-ci fait l’hypothèse
qu’un signal, décrit par un processus stochastique s, peut être transformé en un
bruit blanc par une opération linéaire et déterministe. Le bruit blanc représente la
partie imprédictible—ou innovation—du signal et appartient à la famille des bruits
de Lévy, contenant notamment le bruit gaussien et les bruits de Poisson. En quatre
symboles :

Ls = w, (1)

avec L un opérateur différentiel et w un bruit blanc de Lévy. Pour un mathématicien,
il s’agit donc d’étudier les solutions d’équations différentielles stochastiques di-
rigées par un bruit blanc de Lévy. Si les modèles gaussiens échouent d’ordinaire
à rendre compte de la forte compressibilité empirique observée chez les signaux
réels, les modèles de Lévy offrent une gamme de processus allant du non parcimo-
nieux (Gauss) au très parcimonieux (Poisson), de nombreux signaux réels se situant
entre ces deux extrêmes.

Nous détaillons nos contributions, organisées en quatre parties. Tout d’abord,
nous situons notre travail dans le cadre de la théorie des processus généralisés. Ainsi,
nous voyons les processus en jeu comme des fonctions généralisées tempérées, qui
s’observent donc a priori via des fonctions test infiniment régulières et à décroissance
rapide. Ceci nous permet de définir les solutions de (1), appelées des processus de
Lévy généralisés, dans le sens le plus large possible. Nous étudions ensuite deux
phénomènes limites, que sont l’approximation des processus de Lévy généralisés
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par leurs contreparties poissonniennes et le comportement asymptotique des pro-
cessus de Lévy généralisés observés à fines et larges échelles. Dans la troisième
partie, nous étudions la localisation des bruits de Lévy dans des espaces de fonc-
tions (Hölder, Sobolev, Besov). Cela nous permet de caractériser leur régularité
locale et leur croissance asymptotique. Enfin, nous quantifions la compressibilité
locale d’un processus de Lévy généralisé, comprise comme une mesure de la vitesse
de décroissance de son erreur d’approximation dans une base adaptée. Fort de ce
résultat, nous sommes à même d’expliquer théoriquement la pertinence de l’utili-
sation du modèle d’innovation (1) pour la modélisation de signaux parcimonieux.

Le fil conducteur de nos travaux se situe dans l’étude duale des propriétés lo-
cales et asymptotiques des processus stochastiques considérés. Nous nous sommes
efforcés de mettre en évidence les quantités pertinentes, appelées respectivement
les indices locaux et asymptotiques du processus, qui permettent de quantifier la
régularité locale, le taux de croissance asymptotique, les comportements limites à
fines et larges échelles, ainsi que le niveau de compressibilité des processsus sto-
chastiques.

Mots clefs : Bruit blanc de Lévy, processus stochastiques parcimonieux, équations
différentielle stochastiques, processus stochastiques généralisés, infinie divisibilité,
convergence en loi, régularité de Besov, approximation N -term, bases ondelettes.



Randomness is too important to be left to chance.
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qui avançait devant nous tous, à Virginie (L.) qui fait de la magie avec la vie, à
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La plupart conduisent à des impasses qui s’accompagnent de doutes, desquels se
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5.2.3 Non-Gaussian Lévy Noise . . . . . . . . . . . . . . . . . . . . 147
5.2.4 Smoothness and Decay Rate of Lévy Noise . . . . . . . . . . 161
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Chapter 1

From Sparse Signals to
Sparse Processes

The topic of this thesis is the mathematical study of stochastic differential and
pseudo-differential equations driven by multivariate Lévy white noise. Three main
aspects are developed: the construction of the solutions, the study of their regular-
ity, and the quantification of their compressibility.

The original motivation of our work was the development of the theory of sparse
stochastic processes, which represents the first systematic attempt for a stochastic
and continuous-domain modeling of real world signals in line with the sparsity
paradigm of signal processing [UTS14, UTAK14, UT14]. This work should there-
fore be seen as a mathematical continuation of the monograph of M. Unser and
P.D. Tafti [UT14], in the sense that it deepens some mathematical questions (con-
struction of sparse processes), and investigates new directions of research (scaling
limits, Besov regularity, compressibility, etc.).

This introduction provides the opportunity to connect our work with signal
processing, in particular with the framework of sparse stochastic processes. In
Section 1.1, we introduce the innovation model, which is the signal processing
formulation of the stochastic model we study. In Section 1.2, we review the current
state of the theory of sparse stochastic processes. Then, we propose an overview of
our own mathematical contributions in Section 1.3.

1
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1.1 The Innovation Model

A signal is modeled as a continuous-domain random process that can be determinis-
tically and linearly transformed into its innovation, understood as the unpredictable
part of the signal, and itself captured by the concept of white noise. This is the
spirit of the innovation model, of which we detail the assumptions.

A continuous-domain model. A signal is defined over the d-dimensional
continuum. We only consider scalar-valued signals, seen as functions from Rd to
R. Most of the concepts are readily extended to vector-valued signals1. Nowadays,
many popular signal processing formulations are inherently discrete, starting with
the compressed sensing [Don06, CRT06] and the deep learning framework [GBC16].
This is driven by the constraint that practical algorithms are applied to discrete
data and should produce discrete outputs. Nevertheless, we like to define the
complete signal model in the continuous-domain as many physical phenomenon
are inherently continuous and result in analog signals (such as images, sounds,
etc.). The continuous framework also lends itself naturally to the specification of
mathematical operations, such as geometric transformations (scaling, rotation) and
differentiation, that are not well-defined in the discrete setting. It is then required
to discretize the model—which corresponds to an approximation of the continuous-
domain model—for the design of signal processing algorithms, which was largely
investigated in [UT14].

The integer d ≥ 1 specifies the dimension of the definition domain of the signal
s. For instance, an acoustic signal—for which d = 1—is a function of time that
measures the acoustic pressure s(t) at each time t. A greyscale image is seen as a
function that specifies the grey level s(x, y) at each location (x, y) ∈ R2. More gen-
erally, one can consider e.g. 3D spatial signals s(x, y, z), or (2 + 1)D time-evolving
two-dimensional signals s(x, y; t).

A stochastic model. Real-world signals can be described deterministically
using our knowledge of physical laws. Nevertheless, there are good reasons to
introduce a stochastic approach in the modeling. First, physical phenomena are al-
ways affected with random fluctuations, that are studied by statistical physics. In
signal processing, this leads to noisy observations. Moreover, the patterns observed

1When they are not, there is a good chance that the question has been addressed in the doctoral
dissertation of P.D. Tafti [Taf11].
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in real-world signals appear to strongly depend on many variables which are often
impossible to observe directly and possibly irrelevant to the question of interest
[MD10]. This results in an irreducible uncertainty on real-world signals that has to
be both diminished (by reducing the impact of the noise) and resolved (by inferring
the hidden variables). Probability theory offers a powerful modeling of this uncer-
tainty [VKG14, Section 3.8]. A signal is thus described as a continuous-domain
random function, or stochastic process.

The innovation of a signal. The innovation approach can be traced back to
H.W. Bode and C.E. Shannon [BS50], with important contributions by T. Kailath
[Kai68, KF68, Kai70]. Following the definition of P. Tafti, “innovation is that
which cannot be predicted” [Taf11], and is itself modeled as a random process, the
properties of which we now specify. We assume that the source of randomness of
the signal is restricted to its innovation, as depicted in Figure 1.1, and that the
signal is the deterministic recombination, or mixing, of its innovation. This implies
that the signal is deterministic, conditionally on its innovation.

Figure 1.1: Generative model.

In our model, the innovation is captured by the concept of white noise. This
implies two assumptions. The innovation is a collection of independent atoms of
randomness that have identical statistics. In a discrete setting, an innovation is
therefore a collection of independent and identically distributed random variables.
The adaptation of this concept in the continuous-domain requires more advanced
mathematics that will be further introduced: It yields to the definition of a random
process that is stationary and independent at every point.

The whitening operator. We assume that the signal is linearly linked to its
innovation. Moreover, a small variation in the innovation should only produce a
small variation in the signal. Mathematically, we ask that the deterministic mixing
transformation that generate the signal from the innovation is linear and contin-
uous. The inverse operation, which corresponds to extracting its innovation from
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the signal, is called the whitening, and shares the same properties. We summarize
this in Figure 1.2.

Figure 1.2: Innovation model.

Differential and pseudo-differential operators are used as whitening operators
because of their ability to reproduce both interesting dependency structures and
statistical invariances (mainly stationarity and self-similarity). At that stage, we
specify the innovation model as follows. A signal is modeled as a random process
s such that

Ls = w (1.1)

where L is a (pseudo-)differential operator, and w is a d-dimensional continuous-
domain white noise.

Remarks. The innovation model as presented above is an idealisation. It goes
beyond the Gaussian paradigm, and is the richest possible framework under the
linearity and stationarity assumptions. This simplified vision has a virtue. It
allows to investigate in depth the sparsity of the random signals generated according
to (1.1). Nevertheless, the statistical properties of real-world signals are rarely
perfectly captured by linear and stationary models.

The choice of a stationary innovation leads us to the construction of random
processes that are stationary or have stationary increments. For instance, Lévy
processes, that correspond to (1.1) with w a 1-dimensional white noise and L = D
the derivative operator, have stationary and independent increments. One promis-
ing way to relax the stationarity is to replace Lévy processes by their generalization
as Lévy-type processes [BSW14]. Essentially, one preserves the independence of the
increments but allows them to vary with time. In the same spirit, one can define
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Lévy-type noises that are independent at every point but not stationary. One can
also consider non-linear stochastic differential equations, which are a very active
domain of research in probability theory. These two possible generalizations will
not be discussed further.
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1.2 Sparse Stochastic Processes

1.2.1 What is sparsity?

In the following, we do not provide a formal definition of the sparsity of a function,
but outline what is required to understand the concepts of sparse signals and sparse
processes. Roughly speaking, a signal is considered as sparse when most its energy
is concentrated in a few coefficients in some transformation domain. Formally,
given a basis ψ = (ψn)n∈N of L2(Rd), the sparsity of a function f ∈ L2(Rd) in ψ
is measured by the speed of decay of the approximation error for the best N -term
approximation of f , as N increases. We say that g is sparser than f in the basis ψ
if

‖g − gN‖2
‖g‖2

� ‖f − fN‖2
‖f‖2

as N goes to infinity, where fN (gN , respectively) is the best N -term approximation
of f (g, respectively) in the basis ψ. The relation “being sparser in the basis ψ”
is a strict partial order on signals of L2(Rd). Moreover, sparsity depends on the
basis one selects. For instance, for any signal that is a finite linear combination of
the ψn, the approximation error is zero for big enough N . This implies that the
concept of sparsity is not absolute. We now specify how one usually proceeds to
quantify the sparsity concretely.

• One considers only bases ψ with pleasing properties for signal processing
purposes. Any function in L2(Rd) should have a stable representation in the
basis ψ. This is typically the case for orthonormal bases or, more generally,
for Riesz bases [UT14, Section 6.2.3]. Moreover, the coefficients of the basis
decomposition should be computable using fast algorithms. This is typically
the case for Fourier-based transforms or wavelet transforms [Mal99].

• One studies the sparsity of classes of functions rather than of isolated func-
tions. Classes of functions, usually called function spaces, are characterized
e.g. by their regularity or their decay rate. The analysis of the approxima-
tion properties of function spaces into interesting bases belongs to the field of
approximation theory [Dev98].

• One analyses the properties of the signals of interest via their inclusions in ap-
propriate function spaces (such as Besov spaces), for which we have quantified
the sparsity level.
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Gaussian models and sparsity. If we generate a Gaussian process sGauss that
fits the second-order statistics of a real-world signal sreal, we will frequently observe
that the sreal is sparser than sGauss; that is, for N big,

‖sreal − sreal,N‖2
‖sreal‖2

� ‖sGauss − sGauss,N‖2
‖sGauss‖2

,

with sreal,N and sGauss,N the corresponding best N -term approximations. Gaussian
models are known to be unable to capture the kind of sparsity behaviors concretely
observed for many signals. This limitation is well-documented [SLSZ03, HM99,
MD10] and needs to be overcome. Gaussian distributions are characterized by rare
deviations from the average behavior. This lack of extreme values is inherited in
any reasonable transform domain for a Gaussian process. The fact that real signals
are much more compressible than Gaussian signals is actually very positive. It
implies in particular that images, music, or movies are very efficiently compressed,
allowing for the storage and the exchange of information to extents that would be
unachievable in a Gaussian world.

In line with the sparsity paradigm in signal processing, this calls for stochastic
models that should at the very least produce random processes sparser than their
Gaussian counterparts. The theory of sparse stochastic processes provides such
models.

1.2.2 Innovation Model and Sparsity

We have seen that Gaussian models fail to share an essential property of many real-
world signals: the sparsity. This is true as well with the innovation model (1.1) when
the innovation is Gaussian. It is possible, however to select non-Gaussian innova-
tions to completely reverse this trend and to induce a behavior that is compatible
with what is observed in real-world signals. The mathematics of the innovation
model stands on two pillars: generalized random processes [GV64] and infinitely
divisible laws [Sat13], the latter being required to understand why non-Gaussian
innovations are sparse.

Generalized random processes. A continuous-domain white noise is too er-
ratic to be defined as a pointwise random function. In (deterministic) functional
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analysis, one way to deal with “functions” that do not have a pointwise represen-
tation is to define them as generalized functions, or distributions2, in the sense of
L. Schwartz [Sch66]. For instance, the Dirac impulse is a generalized function such
that 〈δ, ϕ〉 = ϕ(0) for any smooth and compactly supported function. One defines
the derivatives of any order of the Dirac impulse in the same way, by their effects
on test functions. The theory of generalized random processes is the probabilis-
tic counterpart of Schwartz theory of generalized functions, and is systematically
exposed in [GV64]. This is the point of view that we are adopting in this thesis.

Infinite divisibility. A random variable is infinitely divisible if it can be decom-
posed as the sum of N i.i.d. random variables for all N . Consider a 1-dimensional
white noise w, observed through the indicator function 1[0,1) and setX = 〈w,1[0,1)〉.
If we define Xn,N = 〈w,1[(n−1)/N,n/N)〉, we have the decomposition, valid for every
N ,

X = X1,N + · · ·+Xn,N .

For N fixed, the random variables Xn,N are independent (as observations of the
noise through windows with disjoint supports) and identically distributed (because
the windows are shifted versions of each other). Thus, the observation of a white
noise through an indicator function is infinitely divisible. This simple example high-
lights the connection between infinitely divisible random variables and continuous-
domain white noise. More generally, the observation of any random process s
solution of (1.1) through a test function ϕ produces an infinitely divisible ran-
dom variable 〈s, ϕ〉. The infinitely divisibility of the observations of the processes
satisfying the innovation model has several crucial consequences.

• The infinitely divisible random variable 〈w,1[0,1)〉 fully characterizes the law
of the white noise w. There is actually a one-to-one correspondence between
infinitely divisible laws and white noises. A noise is called a Lévy white noise,
or simply a Lévy noise, in honour of P. Lévy for his role in the study of
infinitely divisible random variables and their connection with continuous-
domain random processes with stationarity and independence properties.

• The law of a random variable X is fully specified by its characteristic function

P̂X(ξ) = E[eiξX ]. The characteristic function of an infinitely divisible random

2We will not use the more usual term “distribution” thereafter, to avoid confusion with the
probability distributions arising in probability theory.
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variable X admits a Lévy-Khintchine representation. In the symmetric case,
this means that we can write, for ξ ∈ R, that

log P̂X(ξ) = −σ
2ξ2

2
+

∫
R

(1− cos(ξt))ν(dt), (1.2)

where σ2 ≥ 0, and ν is a Lévy measure on R, satisfying
∫
R min(1, t2)ν(dt) <∞

and ν{0} = 0. The log-characteristic function is denoted by Ψ = log P̂X , and
called the Lévy exponent. When ν = 0, X is a Gaussian random variable. We
say that X has no Gaussian part if σ2 = 0. The Lévy-Khintchine represen-
tation is at the heart of the proofs of the fundamental results on Lévy noise
and sparse stochastic processes.

• Many important properties (scaling limit, regularity, compressibility) of the
Lévy noise are captured by its indices, that are related to the moments of the
Lévy measure. They are defined as

αloc = inf

{
p ≥ 0

∣∣∣∣∣
∫
|t|≤1

|t|p ν(dt) <∞

}
,

αasymp = sup

{
p ≥ 0

∣∣∣∣∣
∫
|t|>1

|t|p ν(dt) <∞

}
.

Gaussian versus sparse stochastic processes. A Lévy noise with no Gaussian
part is said to be sparse. We therefore reinterpret (1.2) as

Ψ = ΨGauss + Ψsparse,

with ΨGauss(ξ) = −σ
2ξ2

2 and Ψsparse(ξ) =
∫
R(1−cos(ξt))ν(dt). Equivalently, a Lévy

noise is the sum of two independent white noises, one being sparse and the other
Gaussian. Here, in accordance with the discussion of Section 1.2.1, sparse means
sparser than Gaussian. We give several justifications for this terminology.

• In the discrete setting, random variables with heavy-tailed laws are known to
produce i.i.d. sequences (or discrete white noise) that are more compressible
than Gaussian ones [Cev09, AUM11, SP12, GCD12]. More generally, the
asymptotic decay of the probability density appears to be critical for the
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compressibility of i.i.d. sequences. For infinitely divisible random variables,
it is known that the Gaussian has the fastest decay. Moreover, the other non-
Gaussian members of the theory cannot decay faster that exp (−O(|x| log |x|))
[AU14, Theorem 7]. This gap in the decay makes non-Gaussian infinitely
divisible random variables good candidates for sparse discrete models.

• The compound Poisson processes, which correspond to the innovation model
with an impulsive Poisson noise and the derivative operator, are piecewise
constant, and are therefore easily shown to be sparser than the Brownian
motion, in a suitable wavelet bases. This remark can be extended to the
other innovation models for multivariate Poisson noise and general whitening
operator [UT11].

• The symmetric-α-stable (SαS) noise are also part of the Lévy family [ST94].
They are parameterized by 0 < α ≤ 2, where α = 2 corresponds to the
Gaussian case. The non-Gaussian SαS have infinite variance and are hence
known to produce compressible sequences [AU14]. The sparsity is due to the
presence of extreme values. The parameter α is a measure of the sparsity of
the process: the smaller the α, the sparser the corresponding sparse process.

• More generally, there is empirical evidence that non-Gaussian processes are
sparser than Gaussian ones in terms of approximation error. This is par-
ticularly visible in wavelet bases [Uns15, PU15, UT14]. In spite of this, a
mathematical justification that a sparse stochastic process is locally sparser
than its Gaussian counterpart is missing. This question will be addressed in
this thesis.

Sparse processes in signal processing. Sparse stochastic processes and fields
have been used to design algorithms for different signal processing tasks. The
reconstruction of continuous-domain signals from their samples under the innova-
tion model is analyzed in [AKBU13, ATWU13]. Different classes of sparse processes
were used for the denoising of signals [KPAU13, KKBU13, BFKU13] and for inverse
problems [BKNU13, Hos16]. In these works, the proposed algorithms are shown to
outperform traditional Gaussian-based algorithms in many imaging science modali-
ties. Some of them are state-of-the-art for the underlying class of stochastic models.
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1.3 Contributions

In the following, we give an overview of the results presented in this thesis. All the
mathematical concepts are introduced in more details in Chapter 2. The exposition
is parallel to the thesis outline. For simplicity, we only consider symmetric random
processes when presenting our contributions. Most of the results are taken from
our published works [FAU14, FBU15, FUW17c], works in press [FFU17], submitted
works [FUU17, FU16, FUW17b], and works in preparation [AFU, FH17].

We call a solution of (1.1) a generalized Lévy process. As we explained in Section
1.2.2, it includes both Gaussian processes (driven by the Gaussian white noise) and
sparse stochastic processes (when the Lévy noise has no Gaussian part). Through-
out the thesis, a special effort was done to particularise our results for interesting
classes of noise, including Gaussian, SαS, compound Poisson, and Laplace noises.

1.3.1 Construction

All the random processes we shall encounter are defined as random elements of
the space S ′(Rd) of tempered generalized functions. They are called tempered
generalized random processes. Given a tempered generalized random process s, its
characteristic functional is defined over S (Rd) as

P̂s(ϕ) = E[ei〈s,ϕ〉].

It is the infinite dimensional generalization of the characteristic function. The
construction of tempered generalized random processes is achieved through their
characteristic functional. It is based on the Bochner-Minlos theorem: A functional
from S (Rd) to C that is continuous, positive-definite, and which takes value 1 at
ϕ = 0, is the characteristic functional of a generalized random process in S ′(Rd).
Identifying valid characteristic functionals is therefore a powerful way to construct
generalized random processes. We apply this principle for two classes of random
processes: Lévy noise in S ′(Rd) and generalized Lévy processes.

Tempered Lévy noise. Gelfand and Vilenkin have introduced the complete
family of Lévy white noise in the space D ′(Rd) of (not necessarily tempered) gen-
eralized functions [GV64]. There is actually a one-to-one correspondence between
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d-dimensional Lévy noises and infinitely divisible random variables, via the relation

w 7→ X := 〈w,1[0,1]d〉.

The random variable X is defined here as the limit in probability of random vari-
ables 〈w,ϕk〉 where the ϕk are smooth, compactly supported, and converge to 1[0,1]d

in an appropriate sense.

The adaptation of the theory to S ′(Rd) is motivated by mathematical purposes.
In particular, we consider pseudo-differential operators and consider Besov spaces
that are embedded in S ′(Rd). Thus, we have to identify the Lévy noise that are
valid tempered generalized random processes. We show the following result (see
Section 3.1.1 and [FAU14]).

If E[|〈w,1[0,1]d〉|ε] < ∞ for some ε > 0 arbitrarily small, then the Lévy noise w is
tempered.

By following up of our investigation, R. Dalang and T. Humeau have recently
proved that the converse result is true [DH15]. This provides a one-to-one corre-
spondence between tempered Lévy noise and infinitely divisible random variables
having a finite absolute moment. We also remark that the requirement for be-
ing tempered is extremely mild, and satisfied by the Lévy noises encountered in
practice.

The domain of definition of the Lévy noise. As a preparatory result for
the construction of generalized Lévy processes, we identify the broadest set of test
functions such that the random variable 〈w, f〉 is well-defined, with w a tempered
Lévy noise. We define this new random variable as the limit in probability of ran-
dom variables 〈w,ϕk〉, where the compactly supported and smooth functions ϕk
converge to f in an adequate sense. Our contribution is to connect the construction
of Lévy noise as random elements in S ′(Rd) with the theory of independent scat-
tered random measures of Rajput and Rosinski [RR89]. By doing so, we deduce
the following result (see Section 3.2.2 and [FH17]).
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For f a measurable function, the random variable 〈w, f〉 is well-defined if and only
if

Θ(f) =

∫
Rd

Θ(f(x))dx <∞,

with Θ(ξ) = (σξ)2+
∫
R min((tξ)2, 1)ν(dt) and (σ2, ν) the variance and Lévy measure

of the symmetric Lévy noise w (see (1.2)).

We call Θ the Rajput-Rosinski exponent of w. One easily remarks that Θ(f)
is finite if f is compactly supported and bounded. In particular, Θ(1[0,1]d) =
σ2 +

∫
R min(t2, 1)ν(dt) <∞, and the random variable 〈w,1[0,1]d〉 is well-defined for

any Lévy noise, as already announced.

We denote by L0(Ω) the space of real random variables and by LΘ(Rd) =
{f | Θ(f) <∞} the domain of definition of w. These spaces are both endowed
with a topology of generalized Orlicz spaces. Then, we have two fundamental con-
sequences that extend respectively the domain of definition of the noise, and the
domain of continuity of its characteristic functional. While the two results below
are a priori valid for test functions in S (Rd) by definition, our contribution here
is to delineate the maximal domain of definition of w (see Section 3.2.2 and [FH17]).

The mapping that associates 〈w, f〉 to f is linear and continuous from LΘ(Rd)
to L0(Ω). Moreover, the characteristic functional P̂w is continuous and positive-
definite over LΘ(Rd).

In addition to these results, we provide simple criteria on Θ and ν to ensure
a proper definition over Lp-type spaces. We give here our two main results (see
Section 3.2.4 and [FH17]). For p0, p∞ ≥ 0, we set

Lp0,p∞(Rd) :=

{
f

∣∣∣∣ ∫
Rd

(
|f(x)|p0 1|f(x)|>1 + |f(x)|p∞ 1|f(x)|≤1

)
dx <∞

}
.
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If Θ(ξ) ∼
0
A |ξ|p∞ and Θ(ξ) ∼

∞
B |ξ|p0 , then

LΘ(Rd) = Lp0,p∞(Rd). (1.3)

If
∫
|t|≤1

|t|p0 ν(dt) +
∫
|t|>1

|t|p∞ ν(dt) <∞, then

Lp0,p∞(Rd) ⊆ LΘ(Rd). (1.4)

The criterion (1.3) allows identifying the domain of definition of Gaussian, SαS,
Laplace, and compound Poisson noises. The embedding (1.4) that connects the
moments of the Lévy measure to the domain of definition is used to specify general
existence criteria for generalized Lévy processes.

Existence criterion for generalized Lévy processes. A (possibly fractional)
differential operator L and a tempered Lévy noise w being given, can we construct
a generalized random process s such that Ls and w have the same law? If yes, we
say that L and w are compatible and we call s a generalized Lévy process. This
question was addressed in [UT14]. Subfamilies for specific operators and/or noise
are studied in [HL07, Taf11, SU12, UTS14].

The general principle is as follows. We want to specify s from its characteristic
functional. To do so, assume that there exists a linear and continuous operator T,

left-inverse3 of the adjoint L∗ of L, such that the functional ϕ 7→ P̂w(Tϕ) is the
valid characteristic functional of a generalized random process s; that is,

P̂s(ϕ) = P̂w(Tϕ). (1.5)

We then have, by duality and using the left-inverse property, that

P̂Ls(ϕ) = E[ei〈Ls,ϕ〉] = E[ei〈s,L∗ϕ〉] = P̂s(L
∗ϕ) = P̂w(TL∗ϕ) = P̂w(ϕ). (1.6)

In other terms, Ls and w have the same law and s is a generalized Lévy process.
Our contribution is to identify the most general conditions (the key ingredient be-
ing the identification of the domain of definition of the Lévy noise) such that (1.5)

3It is sufficient to know that T is a left-inverse, as seen in (1.6). This is important because
it allows for a correction of the usual and unstable inverses related to differential or pseudo-
differential operators.
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is a valid characteristic functional (see Section 3.3.1 and [FH17]).

Assume that there exists a linear operator T such that

• TL∗{ϕ} = ϕ for every ϕ ∈ S (Rd); and

• T maps continuously S (Rd) into LΘ(Rd).

Then, there exists a generalized random process s with characteristic functional

P̂s(ϕ) = P̂w(T{ϕ}), and s satisfies Ls = w in law.

A sufficient condition for the well-definiteness of s is the existence of T and
0 < p0, p∞ ≤ 2 such that T maps continuously S (Rd) to Lp0,p∞(Rd) and∫

|t|≤1

|t|p0 ν(dt) +

∫
|t|>1

|t|p∞ ν(dt) <∞.

This last criterion allows us to improve the known existence results, which involve
Lp-stable operators T : S (Rd)→ Lp(Rd).

1.3.2 Convergence Theorems

In the framework of tempered generalized random processes, the convergence in law
of random processes is characterized by the pointwise convergence of their charac-
teristic functionals. We exploit this characterization to deduce two convergence
theorems for generalized Lévy processes.

Generalized Lévy processes as limits of generalized Poisson processes.
It is known that any infinitely divisible random variable is the limit in law of com-
pound Poisson random variables. We extend this result in the infinite-dimensional
setting of generalized random processes (see Section 4.2 and [FUU17]).

Any generalized Lévy process s is the limit in law of a family of generalized Poisson
processes with the same whitening operator.

The key idea is to consider compound Poisson noise with an increasing aver-
age number of impulses per unit of volume and a decreasing intensity of jumps.
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By combining these two effects adequately, one reconstructs the generalized Lévy
process s at the limit.

A Generalized Poisson process is piecewise-smooth. Applying the whitening
operator transforms it into a sum of weighted Dirac impulses with random weights
and jumps locations. This allows us to interpret a generalized Poisson process
as a random L-spline. This connection with splines gives a new interpretation of
generalized Lévy processes. They are limits in law of random splines with more and
more jumps per unit of volume, and whose weights of jumps are more and more
concentrated towards the origin.

Scaling limits of generalized Lévy processes. We address the questions of
the limit in law of a generalized Lévy process when we zoom into it (local behavior)
and when we zoom out of it (asymptotic behavior). These questions are understood
up to possible renormalization. More precisely, we aim at identifying Hloc (Hasymp,
respectively) such that aHlocs(·/a) (aHasymps(·/a), respectively) has a limit in law
as a→∞ (as a→ 0, respectively).

For self-similar Lévy processes, the answer is straightforward since aHs(·/a) = s
in law, for any a > 0, where the exponent H is the self-similarity index of s. With
the adequate renormalization, a reascaling of the process does not affect its law
and Hloc = Hasymp = H. The only self-similar Lévy processes are driven by SαS
white noise and whitened by homogeneous operators. For other members of the
family, the previous argument is no longer valid. However, it is easy to see that if
the limit of the rescaling exists (as a → 0 or ∞), then the limiting process is self-
similar. We therefore introduce the class of locally and asymptotically self-similar
processes. We also give sufficient conditions on the generalized Lévy process such
that it admits a local or asymptotic self-similar limits. We summarize our main
results as follows (see Section 4.3 and [FU16]).
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Let L be a γ-homogeneous operator (L{ϕ(·/a)} = a−γL{ϕ}(·/a)) and w be a Lévy
noise with indices αloc, αasymp > 0. Under reinforced compatibility conditions be-
tween the whitening operator and the Lévy noise, we have the following conver-
gences in law.

• Coarse scale behavior: The rescaled processes aγ+d/min(αasymp,2)−ds(·/a) con-
verge in law to a SαS process with α = min(αasymp, 2) as a→ 0.

• Fine scale behavior: The rescaled processes aγ+d/αloc−ds(·/a) converge in law
to a SαS process with α = αloc as a→∞.

1.3.3 Regularity

We first focus on the Lévy noise, which is a priori a random element in S ′(Rd).
We want to understand the smoothness and the growth rate of the noise. To do so,
we consider the family of weighted Besov spaces4 Bτp (Rd; ρ), with p ∈ (0,∞] the
integrability rate, τ ∈ R the smoothness parameter, and ρ ∈ R the decay rate. The
parameters τ and ρ are possibly fractional and possibly negative.

Our goal is to identify in which Besov spaces the Lévy noise is located, but
also in which Besov spaces it is not. Assuming that we have a full answer to
these questions, we are able, for any integrability rate p > 0, to identify the local
smoothness τp(w) and the asymptotic decay rate ρp(w) such that

• w ∈ Bτp (Rd; ρ) almost surely as soon as τ < τp(w) and ρ < ρp(w), and

• w /∈ Bτp (Rd; ρ) almost surely as soon as τ > τp(w) or ρ > ρp(w).

Our contribution is to identify the quantities τp(w) and ρp(w) for any p > 0
when w is Gaussian or compound Poisson, and for any 0 < p ≤ 2 or p = 2k ≥
2 an even integer for non-Gaussian and non-Poisson noise (see Section 5.2 and
[FUW17c, FFU17, AFU]).

4The Besov spaces are usually defined with an additional tuning parameter q. We consider
here that q = p.
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Consider a nontrivial Lévy noise w with indices αloc ∈ [0, 2] and αasymp ∈ (0,∞].

• If w is Gaussian, then, for 0 < p ≤ ∞,

τp(w) = −d/2 and ρp(w) = −d/p.

• If w is compound Poisson, then for every 0 < p ≤ ∞,

τp(w) = d/p− d and ρp(w) = −d/min(αasymp, p).

• If w is non-Gaussian and αloc = 0 or αloc 6= 0 and the Lévy exponent of w
behaves like − |ξ|αloc at infinity, then, for 0 < p ≤ 2 or p = 2k ≥ 2 an even
integer,

τp(w) = d/max(αloc, p)− d and ρp(w) = −d/min(αasymp, p).

From our results, we deduce in particular the Sobolev regularity (p = 2) and
the Hölder regularity (p =∞) of a Lévy noise.

Consider a nontrivial Lévy noise w with indices αloc ∈ [0, 2] and αasymp ∈ (0,∞].
The Sobolev smoothness and decay rate of a Lévy noise are

τ2(w) = −d/2 and ρ2(w) = −d/min(αasymp, 2).

If w and wGauss are respectively a non-Gaussian and a Gaussian noise, their Hölder
smoothness is

τ∞(w) = −d < τ∞(wGauss) = −d/2

and their the Hölder decay rate is

ρ∞(w) = −d/αasymp ≤ ρ∞(wGauss) = 0.

We then extend our result to generalized Lévy processes s driven by the Lévy
noise w by considering the smoothness only. More precisely, we identify conditions
on the whitening operator L such that the local smoothnesses of s and w satisfy
τp(s) = τp(w) + γ for any p > 0 and a fixed γ ≥ 0. Under these conditions, we
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directly deduce the local smoothness of a generalized Lévy process from the one of
its innovation.

1.3.4 Compressibility

We have seen in Section 1.2.2 that non-Gaussian generalized Lévy processes are
good candidates for the modeling of sparse signals. We have referred both to
empirical evidence and theoretical arguments, the latter being focused on discrete
results. We provide a mathematical justification—the first one, to the best of our
knowledge—that innovations with no Gaussian parts are actually sparse, in the
sense that they are locally more compressible than their Gaussian counterpart in
wavelet bases. We also propose a way to quantify the compressibility, and therefore
to sort generalized Lévy processes by their level of compressibility. We are interested
in the local behavior, hence we consider the random processes over Td = [0, 1]d.

We approximate a generalized Lévy process s into a Daubechies wavelet basis.
We denote by sN its best N -term approximation. The speed of convergence of
‖s− sN‖2 measures the sparsity of s. For generalized Lévy processes, this quantity
has a polynomial, or faster-than-polynomial, decay. Roughly speaking, we can
therefore define the compressibility of s as the quantity κ(s) such that

‖s− sN‖2 ≈ CN−κ(s)

for some (random) constant C > 0, with the convention that κ(s) = ∞ if Nκ‖s−
sN‖2 vanishes for any κ.

It is well-known that the speed of decay of ‖s − sN‖2—which essentially mea-
sures the speed of decay of the wavelet coefficients of s—is strongly related to the
smoothness of s: the more regular the process s, the faster the decay of its approxi-
mation error. More generally, the compressibility of a function is fully characterized
by its Besov smoothness: knowing the local smoothness τp(f) for p ≤ 2 completely
determines the compressibility κ(f). We apply the tools of approximation theory
and our results on the Besov regularity of generalized Lévy processes to deduce the
following results (see Section 6.2 and [FUW17b]).
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Let s (sGauss, respectively) be a generalized Lévy process with whitening operator
L and Lévy noise w (and Gaussian noise wGauss, respectively). We assume that L
reduces the smoothness of any generalized function of an order γ > d/2 and denote
by αloc ∈ [0, 2] the local index of w. Then, we have that

κ(sGauss) =
γ

d
− 1

2
≤ γ

d
+

1

αloc
− 1 ≤ κ(s).

Moreover, for the cases when τp(w) is completely determined (αloc = 0 or αloc > 0
and the Lévy exponent of w behaves like − |ξ|αloc at infinity), we have κ(s) =
γ
d + 1

αloc
− 1.

As soon as αloc < 2, a generalized Lévy process is strictly more compressible
than its Gaussian counterpart. Moreover, the compressibility of the process in-
creases when αloc diminishes. In the extreme case of αloc = 0 (for instance for
compound Poisson noise), the compressibility is infinite: the approximation error
decays faster than polynomial, which corresponds to the sparsest scenario.

Most of the results discussed above can be revisited from the duality between
the local and asymptotic behavior of the Lévy noise or the generalized Lévy process.
This will be further discussed in the conclusion (Chapter 7).



Chapter 2

When Probability Meets
Generalized Functions

A random process is a random function; that is, a random variable taking value
in a function space. The probability law of the process is a probability measure
on this function space. For instance, Brownian motion is the random process
whose probability law is the Wiener measure on the space of continuous func-
tions [KS12, Section 2.4]. This approach is admittedly quite abstract: The theory
of random processes is built upon measure theory on infinite-dimensional Banach
spaces [VTC87, LT13], nuclear spaces [GV64, Itô84], or more generally on topolog-
ical vector spaces [Bog07, Mus96, Sch73b]. This is not the most standard construc-
tion, but it has the advantage of being very general.

We focus our attention on the theory of generalized random processes, initially
introduced independently by K. Itō [Itô54] and I.M. Gelfand [Gel55] in the 50’s,
and brought to light by the latter, together with N.Y. Vilenkin, in [GV64, Chapter
III]. A generalized random process is a random element in the space of generalized
functions (or distribution, but we shall not use this terminology to avoid confu-
sion with the concept of probability distribution). Generalized random processes
are therefore the stochastic counterpart of the deterministic theory of generalized
functions of Schwartz [Sch66].

The chapter is organized as follows. The mathematical backgrounds of probabil-

21
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ity theory and functional analysis are respectively covered in Sections 2.1 and 2.2,
which are also useful to fix some notations and conventions. In Section 2.3, we
introduce generalized random processes. A special emphasis is laid on the char-
acteristic functional—the Fourier transform of the probability law of a generalized
random process—as it will be one of our main tool for both the construction and
the study of generalized Lévy processes.

Our personal contributions in Section 2.3 are twofolds. First, we present a sys-
tematic exposition of the framework in the space of tempered generalized functions
S ′(Rd) that appears to be more convenient for signal processing applications, while
the historical approach of Gelfand and Vilenkin was developed on D ′(Rd). Second,
we extend some results on the measurability of function spaces into S ′(Rd) in order
to include the complete family of Besov spaces.
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2.1 Probability Theory in Finite Dimension

We review the basic notions of probability theory in finite dimension. The results
of Section 2.1.1 are very classical; see for instance [Kal06]. Sections 2.1.2 and 2.1.3
focus on infinitely divisible random variables, which will play a crucial role when
considering continuous-domain random processes [Sat13].

Once and for all, we fix a complete probability space (Ω,F ,P), where Ω is the
sample space of all possible outcomes ω ∈ Ω, F is a set of events, assumed to be
a σ-algebra on Ω, and P : F → [0, 1] is a probability measure on Ω. The space Ω
is the source of randomness that allows us to define the concepts of real random
variables, random vectors, and (generalized) random processes. We assume that
our probability space is rich enough so that all the stochastic objects encountered
in our work are well-defined1.

2.1.1 Real Random Variables and Vectors

The Borel σ-field B(RN ) on RN is the σ-field generated by the open balls of RN .

Definition 2.1. A real random variable X is a measurable function from (Ω,F)
to (R,B(R)). The probability law (or simply the law) of X is then the probability
measure on R defined for B ∈ B(R) by

PX(B) = P(X ∈ B) = P {ω ∈ Ω | X(ω) ∈ B} .

Let L0(Ω) be the space of real random variables. For p > 0, we also introduce
Lp(Ω) as the space of real random variables X ∈ L0(Ω) such that E[|X|p] <∞.

Proposition 2.1. The space L0(Ω) is a complete linear metric space for the trans-
lation invariant metric

‖X‖0 := E[min(|X| , 1)].

The space Lp(Ω) is a quasi-Banach space for 0 < p < 1, and a Banach space for
1 ≤ p, for the following (quasi-)norm

‖X‖p := (E[|X|p])1/p
.

1Even if it is at the heart of the axiomatisation of probability theory [Kol50], the construction
of such a probability space will not be discussed here. It is sufficient to know that we can consider
Ω = D ′(Rd), the space of generalized functions (see Section 2.2.1), with the adequate σ-field, for
the definition of a generalized random process (or Ω = S ′(Rd) when this process is tempered).
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For the spaces Lp(Ω) with p ≥ 1, the result is well-known. The case 0 < p < 1 is
less classical; see for instance [Gra04, Section 1.1] for more details. The convergence
in L0(Ω) is equivalent to the convergence in probability.

Definition 2.2. The characteristic function of a real random variable X is the

function P̂X : R→ C such that

P̂X(ξ) = E
[
eiξX

]
=

∫
R

eiξxdPX(x)

for every ξ ∈ R.

The characteristic function is nothing more than the Fourier transform of the
probability law of X (up to sign convention). Any characteristic function is con-

tinuous, normalized such that P̂X(0) = 1, and positive-definite over R, meaning
that

N∑
m=1

N∑
n=1

ana
∗
mP̂X(ξn − ξm) ≥ 0

for any N ≥ 1, an ∈ C, ξn ∈ R. The converse of this result is true and is a
characterization of the Fourier transforms of probability measures on R: This is
the Bochner theorem [Kat04, Section VI.2.8].

Proposition 2.2. A function P̂ that is continuous and positive-definite from R to

C and such that P̂(0) = 1 is the characteristic function of a real random variable
X ∈ L0(Ω).

It is easy to check that ξ 7→ e−ξ
2/2 satisfies the conditions of Proposition 2.2

(see for instance [UT14, Appendix B.1]), and is therefore the characteristic func-
tion of a random variable. Of course, one recognizes the Gaussian law, more tra-
ditionally introduced via its probability density function pGauss(x) = 1√

2π
e−x

2/2 =

F−1{e−·2/2}(x). The Bochner theorem is an alternative to construct the Gaussian
random variable without specifying its probability density function. Therefore, it
does not require the existence of the Lebesgue measure. This will become cru-
cial in infinite dimensional spaces, where the Lebesgue measure does not exist in
general [Eld16, Theorem 1.1].



2.1 Probability Theory in Finite Dimension 25

Definition 2.3. We say that a sequence of random variables (Xk)k≥0 converges in
law to the random variable X if

E [f(Xk)] −→
k→∞

E [f(X)]

for any continuous and bounded function f : R → R. We denote this situation by

Xk
(L)−→
k→∞

X.

Theorem 2.1. The sequence of random variables (Xk)k≥0 converges in law to the
random variable X if and only if

P̂Xk(ξ) −→
k→∞

P̂X(ξ)

for any ξ ∈ R.

This is the Lévy continuity theorem [Kal06, Theorem 5.3]. In other terms, the
convergence in law of real random variables is equivalent to the pointwise conver-
gence of the underlying characteristic functions to a characteristic function.

Definition 2.4. Two random variables X1 and X2 are independent if the events
{X1 ∈ B1} and {X2 ∈ B2} are independent for any B1, B2 ∈ B(R); that is, if

P((X1, X2) ∈ B1 ×B2) = P(X1 ∈ B1)P(X2 ∈ B2).

The independence of X1 and X2 is equivalent to the relation P̂X1+X2(ξ) =

P̂X1(ξ)P̂X2(ξ) for any ξ ∈ R. Then, the law of X1 +X2 is the convolution of the
laws of X1 and X2.

We now consider random variables with values in RN for N ≥ 1. Vectors will
be denoted by x = (x1, . . . , xN ) ∈ RN .

Definition 2.5. A random vector X = (X1, . . . , XN ) of dimension N is a mea-
surable function from (Ω,F) to (RN ,B(RN )).

We define the law of a random vector as we did for real random variables. The
characteristic function of X is the function P̂X : RN → C such that

P̂X(ξ) = E
[
ei〈ξ,X〉

]
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for any ξ ∈ RN , where 〈·, ·〉 is the usual scalar product on RN . Bochner’s theorem,
the convergence in law, Lévy’s continuity theorem, and the notion of independence
are easily extended to random vectors. We observe that the mutual independence
of the random variables X1, . . . , XN is equivalent to

P̂(X1,...,XN )(ξ1, . . . , ξN ) = P̂X1
(ξ1) · · · P̂XN (ξN ).

2.1.2 Infinitely Divisible Random Variables and their Indices

We briefly introduce the family of infinitely divisible random variables. They will
play a crucial role when defining continuous-domain random processes in Sec-
tion 3. We refer the reader to [Sat13] for an in-depth exposition on the subject
and to [MR08] for a discussion on the origin of the concept.

Definition 2.6. A random variable X is infinitely divisible if, for any N ≥ 1, it
can be decomposed as

X = X1,N + · · ·+XN,N

where X1,N , . . . , XN,N are i.i.d. random variables.

The characteristic function P̂X of the infinitely divisible random variable X can

therefore be written as P̂X(ξ) = P̂XN1
(ξ)× · · · × P̂XNN

(ξ) = (P̂XN1
(ξ))N for every

N . An infinitely divisible random variable is therefore a random variable such that
its characteristic function admits an Nth root that is itself a characteristic function
for every N ≥ 1.

Lévy exponent. If X is infinitely divisible, then P̂X(ξ) 6= 0 for every ξ ∈
R [Sat13, Lemma 7.5]. Then, one can show that there exists a continuous function
Ψ such that

P̂X(ξ) = exp(Ψ(ξ)).

We would like to emphasis that the existence of a continuous Ψ is not obvious, as
explained in [Sat13, Lemma 7.6].

In general, the function ξ 7→ exp(Ψ(ξ)) is the characteristic function of an
infinitely divisible law if and only if ξ 7→ exp(τΨ(ξ)) is a characteristic function for
any τ ∈ R.
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Definition 2.7. The continuous log-characteristic function of an infinitely divisible
random variable is its Lévy exponent.

In the literature, Ψ is often called the characteristic exponent of X.

Theorem 2.2. Let Ψ be a continuous function with Ψ(0) = 0. The following
statements are equivalent

1. The function Ψ is a Lévy exponent.

2. For every λ ≥ 0, the function ξ 7→ eλΨ(ξ) is positive-definite.

3. The function Ψ is conditionally positive-definite on R, meaning that

N∑
m,n=1

ama
∗
nΨ(ξm − ξn) ≥ 0

for any N ≥ 1, an ∈ C, and ξn ∈ R such that
∑N
n=1 ξn = 0.

4. The function Ψ can be decomposed as

Ψ(ξ) = iµξ − σ2ξ2

2
+

∫
R

(eiξt − 1− iξt1|t|≤1)ν(dt), (2.1)

where µ ∈ R, σ2 ≥ 0, and ν a Lévy measure; that is, a measure on R such
that ∫

R
min(1, t2)ν(dt) <∞ (2.2)

and ν{0} = 0.

Note that
∣∣eiξt − 1− iξt1|t|≤1

∣∣ ≤ 2 min(1, ξ2t2) so that the integral in (2.1) is
well-defined under the condition (2.2). These equivalences are proved in [GV64,
Section III.4]. See also [UT14, Appendix B] for a discussion on positive-definite
and conditionally positive-definite functions. The decomposition (2.1) is the fa-
mous Lévy-Khintchine representation of the Lévy exponent. The triplet (µ, σ2, ν)
is unique [Sat13, Theorem 8.1] and called the Lévy triplet of Ψ (or, equivalently, of
the underlying infinitely divisible random variable).
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Moments of infinitely divisible laws. The absolute moments of an infinitely
divisible random variable are related to the absolute moments of the Lévy measure.

Proposition 2.3. For the infinitely divisible law X with Lévy measure ν, we have
the equivalence, for any p > 0,

E[|X|p] <∞⇐⇒
∫
|t|>1

|t|p ν(dt) <∞.

This is a particular case of [Sat13, Theorem 25.3]. In general, the Lévy exponent
Ψ of the infinitely divisible law X can be bounded as

|Ψ(ξ)| ≤ C(1 + |ξ|2)

for some C > 0 and every ξ ∈ R. When X has some finite moments, we have a
better bound.

Proposition 2.4. If the Lévy measure ν of the Lévy exponent Ψ satisfies the con-
dition

∫
|t|>1

|t|p ν(dt) <∞ for some 0 < p ≤ 1, then there exists a constant C > 0

such that, for every ξ ∈ R,

|Ψ(ξ)| ≤ C
(
|ξ|p + |ξ|2

)
. (2.3)

The crucial point in (2.3) is that Ψ is dominated at the origin by a power law.

Proof. We recall the Lévy-Khintchine representation (2.1) of Ψ as

Ψ(ξ) = iµξ − σ2ξ2

2
+

∫
R

(eiξt − 1− iξt1|t|≤1)ν(dt).

Since ξ 7→ iµξ − σ2ξ2

2 is clearly dominated by ξ 7→ |ξ|p + |ξ|2 (since p ≤ 1), we
assume without lost of generality that µ = σ2 = 0. Then, we split the integral in
two terms. First, we have that

∣∣eix − 1− ix
∣∣ ≤ x2 for any x ∈ R. Applying this

inequality to x = ξt, we deduce that∫
|t|≤1

∣∣eiξt − 1− iξt
∣∣ ν(dt) ≤

(∫
|t|≤1

|t|2 ν(dt)

)
|ξ|2 . (2.4)
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Moreover, we have that
∣∣eix − 1

∣∣2 = 2 − 2 cosx ≤ 2 min(2, x2) ≤ 4 |x|2p (since
2p ≤ 2), from which we deduce that

∫
|t|>1

∣∣eiξt − 1
∣∣ ν(dt) ≤ 2

(∫
|t|>1

|t|p ν(dt)

)
|ξ|p . (2.5)

Combining (2.4) and (2.5), we easily obtain (2.3).

The Lévy exponent is the cumulant generating function, in the sense that its
Taylor expansion at the origin gives access to the cumulants [UT14, Section 9.6].

Proposition 2.5. Let X be an infinitely divisible random variable with Lévy expo-
nent Ψ. The Lévy exponent Ψ is N times continuously differentiable for N ≥ 1 if
and only if the N th moment of X is finite. In that case, the N th-cumulant κN (X)
of X is well-defined and is given by

κN (X) = (−i)NΨ(N)(0).

Indices of Infinitely divisible random variables. In this thesis, we assume
that all the infinitely divisible laws satisfy the so-called sector condition: The imag-
inary part of the associated Lévy exponent is controlled by the real part in the sense
that

|={Ψ(ξ)}| ≤ C |<{Ψ(ξ)}| (2.6)

for some C > 0 and every ξ ∈ R. Essentially, this conditions implies that the
underlying infinitely divisible random variable is not dominated by a drift. For
instance, the pure drift X = µ, where µ 6= 0 is a deterministic constant, is such
that Ψ(ξ) = iµξ. It is therefore purely imaginary and does not satisfy the sector
condition. The sector condition is automatically satisfied when X is symmetric,
since Ψ is purely real in that case.

Definition 2.8. Let X be a infinitely divisible random variable satisfying the sector
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condition and ν its Lévy measure. Then, we set

αloc := inf

{
p ≥ 0

∣∣∣∣∣
∫
|t|≤1

|t|p ν(dt) <∞

}
, (2.7)

αasymp := sup

{
p ≥ 0

∣∣∣∣∣
∫
|t|>1

|t|p ν(dt) <∞

}
, (2.8)

(2.9)

We call αloc and αasymp the local index and the asymptotic index respectively.

Remarks.

• Necessarily, 0 ≤ αloc ≤ 2, since
∫
|t|≤1

t2ν(dt) <∞ for any Lévy measure. The

asymptotic index, on the other hand, can take any value including 0 and ∞.
Proposition 2.3 has two implications: The case αasymp = 0 implies that X
has no absolute positive moments, while αasymp = ∞ when all the moments
of X are finite. In particular, the latter is satisfied when ν = 0, corresponding
to the Gaussian law.

• The index αloc is often referred to as the Blumenthal-Getoor index in the
literature. It was introduced in [BG61], in order to measure the intensity of
the small jumps of Lévy processes. This index is related to the asymptotic
behavior of the Lévy exponent by the relation [BSW14, Chapter 5]

αloc := inf

{
p ≥ 0

∣∣∣∣∣ lim sup
|ξ|→∞

|Ψ(ξ)|
|ξ|p

<∞

}
.

• In [Pru81], Pruitt measured the intensity of the large jumps of Lévy processes,
by applying his results on the asymptotic behavior of series of i.i.d. random
variables. To do so, he introduced several indices related to infinitely divisible
laws. We should focus on the following one, that we call the Pruitt index,
defined as

β0 := sup

{
p ≥ 0

∣∣∣∣∣ lim sup
|ξ|→0

|Ψ(ξ)|
|ξ|p

<∞

}
.
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It is actually known that β0 = sup
{

0 ≤ p ≤ 2
∣∣∣ ∫|t|>1

|t|p ν(dt) <∞
}

[Sat13,

Proposition 48.10]. By comparing with (2.8), we deduce that the Pruitt index
and the asymptotic index are linked by the relation

β0 = inf(αasymp, 2). (2.10)

Importantly, the Pruitt index can be deduced from the asymptotic index,
while the converse is false.

• The Blumenthal-Getoor and Pruitt indices are respectively denoted by β∞
and β0 in the literature. This reminds us that they are respectively linked
with the asymptotic behavior and the behavior at the origin of the Lévy expo-
nent. We prefer to rename the Blumenthal-Getoor αloc, and to introduce the
new index αasymp from which we can easily recover β0 due to (2.10). We have
several motivations for these new notations. First, for symmetric-α-stable
random variables (see Section 2.1.3), one has αloc = αasymp = α, so that
the indices generalize the parameter α for non-stable infinitely divisible laws.
Second, the local index characterizes the local smoothness of the Lévy noise,
while the asymptotic index is linked to its asymptotic decay rate (see Theo-
rem 5.3 in Section 5.2). The Pruitt index will be shown to play a crucial role
on the behavior of Lévy noise and generalized Lévy processes at coarse scale
(see Section 4.3). We prefer to use notations inspired by these fundamental
properties.

2.1.3 Examples of Infinitely Divisible Laws

We present some classical families of infinitely divisible random variables: Gaus-
sian, SαS, compound Poisson, and generalized Laplace. They will be our running
examples, illustrating our results throughout the thesis. For each case, when closed
forms are known, we provide the probability law, the characteristic function, the
Lévy exponent, the Lévy triplet, as well as the local and asymptotic indices.

Gaussian random variables. A random variable X is called a Gaussian random
variable of variance σ2, which is denoted by X ∼ N (0, σ2), if its probability density
is given by

pX(x) =
1√
2πσ

e−
x2

2σ2 .
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The characteristic function of X is

P̂X(ξ) = e−
σ2ξ2

2 .

The random variable X is infinitely divisible, since it can be written as N in-
dependent Gaussian random variables with variance σ2/N . Its Lévy exponent

is Ψ(ξ) = −σ
2ξ2

2 and Lévy triplet (0, σ2, 0). We easily see that αloc = 2 and
αasymp =∞.

Symmetric-α-stable random variables. We refer the reader to [ST94] for a
complete exposition on stable laws, including the proofs of the results stated there-
after. A random variable X is stable if the sum X1 +X2 of two independent copies
of X has the same law as aX + b for some real numbers a and b. It is of course
the case for Gaussian random variables. The other members of the family have an
infinite variance. Stable laws are infinitely divisible.

We restrict our descriptions to symmetric stable random variables. In that case,

we have necessarily X1 + X2
(L)
= 2αX1 for some parameter α ∈ (0, 2]. Symmetric

stable random variables are therefore called SαS (for symmetric-α-stable). The
characteristic function of X is of the form

ΦX(ξ) = e−c
α|ξ|α ,

with c > 0 the scaling parameter and α ∈ (0, 2]. We write in this case that
X ∼ S(α, c). Observe that X ∼ S(α, 1) if and only if cX ∼ S(α, c) and that
S(2, c) = N (0, 2c). The Lévy exponent of X is Ψ(ξ) = −cα|ξ|α, and the Lévy
triplet (0, 0, cανα), where the Lévy measure να is given by

να(dt) =
Cα

|t|α+1 dt,

with Cα = (
∫
R(1 − cosu) du

|u|α+1 )−1. The indices, which are easily computed from

the Lévy measure, are αloc = αasymp = α.

Compound-Poisson random variables. We say that X is a compound-Poisson
random variable X if it can be written as

X =

N∑
n=1

Xn,
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with N a Poisson random variable of parameter λ > 0—meaning that for every n0 ∈
N, P(N = n0) = e−λλn0/n0!—, and the Xn are i.i.d. with common probability
law P such that P{0} = 0. The parameters of the compound Poisson random
variables are therefore λ and P , respectively called the sparsity parameter and the
law of jumps due to their role on compound Poisson noise (see Section 3.1.2). We
denote this situation by X ∼ P(λ, P ). By conditioning the value of N , we see that
the probability law of X is

PX = e−λ
∑
n≥0

λn

n!
P ∗n,

where P ∗0 = δ and P ∗(n+1) = (P ∗ P ∗n). In Fourier domain, one has the relation

P̂ ∗n(ξ) = P̂n(ξ). We deduce the characteristic function of X, given for every ξ ∈ R
by

P̂X(ξ) = exp
(
λ(P̂ (ξ)− 1)

)
,

with P̂ the characteristic function associated to P . The Lévy exponent is there-
fore Ψ(ξ) = λ(P̂ (ξ) − 1) and the Lévy triplet of X is (λµP , 0, λP ), where µP :=∫
|t|≤1

tP (dt). We have |P̂ (ξ)| ≤ 1; hence, Ψ is bounded and αloc = 0. While the

other index can take any value a priori, we remark that

αasymp = sup {p > 0 | E[|Y |p] <∞} ,

with Y a random variable with probability law P . Indeed, E[|Y |p] =
∫
R |t|

p
P (dt) =∫

|t|≤1
|t|p P (dt) +

∫
|t|>1

|t|p P (dt), the first term being always finite since P is a

probability measure, and the second being finite for p < αasymp and infinite for
p > αasymp (Proposition 2.3 applied to the Lévy measure λP ).

Generalized Laplace random variables. Another interesting infinitely divis-
ible family is given by the generalized-Laplace laws. We follow here the notations
of [KKP01]. A generalized-Laplace random variable X has a characteristic function
of the form

P̂X(ξ) =
1

(1 + 1
2σ

2ξ2)τ
= exp

(
−τ log(1 +

1

2
σ2ξ2)

)
,
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with τ > 0 the shape parameter and σ2 the scaling parameter. We denote this situ-
ation by X ∼ GL(τ, σ2). Generalized Laplace laws are infinitely divisible [KKP01,
Section 2.4.1] with Lévy triplet (0, 0, ντ,σ2) where [KKP01, Proposition 2.4.2]

ντ,σ2(dt) =
τ

|t|
e−2|t|/σ2

dt.

The Lévy exponent is Ψ(ξ) = −τ log(1 + 1
2σ

2ξ2). The variance of X is then τσ2.
We easily see that αloc = 0, since Ψ growths logarithmically at infinity. Moreover,
all the moments of X are finite so that αasymp =∞.
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2.2 Elements of Functional Analysis

A signal is modeled as a function from Rd to R, with d ≥ 1. A function space is a
topological vector space whose elements are functions. Most of the spaces encoun-
tered in this section are included in the space D ′(Rd) of generalized functions, with
a special emphasis on the space of tempered generalized functions S ′(Rd), intro-
duced in Section 2.2.1. We recall important results on operators in Section 2.2.2,
including the whitening operators that are considered in stochastic differential equa-
tions. The family of weighted Besov spaces, which allows to quantify the regularity
of smoothness and the rate of decay of generalized functions, is presented in Sec-
tion 2.2.3.

2.2.1 The Spaces D ′(Rd), S ′(Rd), and S ′(Td)
Most of the function spaces we will encounter are complete, Hausdorff, and locally
convex. This means that their topology is associated to a separate family of semi-
norms [Rud91], possibly infinite, possibly uncountable, for which they are complete.
Among these spaces, Hilbert and Banach spaces have the simplest structure, since
their topology is associated to a unique norm. As such, they will be our building
blocks for the specification non-normable spaces.

We say that a semi-norm p on a topological vector space X is separable if the
semi-normed space (X , N) has a countable dense subset. We also say that N is
Hilbertian if it satisfies the parallelogram law. When N is a norm, this means that
N is associated to a scalar product. A family of semi-norms (Ni)i∈I on X is said
to be separating if Ni(x) = 0 for all i ∈ I if and only if x = 0.

Definition 2.9. A topological vector space X is a multi-Hilbertian space if there
exists a separating family of Hilbertian semi-norms (Ni)i∈I such that the collection
of sets

VJ,ε,x0 := {x ∈X | ∀j ∈ J, Nj(x− x0) ≤ εj}

form a complete system of neighbourhoods for the topology of X , for J finite, J ⊂ I,
εj > 0, and x0 ∈ X . If the family (Ni)i∈I can be chosen countable, then X is a
countably multi-Hilbertian space.

Notations. We consider functions from Rd to R. A multi-index is written as
m = (m1, . . . ,md) ∈ Nd. The partial derivative with respect to the ith-coordinate
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is denoted by Di. For m ∈ Nd, we set Dm = Dm1
1 · · ·Dmd

d and |m| = m1 + · · ·+md.
For 0 < p ≤ ∞, the Lebesgue space Lp(Rd) of measurable functions with finite

p-(quasi-)norm given by

‖f‖p :=

(∫
Rd
|f(x)|p dx

)1/p

(if p <∞),

‖f‖∞ := ess sup
x∈Rd

|f(x)|

is a Banach space for 1 ≤ p ≤ ∞, and a quasi-Banach space for 0 < p < 1 [Gra04,
Section 1.1]. It is a Hilbert space if and only if p = 2.

The space D(Rd) and its dual. The space of compactly supported and smooth
functions is denoted by D(Rd). It is the union of the spaces D(K) of smooth
functions whose support is included in K, where K is some compact subset of Rd.
For K fixed, the space D(K) is a countable multi-Hilbertian space for the Hilbertian
semi-norms (‖Dm{·}‖2)m∈Nd [Itô84, Section 1.4]. Then, the space D(Rd) is a

complete topological vector space as the inductive limit of the spaces D([−n, n]d),
for n ∈ N. A sequence (ϕk)k∈N converges to 0 in D(Rd) if the ϕk are in a common
D(K) with K compact and converge to 0 in D(K). One can show that D(Rd) is a
multi-Hilbertian space, but not a countably multi-Hilbertian space [Itô84, Section
1.5].

The space of generalized functions D ′(Rd) is the topological dual of D(Rd);
that is, the space of continuous and linear function on D(Rd) . For u ∈ D ′(Rd),
ϕ,ψ ∈ D(Rd), and λ ∈ R, we have u(ϕ + λψ) = u(ϕ) + λu(ψ). We denote
u(ϕ) = 〈u, ϕ〉. Moreover, the continuity of the linear functional u is equivalent to
the following condition: For every compact K, there exists M ∈ N and C > 0 such
that for every ϕ ∈ D(K),

|〈u, ϕ〉| ≤ C
∑
|m|≤M

‖Dm{ϕ}‖2.

We endow the space D ′(Rd) with the weak topology. In particular, a sequence (uk)
converges to 0 in D ′(Rd) if and only if 〈uk, ϕ〉 converges to 0 for every ϕ ∈ D(Rd).
A measurable function f that is locally integrable is identified with the generalized
function ϕ 7→

∫
Rd f(x)ϕ(x)dx. With this identification, all the spaces Lp(Rd) are

included in D ′(Rd) for p ≥ 1.
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The space S (Rd) and its dual. We denote by S (Rd) the space of smooth and
rapidly decaying functions. Its topology is the one associated with the separable
family of semi-norms,

‖ϕ‖2,m,n :=
∥∥ ·n Dm{ϕ}

∥∥
2

(2.11)

where m,n ∈ Nd, where ·n is the function x ∈ Rd 7→ xn = xn1
1 · · ·x

nd
d . A sequence

of functions (ϕk) converges to 0 in S (Rd) if ‖ϕk‖2,m,n→0 for every m,n ∈ Nd
as k → ∞. The semi-norms (2.11) are Hilbertian, so that S (Rd) is a countably
multi-Hilbertian space.

The topological dual of S (Rd) is the space S ′(Rd) of tempered generalized
functions. It is the space of continuous and linear functionals on S (Rd). The
duality product between a tempered generalized function u ∈ S ′(Rd) and a test
function ϕ ∈ S (Rd) is still denoted by 〈u, ϕ〉. For u a linear functional on S (Rd),
the continuity is equivalent to the following condition: There exists M ∈ N and
C > 0 such that, for every ϕ ∈ S (Rd),

|〈u, ϕ〉| ≤ C
∑
|m|≤M

∑
|n|≤M

‖ϕ‖2,m,n. (2.12)

As for D ′(Rd), we endow S ′(Rd) with the weak topology: a sequence (uk) converges
to 0 in S ′(Rd) if and only if 〈uk, ϕ〉 converge to 0 for every ϕ ∈ S (Rd). The space
S ′(Rd) is embedded in D ′(Rd), and consist of the generalized functions u ∈ D ′(Rd)
such that (2.12) is valid for some M,C > 0 and any ϕ ∈ D(Rd).

We define the space R(Rd) of rapidly decaying measurable functions ϕ such
that ‖ϕ‖2,n,0 <∞ for every n ∈ Nd. Again, R(Rd) is a countably multi-Hilbertian
space.

The space S (Td) and its dual. The d-dimensional torus is denoted by Td =
[−1/2, 1/2)d. Let S (Td) be the space of smooth functions on Td. It is isomorphic to
the space of 1-periodic smooth functions from Rd to R. Its topological dual S ′(Td)
is isomorphic to the space of periodic generalized functions; that is, generalized
functions u such that 〈u, ϕ(· − 1)〉 = 〈u, ϕ〉 for every ϕ ∈ D(Rd).

When u ∈ S ′(Td), we define its Fourier coefficients as cn(u) := 〈u, e2iπ〈n,·〉〉,
where the duality product is defined over S ′(Td)×S (Td). This quantity is always
well-defined since en := e2iπ〈n,·〉 is in S (Td). In general, the sequence c(u) :=
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(cn(u))n∈Zd is of slow growth (bounded by a polynomial). A periodic generalized
function is in S (Td) if and only if c(u) is rapidly decaying.

For τ ∈ R, we define the periodic Sobolev space as

W τ
2 (Td) :=

u ∈ S ′(Td)

∣∣∣∣∣∣∣ ‖u‖Wτ
2 (Td) :=

∑
n∈Zd

〈n〉2τ
∣∣∣〈u, e2iπ〈n,·〉〉∣∣∣2

1/2

<∞

 .

Then, the dual of W τ
2 (Td) is isomorphic to W−τ2 (Td) for all τ . Moreover, we have

that

S (Td) = ∩k∈ZW k
2 (Td) and S ′(Td) = ∪k∈ZW k

2 (Td).

Remarks. The spaces D(Rd), D ′(Rd), S (Rd), S ′(Rd), S (Td), and S ′(Td)
are not normable. They can be classified depending on the complexity of their
topology.

• The space S (Rd) is a countably Hilbertian space and is therefore metrizable.
But it is not normable. The same remark holds for R(Rd), S (Td), and D(K)
for K ⊂ Rd compact. They are Fréchet spaces, which are systematically
studied for instance in [MV97, Part IV].

• The space S ′(Rd) is the dual of a non-normable countably multi-Hilbertian
space. It is therefore a non-metrizable (DF) space (for dual of Fréchet) [MV97,
Part IV]. The same holds for D ′(K) and S ′(Td).

• The space D(Rd) is a multi-Hilbertian space, but not a countable multi-
Hilbertian space. It is therefore not metrizable. As the inductive limit of a
family of countable multi-Hibertian (Fréchet) spaces, it is sometimes referred
to as (LF)-spaces (for “limit of Fréchet”) [Trè67, Section 13].

• The space D ′(Rd) is not metrizable. As the dual of a countable inductive limit
of (non-Banach) countably multi-Hilbertian spaces, it is the more evolved
structure based on Hilbert spaces that we shall encounter.

Embeddings. We say that the topological vector space X is embedded in the
topological vector space Y , what we denote by X ⊆ Y , if it is included (as a
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set), and if the canonical injection is continuous. We have the following classical
embeddings, valid for any p ∈ [1,∞]:

D(Rd) ⊆ S (Rd) ⊆ R(Rd) ⊆ Lp(Rd) ⊆ S ′(Rd) ⊆ D ′(Rd),

S (Rd) ⊆ S (Td) ⊆ Lp(Td) ⊆ S ′(Td) ⊆ S (′Rd).

Nuclear Spaces In functional analysis, the nuclear structure was introduced by
A. Grothendieck [Gro95] to remedy the absence of normed topologies for many
fundamental function spaces in the theory of generalized functions. To quote A.
Pietsch in [Pie72]: “The locally convex spaces encountered in analysis can be di-
vided into two classes. First, there are the normed spaces (...). The second class
consists of the so-called nuclear locally convex spaces.” When considering measure
theory on multi-Hilbertian spaces in Section 2.3, the nuclearity of the considered
topologies will appear to be crucial. The reason is that, contrary to Banach spaces,
many finite dimensional results of probability theory have direct generalizations
on nuclear spaces while this is typically not feasible for Banach spaces. Note that
normed spaces and nuclear spaces are mutually exclusive in infinite dimension: The
only complete topological vector spaces that are nuclear and normable are finite-
dimensional [Trè67, Corollary 2, pp. 520].

Definition 2.10. A linear operator L between two separable Hilbert spaces H1 and
H2 is Hilbert-Schmidt if for any orthonormal basis (en)n∈N of H1, one has∑

n≥0

‖L{en}‖2H2
<∞,

with ‖·‖H2 the Hilbertian norm of H2.

For instance, the identity is not Hilbert-Schmidt on an infinite dimensional
separable Hilbert space.

Definition 2.11. Consider a multi-Hilbertian space X whose topology is associated
to the family of Hilbertian semi-norms N . We denote by XN the Hilbert space
obtained as the completion of X for the semi-norm N ∈ N . We say that X is
nuclear if for any M ∈ N , there exists N ∈ N such that XM ⊆ XN and the
identity is Hilbert-Schmidt from XM to XN .
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There exists more general definitions of the nuclearity (not only for multi-
Hilbertian spaces); see for instance [Trè67]. One can show that S (Rd), D(K) for K
compact, S (Td), and D(Rd), together with their duals, are nuclear spaces [Itô84,
Chapter 1].

2.2.2 Linear Operators

We chose to work with tempered generalized functions rather than with generalized
functions. Among our motivations, we aim at considering whitening operators
associated with Fourier multipliers in S ′(Rd) in our stochastic model developed
in Section 3. With this constraint in mind, we focus on linear and continuous
operators L from S (Rd) to S ′(Rd). This is the most general form of operators we
shall consider.

Definition 2.12. Let L be a linear and continuous operator from S (Rd) to S ′(Rd).
The adjoint of L is the unique operator L∗ linear and continuous from S (Rd) to
S ′(Rd) such that

〈L{ϕ}, ψ〉 = 〈L∗{ψ}, ϕ〉 (2.13)

for every ϕ,ψ ∈ S (Rd).

In (2.13), the two duality products are between a tempered generalized function
and a rapidly decaying smooth function, so that all the quantities are well-defined.

The Schwartz kernel theorem.

Theorem 2.3. For any linear and continuous operator L from S (Rd) to S ′(Rd),
there exists a unique generalized function h ∈ S ′(Rd × Rd) such that

〈L{ϕ}, ψ〉 = 〈h, ϕ⊗ ψ〉 (2.14)

for any ϕ,ψ ∈ S (Rd), where (ϕ ⊗ ψ)(x,y) = ϕ(x)ψ(y) is the tensor product
between ϕ and ψ.

The generalized function h is called the kernel of L. With a slight abuse of
notation (valid when both h and L{ϕ} are locally integrable functions), we rewrite
(2.14) as

L{ϕ}(x) =

∫
Rd
h(x,y)ϕ(y)dy.
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Theorem 2.3 is known as the Schwartz kernel theorem. It tells us that a linear
and continuous operator can be represented by a kernel. It is intimately linked to
the nuclearity of S (Rd) [Trè67, Sections 50, 51]. The corresponding result is also
valid for linear and continuous operators from D(Rd) to D ′(Rd), with kernels in
D ′(Rd × Rd) [Trè67, Theorem 51.7], and more generally on locally convex nuclear
spaces [Gro95]. The general result requires advanced functional analysis material.
For the case of S (Rd), an equivalent result on continuous bilinear forms on S (Rd)×
S (Rd) is demonstrated with relatively elementary tools in [Sim03, Theorem 5].

Extension by duality. Assume that the adjoint L∗ of L is continuous from
S (Rd) to itself. In that case, we can extend L as a linear and continuous operator
from S ′(Rd) to itself. For u ∈ S ′(Rd), we define L{u} as the tempered generalized
function such that

〈L{u}, ϕ〉 = 〈u,L∗{ϕ}〉

for ϕ ∈ S (Rd). For instance, the derivative operator D is continuous from S (R) to
itself, so is its adjoint (−D). Therefore, the derivative is extended to any generalized
function in S ′(Rd)

More generally, if L∗ is continuous from S (Rd) to X where X is a locally
convex topological vector space such that S (Rd) ⊆ X ⊆ S ′(Rd), then L can be
extended to the dual X ′ of X following the same principle.

Geometric transformation and invariances. For x0 ∈ Rd, the translation
operator Tr0 is Tx0

{ϕ} = ϕ(· − x0) with ϕ ∈ S (Rd). For a > 0, the scaling
operator Sa is Sa{ϕ} = a−d/2ϕ(·/a) with ϕ ∈ S (Rd). For θ0 ∈ SO(d), the special
orthogonal group (or group of d-dimensional rotations), the rotation operator Rθ0 is
Rθ0{ϕ} = ϕ(θT0 .). We have the relations T∗x0

= T−1
x0

= T−x0
and S∗a = S−1

a = Sa−1 ,

and R∗θ0 = R−1
θ0

= RT
θ0

. Translation, scaling, and rotation operators are extended

to S ′(Rd) by duality.

Definition 2.13. A linear operator L continuous from S (Rd) to S ′(Rd) is said
to be

• shift-invariant if LTx0
= Tx0

L for all x0 ∈ Rd,

• homogeneous of order γ (or γ-homogeneous) with γ ∈ R if LSa = a−γSaL
for all a > 0, and
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• rotation-invariant if LRθ0 = Rθ0L for all θ0 ∈ SO(d).

When the operator L is shift-invariant, its kernel h satisfies h(x,y) = h(x−y).
Then, L is a convolution operator of the form L{ϕ} = h ∗ ϕ with h ∈ S ′(Rd).
The adjoint of L is itself a convolution and we have L∗{ϕ} = h∨ ∗ ϕ with h∨(x) =
h(−x). In that case, for any ϕ ∈ S (Rd), L∗{ϕ} is a smooth function. It means
in particular that L∗ is a continuous and linear operator from S (Rd) to E (Rd),
the space of smooth functions (on which a nuclear topology can be defined as for
D ′(Rd); see [Trè67, Corollary p.530]). Therefore, we can extend L by duality to any
generalized function in the dual E ′(Rd) of E (Rd), which is the space of compactly
supported generalized functions [Bon01]. In particular, L{u} is well-defined as soon
as u ∈ S ′(Rd) is compactly supported. This is the case for the Dirac impulse δ and
all its (partial) derivatives. Then, we remark that L{δ} = h∗δ = h: the generalized
function h is called the impulse response of L.

Differential and pseudo-differential operators. In view of studying stochas-
tic differential equations, we specify here the class of operators that we will consider.
For L : S (Rd)→ S ′(Rd) linear, continuous, and shift-invariant, the Fourier trans-

form of the impulse response h is called the Fourier multiplier of L, denoted by L̂.
We have then

L̂{ϕ} = L̂ϕ̂.

Examples of whitening operators. We introduce some classical families of dif-
ferential or pseudo-differential operators that we shall use as whitening operators.
For all of them, we specify their adjoint, their Fourier multiplier, and recap their
invariance properties.

• Differential operators: In the 1-D setting, a differential operator has the form
L = P (D) with N ≥ 1, P (X) = a0 + a1X + · · · + aNX

N a polynomial, and
aN 6= 0. We call N the order of L. It is shift-invariant with Fourier multiplier

L̂(ω) = P (iω) = a0 + a1(iω) + · · ·+ aN (iω)N .

for any ω ∈ R. The adjoint of P (D) is P (−D). When P (X) = XN , the
operator L = DN is N -homogeneous.
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• Fractional derivatives: The fractional derivative of order γ ≥ 0 is the shift-
invariant operator with Fourier multiplier given for ω ∈ R by

L̂(ω) = (iω)γ ,

denoted by Dγ . The fractional derivative and its adjoint are shift-invariant
and γ-homogeneous. For γ ∈ N, it is consistent with the usual derivative.

More generally, M. Unser and T. Blu have identified the complete class of one-
dimensional shift-invariant and homogeneous operators. They shown that this
family is parameterized by γ and τ with γ the order of homogeneity and τ
a phase parameter [UB07, Proposition 2]. The adjoint of Dγ , with Fourier
multiplier (−iω)γ , lies in this family.

• Separable operators: If L is a 1-dimensional whitening operator, one defines
its separable extension, denoted by Ld, with Fourier multiplier

L̂d(ω) =

d∏
i=1

L̂(ωi)

for any ω = (ω1, . . . , ωd) ∈ Rd.

When L = D, we denote by Λ its separable extension, given by Λ =
∏d
i=1 Di.

The operator Λ is shift-invariant, d-homogeneous, and not rotation-invariant.
Its adjoint is Λ∗ = (−1)dΛ.

When L = Dγ is the fractional derivative of order γ > 0, we denote by Λγ

its separable version. This operator is shift-invariant, (dγ)-homogeneous, and
not rotation-invariant.

• Laplacian: The Laplacian operator in dimension d is defined as L = ∆ = D2
1+

· · ·+ D2
d. It is continuous from S (Rd) to itself and self-adjoint. As such, we

extend ∆ as a continuous operator from S ′(Rd) to S ′(Rd). The Laplacian is
shift-invariant, 2-homogeneous, rotation-invariant, and its Fourier multiplier
is ∆̂(ω) = −‖ω‖2.

• Fractional Laplacian: The fractional Laplacian of order γ ≥ 0 is associated to
the Fourier multiplier L̂(ω) = ‖ω‖γ . It is self-adjoint, γ-homogeneous, and
rotation-invariant. When γ = 2, we recognize the opposite of the Laplacian
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operator, and we denote the fractional Laplacian by (−∆)γ/2. See [Gra04,
Section 6.1] for more details.

• Bessel operator: We recall that 〈x〉 :=
√

1 + ‖x‖2. For γ ∈ R, the Bessel
operator of order γ is the operator Jγ = (Id −∆)γ/2 with Fourier multiplier

Ĵγ(ω) = 〈ω〉γ . It is a self-adjoint operator, with inverse J−γ . Since Ĵγ and

(Ĵγ)−1 = Ĵ−γ are infinitely differentiable functions of slow growth, the Bessel
operator is a continuous bijection from S (Rd) to itself, and by extension a
continuous bijection from S ′(Rd) to itself. See [Gra04, Section 6.1.2] for more
details.

Operators on periodic function spaces. We recall that en is the trigonometric
function en(x) = e2iπ〈x,n〉, with n ∈ Zd. We assume that L is now a continuous,
linear, and shift-invariant operator from S (Td) to S (Td). Then, L can be extended
by duality from S ′(Td) to S ′(Td). The en are the eigenfunctions of L, and we
write L{en} = λnen.

The sequence (λn)n∈Zd is slowly growing (bounded by a polynomial). Recipro-
cally, any slowly growing sequence specify a linear, continuous, and shift-invariant
operator L from S (Td) to S (Td) by the relation

Lϕ :=
∑
n∈Zd

λncn(ϕ)en,

where the convergence holds in S (Td).
If L is also a linear, continuous, and shift-invariant operator from S (Rd) to

S ′(Rd) and its Fourier multiplier L̂ is a continuous function, then we have that

λn = L̂(2πn). All the differential and pseudo-differential operators defined above
satisfy this property, and can therefore be seen as operators from S (Td) to S (Td).

2.2.3 Weighted Besov Spaces

Besov spaces are parameterized by three values: the regularity parameter τ , the
integrability order p, and an additional tuning parameter q. Concretely, the pa-
rameter q plays only a secondary role. Moreover, it appears to be unnecessary
for our results on the compressibility of generalized Lévy processes (Chapter 6).
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We therefore restrict the presentation to the subfamily of the so-called Sobolev-
Slobodeckij spaces, that corresponds to the case p = q. However, we prefer to keep
the denomination of Besov spaces for two reasons. First, all the definitions and
results presented in this section are developed for the complete family of Besov
spaces in [Tri06, Tri08]. Second, interesting considerations on the parameter q can
be done once the results are known for the case p = q. This calls for some possible
refinements of our results that we shall discuss later.

Random processes do not decay at infinity in general, so that there is no hope to
characterize their Besov regularity over the complete space Rd with classical Besov
spaces. We will therefore consider weighted Besov spaces related to polynomial
weights to overcome this issue. The parameter for the decay rate is ρ.

In what follows, we first consider the weighted Sobolev spaces, that corresponds
to p = q = 2, based on the Fourier transform and the Bessel operators. Then,
we consider the weighted Besov spaces (with p = q). We chose to use the wavelet
characterization of Triebel as our definition. This section is essentially based on
our publications [FFU17, AFU].

Weighted Sobolev spaces. We recall that Jτ is the Bessel operator of order τ
(see Section 2.2.2).

Definition 2.14. Let τ, ρ ∈ R. The Sobolev space of smoothness τ is defined by

W τ
2 (Rd) :=

{
f ∈ S ′(Rd)

∣∣ Jτ{f} ∈ L2(Rd)
}

and the Sobolev space of smoothness τ and decay ρ is

W τ
2 (Rd; ρ) :=

{
f ∈ S ′(Rd)

∣∣ 〈·〉ρf ∈W τ
2 (Rd)

}
.

We also set L2(Rd; ρ) := W 0
2 (Rd; ρ).

We summarize now the basic properties on weighted Sobolev spaces that are
useful for our work, with short proofs for the sake of completeness. More details
can be found in [Tri06]; in particular, in Chapter 6, a broader class of weighted
spaces with their embedding relations is considered.

Proposition 2.6. The following properties hold for weighted Sobolev spaces.
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• For ρ, τ ∈ R, W τ
2 (Rd; ρ) is a Hilbert space for the scalar product

〈f, g〉W τ
2 (Rd;ρ) := 〈Jτ{〈·〉ρf}, Jτ{〈·〉ρg}〉L2(Rd) .

We denote by ‖f‖W τ
2 (Rd;ρ) = 〈f, f〉1/2

W τ
2 (Rd;ρ)

the corresponding Hilbertian norm.

• For ρ ∈ R fixed and for every τ1 ≤ τ2, we have the continuous embedding

W τ2
2 (Rd; ρ) ⊆W τ1

2 (Rd; ρ). (2.15)

• For τ ∈ R fixed and for every ρ1 ≤ ρ2, we have the continuous embedding

W τ
2 (Rd; ρ2) ⊆W τ

2 (Rd; ρ1). (2.16)

• For ρ, τ ∈ R, the operator Jτ,ρ : f 7→ 〈·〉ρJτ{f} is an isometry from L2(Rd)
to W−τ2 (Rd;−ρ).

• The dual space of W τ
2 (Rd; ρ) is W−τ2 (Rd;−ρ) for every τ, ρ ∈ R.

• We have the countable projective limit

S (Rd) =
⋂
τ,ρ∈R

W τ
2 (Rd; ρ) =

⋂
n∈N

Wn
2 (Rd;n). (2.17)

• We have the countable inductive limit

S ′(Rd) =
⋃
τ,ρ∈R

W τ
2 (Rd; ρ) =

⋃
n∈N

W−n2 (Rd;−n). (2.18)

Proof. The spaceW τ
2 (Rd; ρ) inherits the Hilbertian structure of L2(Rd). For τ1 ≤ τ2

and ρ1 ≤ ρ2, we have moreover the inequalities,

‖f‖W τ1
2 (Rd;ρ) ≤ ‖f‖W τ2

2 (Rd;ρ),

‖f‖W τ
2 (Rd;ρ1) ≤ ‖f‖W τ

2 (Rd;ρ2),

from which we deduce (2.15) and (2.16). The relation

‖Jτ,ρf‖W−τ2 (Rd;−ρ) = ‖J−τ{〈·〉−ρJτ,ρf}‖L2(Rd) = ‖f‖L2(Rd)
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proves that Jτ,ρ is an isometry. For every f, g ∈ L2(Rd), we have that

〈Jτ{〈·〉ρf}, J−τ{〈·〉−ρg}〉L2(Rd) = 〈f, g〉L2(Rd). (2.19)

SinceW τ
2 (Rd; ρ) = {Jτ{〈·〉ρf}, f ∈ L2(Rd)}, we easily deduce the dual ofW τ

2 (Rd; ρ)
from (2.19). Finally, we can reformulate the topology on S (Rd) as (2.17). This
implies directly (2.18).

Weighted Sobolev-Slobodeckij (Besov) spaces. We use a wavelet-based ap-
proach, as exposed in [Tri08]. Essentially, Besov spaces are subspaces of S ′(Rd)
that are characterized by weighted sequence norms of the wavelet coefficients.

The scale and shift parameters of the wavelets are respectively denoted by j ≥ 0
and k ∈ Zd. The letters M and F refer to the gender of the wavelet (F for
the father wavelets and G for the mother wavelet). Consider two functions ψM
and ψF ∈ L2(R). We set G0 = {M,F}d and, for j ≥ 1, Gj = G0\{F d}. For
G = (G1, . . . , Gd) ∈ G0, called a gender, we set, for every x = (x1, . . . , xd) ∈ Rd,
ψG(x) =

∏d
i=1 ψGi(xi). For j ≥ 0, G ∈ Gj , and k ∈ Zd, we define

ψj,G,k(x) := 2jd/2ψG(2jx− k)

for any x ∈ Rd.
For any regularity parameter r0 ≥ 1, there exists two functions ψM , ψF ∈ L2(R)

that are compactly supported, with at least r0 continuous derivatives such that the
family

{ψj,G,k}(j,G,k)∈N×Gj×Zd

is an orthonormal basis of L2(Rd) [Tri08]. Concretely, one consider the family of
Daubechies wavelets [Dau88].

The following definition of weighted Besov spaces is equivalent to the more usual
Fourier-based definitions. This equivalence is proved in [Tri08].

Definition 2.15. Let τ, ρ ∈ R and 0 < p ≤ ∞. Fix r0 > max(τ, d(1/p− 1)+ − τ)
and consider a family of compactly supported wavelets {ψj,G,k}(j,G,k)∈N×Gj×Zd with
at least r0 continuous derivatives.

The weighted Besov space Bτp (Rd; ρ) is the collection of tempered generalized

functions f ∈ S ′(Rd) that can be written as

f =
∑

(j,G,k)∈N×Gj×Zd
cj,G,kψj,G,k, (2.20)
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where the cj,G,k satisfy∑
j≥0

2j(τp−d+ dp
2 )
∑
G∈Gj

∑
k∈Zd
〈2−jk〉ρp|cj,G,k|p <∞,

where we recall that 〈x〉 = (1+‖x‖2)1/2 and and where the convergence (2.20) holds
unconditionally on S ′(Rd). The usual modification should be done when p =∞.

The parameter r0 in Definition 2.15 is chosen such that the wavelet is regular
enough to be applied to a function of Bτp (Rd; ρ). When the convergence (2.20) oc-
curs, the duality product 〈f, ψj,G,k〉 is well defined and we have cj,G,k = 〈f, ψj,G,k〉.
Moreover, the quantity

‖f‖Bτp (Rd;ρ) :=

∑
j≥0

2j(τp−d+ dp
2 )
∑
G∈Gj

∑
k∈Zd
〈2−jk〉ρp|〈f, ψj,G,k〉|p

1/p

(2.21)

is finite for f ∈ Bτp (Rd; ρ) and specifies a norm (a quasi-norm, respectively) on

Bτp (Rd; ρ) for p ≥ 1 (p < 1, respectively). The space Bτp (Rd; ρ) is a Banach (a
quasi-Banach, respectively) for this norm (quasi-norm, respectively). When p = 2,
weighted Sobolev spaces and Besov spaces coincide; that is, W τ

2 (Rd; ρ) = Bτ2 (Rd; ρ),
the two norms—the one of Proposition 2.6 and (2.21)—being equivalent.

As a simple example, we obtain the Besov localization of the Dirac impulse.
Of course, this result is known, and an alternative proof can be found for instance
in [ST87]. We believe that it is interesting to give our own proof here. First,
it illustrates how to use the wavelet-based characterization of Besov spaces, and
second, it will be used to obtain sharp results for compound Poisson processes.

Proposition 2.7. The Dirac impulse δ is in Bτp (Rd; ρ) if and only if τ < d
p − d.

Proof. The definition of the Besov (quasi-)norm readily gives

‖δ‖p
Bτp (Rd;ρ)

=
∑
j≥0

2j(τp−d+dp)
∑
G∈Gj

∑
k∈Zd
〈2−jk〉ρp|ψG(k)|p.

The common support K of the ψG is compact. Therefore, only finitely many ψG(k)
are non zero, and for such k and every j we have

0 < min
x∈K
〈x〉ρp = 〈2−jk〉ρp ≤ max

x∈K
〈x〉ρp <∞.
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Since 2d − 1 ≤ Card(Gj) ≤ 2d and all the ψG are bounded, it is then easy to find
0 < A ≤ B <∞ such that

A
∑
j≥0

2j(τ−d+dp) ≤ ‖δ‖p
Bτp (Rd;ρ)

≤ B
∑
j≥0

2j(τ−d+dp).

The sum converges for τ−d+dp < 0 and diverges otherwise, implying the result.

Embeddings between weighted Besov spaces.

Proposition 2.8. Let 0 < p0 ≤ p1 ≤ ∞ and τ0, τ1, ρ0, ρ1 ∈ R.

• We have the embedding Bτ0p0(Rd; ρ0) ⊆ Bτ1p1(Rd; ρ1) as soon as

τ0 − τ1 >
d

p0
− d

p1
and ρ0 > ρ1. (2.22)

• We have the embedding Bτ1p1(Rd; ρ1) ⊆ Bτ0p0(Rd; ρ0) as soon as

ρ1 − ρ0 >
d

p0
− d

p1
and τ1 > τ0. (2.23)

A proof of the sufficiency of (2.22) can be found in [ET08, Section 4.2.3] for
unweighted Besov spaces. The extension to the weighted case is obvious. For the
embedding (2.23), see [FFU17, Proposition 3]. Proposition 2.8 is summarized in
the two diagrams of Figure 2.1.

If the only knowledge provided to us is that the generalized function f is in
S ′(Rd), then this is not enough to set the regularity r0 of the wavelet used to
characterize the Besov smoothness of f . However, if we have additional information
on f , for instance its inclusion in a weighted Sobolev space, then the situation
is different. Proposition 2.9 gives a wavelet-domain criterion to determine if a
generalized function f , known to be in W τ0

2 (Rd; ρ0), is actually in Bτp (Rd; ρ). Note

that f ∈ S ′(Rd) is in some Sobolev space W τ0
2 (Rd; ρ0) because of (2.18). This

result is taken from our work [FFU17], where it is proved for general Besov spaces.

Proposition 2.9. Let τ, τ0, ρ, ρ0 ∈ R and 0 < p ≤ ∞. We set

r0 > max(|τ0| , |τ − d(1/p− 1/2)+|). (2.24)
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(a) (1/p, τ)-diagram for fixed ρ0 (b) (1/p, ρ)-diagram for fixed τ0

Figure 2.1: Representation of the embeddings between Besov spaces: If f ∈
Bτ0p0(Rd; ρ0), then f is in any Besov space that is in the shaded green regions.

Conversely, if f /∈ Bτ0p0(Rd; ρ0), then f is not in any of the Besov spaces of the
shaded red regions.

Then, the generalized function f ∈W τ0
2 (R; ρ0) is in Bτp (Rd; ρ) if and only if∑

j≥0

2j(τp−d+dp/2)
∑
G∈Gj

∑
k∈Zd

〈2−jk〉ρp|〈f, ψj,G,k〉|p <∞,

with (ψj,G,k) a Daubechies wavelet basis of L2(Rd) of regularity at least r0, with the
usual modifications when p =∞.

Proof. Let τ1 < min(τ0, τ − d(1/p − 1/2)+) and ρ1 ≤ min(ρ0, ρ − d(1/p − 1/2)+).
Then, according to Proposition 2.8, we have the embeddings

Bτp,q(Rd; ρ) ⊆W τ1
2 (Rd; ρ1) and W τ0

2 (Rd; ρ0) ⊆W τ1
2 (Rd; ρ1).

Condition (2.24) implies that we can apply Definition 2.15 to the Besov space
W τ1

2 (Rd; ρ1). In particular, if (ψj,G,k) is a Dabauchies wavelet basis with reg-
ularity at least r0, and for every function f ∈ W τ1

2 (Rd; ρ1), then the wavelet
coefficients 〈f, ψj,G,k〉 are well-defined. Moreover, we have the characterization
f ∈ Bτp (Rd; ρ) ⇔ ‖f‖Bτp (Rd;ρ) < ∞ for f ∈ W τ1

2 (Rd; ρ1) and, therefore, for

f ∈W τ0
2 (Rd; ρ0).
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2.3 Generalized Random Processes and Fields

Generalized random processes are random elements in a space of generalized func-
tions. In their seminal works [Gel55, GV64], Gelfand and Vilenkin examine gener-
alized random processes in D ′(Rd). We prefer to develop the theory over the space
S ′(Rd) of tempered generalized functions. This amounts to a slightly restriction on
the class of processes, since S ′(Rd) is a strict subset of D ′(Rd). We are motivated
by the fact that tempered generalized random processes are more adapted to the
construction of solutions of stochastic differential equations. This is in line with
the specification of whitening operators from S (Rd) to S ′(Rd) via their Fourier
multiplier (see Section 2.2.2). Moreover, adopting S ′(Rd) allows us to extend the
space of test functions to the case of non-compactly supported functions, which are
crucial in signal-processing applications.

2.3.1 Definition and Main Concepts

We fix a probability space (Ω,F ,P). We recall that the space S ′(Rd) is endowed
with the weak*-topology. The associated Borel σ-field is denoted by B(S ′(Rd)).
It is the σ-field generated by the open sets of S ′(Rd). Equivalently, B(S ′(Rd)) is
generated by the cylinders of the form{

u ∈ S ′(Rd)
∣∣ 〈u,ϕ〉 ∈ B} (2.25)

with N ≥ 1, ϕ ∈ (S (Rd))N , and B ∈ B(RN ) Borel set2.

Definition 2.16. A tempered generalized random process is a measurable mapping
from (Ω,F) to (S ′(Rd),B(S ′(Rd)); that is, a (S ′(Rd))-valued random variable.

When the context is clear, we will omit to specify that a generalized random
process is tempered.

Definition 2.17. The law of a generalized random process s is the probability
measure on S ′(Rd) defined by

Ps(B) := P(s ∈ B) = P {ω ∈ Ω | s(ω) ∈ B}
2The cylinders (2.25) defines the cylindrical σ-field of S ′(Rd), that coincides with the Borel

σ-field for the weak*-topology, as for any countably multi-Hilbertian spaces [Itô84].
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for any B ∈ B(S ′(Rd)). Two generalized random processes s1 and s2 are equal in

law if Ps1 = Ps2 . This is denoted by s1
(L)
= s2.

For every tempered generalized random process s and ϕ ∈ S (Rd), the mapping
〈s, ϕ〉 : (Ω,F) → (R,B(R)) defined by 〈s, ϕ〉(ω) = 〈s(ω), ϕ〉 is measurable; that is,
〈s, ϕ〉 ∈ L0(Ω). Moreover, the map

s : S (Rd)→ L0(Ω)

ϕ 7→ 〈s, ϕ〉

is linear and continuous. The converse is also valid: Any linear and continuous
map from S (Rd) to L0(Ω) specifies a tempered generalized random process. This
is intimately related to the structure of nuclear and countable multi-Hilbertian space
of S ′(Rd) [Itô84, Wal86]. See the introduction of [Sel07] for additional references
on these questions.

More generally, forϕ = (ϕ1, . . . , ϕN ) ∈ (S (Rd))N , we consider theN -dimensional
random vector 〈s,ϕ〉 := (〈s, ϕ1〉, . . . , 〈s, ϕN 〉). The random vectors

(〈s,ϕ〉)N≥1,ϕ∈(S (Rd))N

are the finite-dimensional marginals of s. Two generalized random processes are
equal in law if and only if their finite-dimensional marginals are equal in law.

If L is a continuous operator from S (Rd) to S (Rd), then L∗, when restricted
to S (Rd), shares this property and L can be extended by duality to S ′(Rd).
Exploiting this principle, if s is a generalized random process, then we can define
the process L{s} as

〈L{s}, ϕ〉 = 〈s,L∗{ϕ}〉
for ϕ ∈ S (Rd). In particular, for any multi-integer m ∈ Nd, the process Dm{s} is
defined as

〈Dm{s}, ϕ〉 = (−1)|m|〈s,Dm{ϕ}〉.
We remark that, contrary to classical random processes, the (partial) derivative
of a generalized random process is always well-defined and is itself a generalized
random process.

Definition 2.18. We say that the two generalized random processes s1 and s2 are
independent if for any B1, B2 in the Borel σ-field B(S ′(Rd)) of S ′(Rd), the events
{s1 ∈ B1} and {s1 ∈ B2} are independent.
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Equivalently, two generalized random processes s1 and s2 are independent if
their finite dimensional marginals are independent; that is, if the random vectors
〈s1,ϕ〉 and 〈s2,ϕ〉 are independent for every N ≥ 1 and ϕ ∈ (S ′(Rd))N .

Random processes are often classified by two characteristics: their statistical
invariance properties and their dependency structure. We recall that the geometric
transformations are introduced in Section 2.2.2.

Definition 2.19. A generalized random process s is said to be

• stationary if for all x0 ∈ Rd, Tx0s
(L)
= s;

• symmetric if s∨
(L)
= s, where s∨(x) = s(−x);

• self-similar of order H ∈ R if for all a > 0, aHs(·/a)
(L)
= s;

• isotropic if for all θ0 ∈ SO(d), Rθ0s
(L)
= s.

Definition 2.20. A generalized random process is independent at every point if
〈s, ϕ〉 and 〈s,Ψ〉 are independent whenever ϕ and Ψ ∈ S (Rd) have disjoint sup-
ports.

We say that the generalized random process has finite pth moments for p > 0 if
for any ϕ ∈ S (Rd), E[|〈s, ϕ〉|p] <∞.

As we did for S ′(Rd), we define the Borel σ-field B(D ′(Rd)) of D ′(Rd) for the
weak*-topology. A generalized random process is then a (D ′(Rd))-valued random
variable. All the concepts introduced above can be extended to random processes
in D ′(Rd).

2.3.2 The Characteristic Functional

The characteristic functional of a random process was defined for the first time by
A. Kolmogorov in the short paper [Kol35]. We shall see that most of the concepts
introduced in Section 2.3.1 can be reformulated in terms of the characteristic func-
tional. This is in line with the finite-dimensional case exposed in Section 2.1: The
characteristic functional is the infinite-dimensional generalization of the character-
istic function.
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Definition 2.21. The characteristic functional of the tempered generalized random
process s is the functional from S (Rd) to C defined by

P̂s(ϕ) =

∫
S ′(Rd)

ei〈u,ϕ〉dPs(u) = E[ei〈s,ϕ〉].

As for the characteristic function for random variables, the characteristic func-
tional characterizes the law of the generalized random process: Two generalized

random processes are equal in law if and only if P̂s1 = P̂s2 . The characteristic
functional shares the defining properties of the characteristic function.

Proposition 2.10. A characteristic functional P̂s is

• positive-definite on S (Rd), in the sense that

N∑
n,m=1

ana
∗
mP̂s(ϕn − ϕm) ≥ 0

for every N ≥ 1, ϕn ∈ S (Rd), and an ∈ C.

• continuous on S (Rd);

• normalized as P̂s(0) = 1.

The conditions of Proposition 2.10 are not only necessary, but also sufficient:
This is the well-known generalization of Proposition 2.2 in S (Rd), known as the
Bochner-Minlos theorem.

Theorem 2.4. A functional P̂ from S (Rd) to C is the characteristic functional
of a generalized random process if and only if it is positive-definite, continuous, and

satisfies P̂(0) = 1.

The Bochner-Minlos theorem was conjectured by Gelfand and demonstrated by
Minlos in [Min59]. This theorem is also valid for processes in D ′(Rd) [GV64, Section
III.2.6, Theorem 3]. As we did for the Gaussian random variable in Section 2.1,
we can use the Bochner-Minlos theorem to construct generalized random processes.

As a first example, consider the functional P̂ : ϕ 7→ e−‖ϕ‖
2
2/2. It is easy to check

that it is continuous and positive-definite over S (Rd) (for the latter, the proof is
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identical to the finite-dimensional case) and that P̂(0) = 1. Therefore, P̂ is the
characteristic functional of a generalized random process, called the Gaussian white
noise.

Proposition 2.11. A characteristic functional P̂s satisfies the relations∣∣∣P̂s(ϕ)
∣∣∣ ≤ 1,∣∣∣P̂s(ϕ2)− P̂s(ϕ1)
∣∣∣ ≤ 2

(
1−<{P̂s(ϕ2 − ϕ1)}

)
(2.26)

for every ϕ,ϕ1, ϕ2 ∈ S (Rd).

This result is actually valid for any positive-definite functional on a topological
vector space. The relation (2.26) shows in particular that a positive-definite func-
tional that is continuous around 0 is uniformly continuous; see for instance [Fer67,
Section II.5.1] or [VTC87, Section IV.1.2, Proposition 1.1] for a proof.

We give now a collection of results on the characteristic functional on the finite-
dimensional marginals, statistical invariances, independence properties, and mo-
ments. We sketch the simple proofs and give adequate references for the more
evolved ones.

Proposition 2.12. Let s be a generalized random process on S ′(Rd) and ϕ ∈
(S (Rd))N . Then, the characteristic function of the real random vector 〈s,ϕ〉 is
given by

P̂〈s,ϕ〉(ξ) = P̂s(ξ1ϕ1 + · · ·+ ξNϕN ) = P̂s(〈ξ,ϕ〉) (2.27)

for every ξ = (ξ1, . . . , ξN ) ∈ RN .

Note that the notation 〈·, ·〉 is a duality product in the left term of (2.27), and
the scalar product over RN in the right term.

Proof. This is easily deduced from the computation

〈〈s,ϕ〉, ξ〉 =

N∑
n=1

〈s, ϕn〉ξn = 〈s,
N∑
n=1

ξnϕn〉 = 〈s, 〈ξ,ϕ〉〉.
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Proposition 2.13. Two random processes s1 and s2 are independent if and only
if

P̂s1+s2(ϕ) = P̂s1(ϕ)P̂s2(ϕ) (2.28)

for every ϕ ∈ S (Rd).

Proof. The processes s1 and s2 are independent if and only if 〈s1,ϕ〉 and 〈s1,ϕ〉 are

independent for everyϕ ∈ (S ′(Rd))N , N ≥ 1. This is equivalent to P̂〈s1+s2,ϕ〉(ξ) =

P̂〈s1,ϕ〉(ξ)P̂〈s1,ϕ〉(ξ) for any ξ,ϕ, that we can rewrite thanks to Proposition 2.12
as

P̂s1+s2(〈ξ,ϕ〉) = P̂s1(〈ξ,ϕ〉)P̂s1(〈ξ,ϕ〉). (2.29)

If s1 and s2 are independent, then we deduce (2.28) from (2.29) with N = 1 and
ξ = 1. If now (2.28) is valid for any test function, we apply it with 〈ϕ, ξ〉, proving
the equivalence.

It is possible to read the independence at every point of a generalized random
process on its characteristic functional. The following result on processes that are
independent at every point is taken from [GV64, Section III.4.1, Theorem 1].

Proposition 2.14. The generalized random process s is independent at every point
if and only if

P̂s(ϕ+ ψ) = P̂s(ϕ)P̂s(ψ)

for every ϕ,ψ with disjoint supports.

The statistical invariances of s are related to the impact of the geometric trans-
formations on the characteristic functional.

Proposition 2.15. A generalized random process s is

• stationary if and only if for every ϕ ∈ S (Rd) and x0 ∈ Rd

P̂s(ϕ) = P̂s(Tx0ϕ).

• symmetric if and only if for any ϕ ∈ S (Rd), P̂s(ϕ) = P̂s(ϕ
∨).

• self-similar of order H if and only if for every ϕ ∈ S (Rd) and a > 0.

P̂s(ϕ) = P̂s(a
H+dϕ(a·)). (2.30)
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• isotropic if and only if for every ϕ ∈ S (Rd) and Ω ∈ SO(d)

P̂s(ϕ) = P̂s(RΩϕ).

Proof. We prove the result for (2.30), the other proofs being very similar. We focus
on the generalized random process aHs(·/a). We readily see that

P̂aHs(·/a)(ϕ) = E[ei〈aHs(·/a),ϕ〉] = E[ei〈s,aH+dϕ(a·)〉] = P̂s(a
H+dϕ(a·)).

Then, s
(L)
= aHs(·/a) if and only if P̂s(a

H+dϕ(a·)) = P̂s(ϕ), as expected.

2.3.3 Stochastic Functional Analysis

As we have seen, the theory of generalized random processes allows one to consider
very general random processes, including the ones that do not admit a pointwise
representation. It has another advantage: The Borel σ-field of S ′(Rd) appears
to be very rich, and we will see, in particular, that the usual function spaces are
measurable. This proves us with a strategy to probe the smoothness, the integra-
bility, the decay rate, etc., of a generalized random process. In [Car63], P. Cartier
compares the approach of Gelfand with more traditional ones in probability theory,
in particular the theory developed by J.L. Doob [Doo90].

General principle. Consider a topological vector space X included in S ′(Rd),
and endowed with the Borel σ-field B(X ). Two questions arise:

1. Is the space X measurable in S ′(Rd); that is, X ∈ B(S ′(Rd))?

2. Are the Borel σ-fields compatible in the sense that

B(X ) = X ∩ B(S ′(Rd)) :=
{
X ∩B

∣∣ B ∈ B(S ′(Rd))
}

?

If these two assumptions hold, we know in particular that the probability P(s ∈X )
is well-defined for any tempered generalized random process s. The compatibility
of the σ-field has also two consequences. First, an X -valued random variable can
be seen as an S ′(Rd)-valued random variable such that P(s ∈ X ) = 1. Second,
an S ′(Rd)-valued random variable for which P(s ∈ X ) = 1 admits a version
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(identical up to a space of measure 0) that is an X -valued random variable. In
other terms, under 1. and 2., X -valued random variables form a subspace of
S ′(Rd)-valued random variables, characterized by the relation P(s ∈X ) = 1 (up
to modification on a space of measure 0 in S ′(Rd)).

These questions were studied by X. Fernique [Fer67] and K. Itō [Itô84]. Fernique
considers a very large class of function spaces, called standard spaces, for which the
measurability structure is essentially compatible with the topological structure.
This means in particular that the two questions above receive positive answers in
this case. In [Fer67, Section III.3], Fernique applies his general principle, that we
shall not detail here, to identify measurable spaces of D ′(Rd). The same ideas apply
to S ′(Rd) and can be summarized as follows.

Proposition 2.16. Fix p ∈ [1,∞) and τ ∈ R. Assume that X is one of the
following function spaces: D(Rd),S (Rd),W τ

2 (Rd), Lp(Rd), E ′(Rd). Then,

X ∈ B(S ′(Rd)) and B(X ) = X ∩ B(S ′(Rd)).

Measurability of Besov Spaces in S ′(Rd). In this thesis, we shall investigate
in which Besov space (local or weighted) is a given Lévy noise. Here, we first show
that this question is meaningful in the sense that any Besov space Bτp,q(Rd; ρ) is

measurable in S ′(Rd). The principle developed by Fernique can be easily applied
to Besov spaces that are Banach spaces (that is, when p ≥ 1). In general, however,
Besov spaces are quasi-Banach spaces and the results of Fernique cannot be directly
applied.

Here, we give our own proof of the measurability of Besov spaces, taken from
our works [FUW17c, FFU17]. Our approach is different from the one of Fernique
and does not rely on any topological argument. We essentially show that Besov
spaces are included in the cylindrical σ-field of S ′(Rd). We say that C is a cylinder
of S ′(Rd) if it can be written as

C = {u ∈ S ′(Rd), 〈u,ϕ〉 ∈ B}

where N ≥ 1, ϕ = (ϕ1, . . . , ϕN ) ∈ (S (Rd))N , and B ∈ B(RN ). The cylindrical
σ-field is the σ-field generated by the cylinders. In the case of S ′(Rd), it coincides
with the topological σ-field [Itô84].

Proposition 2.17. For every 0 < p ≤ ∞ and τ, ρ ∈ R, we have that

Bτp (Rd; ρ) ∈ B
(
S ′(Rd)

)
. (2.31)
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The proof of a similar measurability result is detailed for periodic generalized
functions in [FUW17c, Theorem 4]. The difference here is that we deal with func-
tions over Rd and with weighting functions. The adaptation to this case was exposed
in [FUW17c, Lemma 1] for the complete family of Besov spaces (with, possibly,
q 6= p). We reproduce here the proof for p = q. The proof uses Lemma 2.1.

Lemma 2.1. Let X be a topological vector space, X ′ its topological dual and
Bc(X ′) the cylindrical σ-field on X ′, generated by the cylinders of the form

C := {f ∈X ′ | 〈f,ϕ〉 ∈ B} ,

where N ≥ 1, ϕ = (ϕ1, · · · , ϕN ) ∈ X N , and B ∈ B(RN ). Then, for every
countable set S, every ϕn ∈X , and every p > 0, we have{

f ∈X ′

∣∣∣∣∣ ∑
n∈S
|〈f, ϕn〉|p <∞

}
∈ Bc(X ′).

Proof. We first remark that{
f ∈X ′

∣∣∣∣∣ ∑
n∈S
|〈f, ϕn〉|p <∞

}
=
⋃
N≥0

{
f ∈X ′

∣∣∣∣∣ ∑
n∈S
|〈f, ϕn〉|p ≤ N

}
. (2.32)

It therefore suffices to show that
{
f ∈X ′

∣∣ ∑
n∈S |〈f, ϕn〉|

p ≤ N
}

is measur-
able. We denote by RS the space of real sequences indexed by S, endowed with the
product σ-field. By definition of the cylindrical σ-field, for fixed ϕ = (ϕn)n∈S , the
projection

πϕ(f) := (〈f, ϕn〉)n∈S
is measurable from X ′ to RS . Moreover, the function Fp from RS to R+ that
associates to a sequence (an)n∈S the quantity

∑
n∈S |an|

p
is measurable. Finally,

since [0, N ] is measurable in R+,{
f ∈X ′

∣∣∣∣∣ ∑
n∈S
|〈f, ϕn〉|p ≤ N

}
= π−1

ϕ

(
F−1
p ([0, N ])

)
is measurable in X ′, as expected.
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Proof of Proposition 2.17. We obtain the desired result in three steps. We treat
the case p <∞ and let the reader adapt the proof for p =∞.

• First, we show that W τ
2 (Rd; ρ) ∈ B

(
S ′(Rd)

)
for every τ, ρ ∈ R. This corre-

sponds to the case p = 2. Let (hn)n∈N be an orthonormal basis of L2(Rd),
with hn ∈ S (Rd) for all n ≥ 0. (We can for instance consider the Hermite
functions, based on Hermite polynomials, see [Sim03, Section 2] or [Itô84,
Section 1.3] for the definitions.) The interest of having basis functions in
S (Rd) is that we have the characterization

L2(Rd) =

{
f ∈ S ′(Rd)

∣∣∣∣∣ ∑
n∈N
|〈f, hn〉|2 <∞

}
.

More generally, with the notations of Section 2.2.3, f ∈W τ
2 (Rd; ρ) if and only

if Jτ{〈·〉ρf} ∈ L2(Rd), from which we deduce that

W τ
2 (Rd; ρ) =

{
f ∈ S ′(Rd)

∣∣∣∣∣ ∑
n∈N
|〈f, 〈·〉ρJτ{hn}〉|2 <∞

}
.

We can therefore apply Lemma 2.1 with p = 2, S = N, and ϕn = 〈·〉ρJτ{hn},
to deduce that W τ

2 (Rd; ρ) ∈ B(S ′(Rd)).

• For any τ, ρ ∈ R, the cylindrical σ-field ofW τ
2 (Rd; ρ) is the σ-field Bc(W τ

2 (Rd; ρ))
generated by the sets {

u ∈W τ
2 (Rd; ρ), 〈u,ϕ〉 ∈ B

}
,

where N ≥ 1, ϕ = (ϕ1, . . . , ϕN ) ∈ (W−τ2 (Rd;−ρ))N , and B ∈ B(RN ). Then,
knowing already that W τ

2 (Rd; ρ) ∈ B(S ′(Rd)) implies readily that

Bc(W τ
2 (Rd; ρ)) ⊂ B(S ′(Rd)). (2.33)

• Finally, we show that Bτp (Rd; ρ) ∈ Bc(W τ1
2 (Rd; ρ1)) for some adequately cho-

sen τ1, ρ1 ∈ R. Coupled with (2.33), this suffices to show (2.31).

Fix τ1 ≤ τ + d (1/2− 1/p) and ρ1 < ρ+ d (1/p− 1/2). According to Proposi-
tion 2.8, we have the embedding Bτp,q(Rd; ρ) ⊆ W τ1

2 (Rd; ρ1). Now, thanks to
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Proposition 2.9, we identify Bτp (Rd; ρ) as the space of generalized functions

f ∈W τ1
2 (Rd; ρ1) such that∑

j,G,m

|〈f, 2j(τ−d/p+d/2)〈2−jm〉ρψj,G,m〉|p <∞.

Again, we apply Lemma 2.1 with S =
{

(j,G,m)
∣∣ j ∈ Z, G ∈ Gj ,m ∈ Zd

}
,

p, and ϕj,G,m = 2j(τ−d/p+d/2)〈2−jm〉ρψj,G,m to deduce that Bτp (Rd; ρ) ∈
Bc(W τ1

2 (Rd; ρ1)). The inclusion (2.33) allows to conclude.
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Chapter 3

Construction of Generalized
Lévy Processes

We aim at constructing generalized random processes solution of a stochastic dif-
ferential equation of the form

Ls = w, (3.1)

with L a linear (pseudo-)differential operator and w a Lévy white noise in S ′(Rd).
Our main tool is the Bochner-Minlos theorem presented in Section 2.3.2. Two
questions need to be addressed in order to define the broadest possible class of
random processes: (i) the specification of the class of Lévy white noises on S ′(Rd),
and (ii) the identification of compatibility conditions between a Lévy noise and a
pseudo-differential operator. This is done respectively in Sections 3.1 and 3.3. In
order to prepare the construction of general Lévy processes, we extend the domain
of definition of the Lévy noise to test functions not necessarily smooth nor rapidly
decaying in Section 3.2.

63
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3.1 Lévy White Noise

The class of Lévy white noise on D ′(Rd) was introduced in [GV64, Chapter III].
Those processes are specified via their characteristic functional. Here, we will es-
sentially follow the same line, except that we will consider Lévy noise on S ′(Rd).
The question of whether or not a Lévy white noise is tempered has been recently
resolved. In [FAU14], we gave a sufficient condition ensuring that a Lévy noise is
actually located in S ′(Rd) in terms of moment conditions on the Lévy measure.
This is the main contribution presented in Section 3.1.1. More recently, R. Dalang
and T. Humeau have shown that our condition is actually sufficient [DH15]. This
gives a complete characterization of tempered Lévy noises.

3.1.1 Construction: From D ′(Rd) to S ′(Rd)

The construction of continuous-domain white noises and processes, including Lévy
processes, is intimately linked with the infinite divisibility of the finite-dimensional
marginals of those processes. The main idea is the following. If (s(t))t≥0 is a valid
pointwise process with stationary and independent increments and s(0) = 0 (in
other terms, if s is a Lévy process), then we set, for all N ≥ 1,

s(t) =

N∑
n=1

s

(
nt

N

)
− s

(
(n− 1)t

N

)
:=

N∑
n=1

Xn,N .

The Xn,N , n = 1 · · ·N , are independent (since the increments are independent)
and identically distributed (since the increments are stationary). This is precisely
the definition of an infinitely divisible random variable (Section 2.1.2).

Consider a vector of N i.i.d. infinitely divisible random variables X with
common Lévy exponent Ψ. Then, the characteristic function of X is, for every
ξ = (ξ1, . . . , ξN ),

P̂X(ξ) = exp

(
N∑
n=1

Ψ(ξn)

)
. (3.2)

Inspired by (3.2) and following Gelfand and Vilenkin, we consider infinite-dimensional
functionals of the form

P̂(ϕ) = exp

(∫
Rd

Ψ(ϕ(x))dx

)
. (3.3)



3.1 Lévy White Noise 65

The functional is, for instance, well-defined when Ψ : R → C is a continuous
function that vanishes at 0 and ϕ is smooth and compactly supported. The idea is
to replace the sum in (3.2) by an integral, and to use test functions as the running
variable.

Lévy noise in D ′(Rd). The functional (3.3) is a valid characteristic functional
over DRd) if and only if the function ξ 7→ eΨ(ξ) is the characteristic function of
an infinitely divisible law [GV64, Section 4.4, Theorem 6]; that is, if and only if
Ψ is a Lévy exponent (according to Theorem 2.2). The Bochner-Minlos theorem
then ensures that there exists a generalized random process whose characteristic
functional is given by (3.3).

Definition 3.1. Let Ψ be a Lévy exponent. Then, the generalized random process
w with characteristic functional (3.3) is called a Lévy white noise, or simply a Lévy
noise. By extension, we say that Ψ is the Lévy exponent of w.

Lévy noise in S ′(Rd).

Definition 3.2. We say that the Lévy exponent Ψ with Lévy triplet (µ, σ2, ν) sat-
isfies the ε-condition if there exists ε > 0 such that∫

t≥1

|t|ε ν(dt) <∞

Since the moments of ν are related to the moment of the underlying infinitely
divisible random variable X (Proposition 2.3), the ε-condition is equivalent to the
existence of ε > 0 such that E[|X|ε] <∞. It is also equivalent to αasymp > 0, where
αasymp is the asymptotic index of Definition 2.8.

Here is a pedagogical example of an infinitely divisible law that does not satisfy
the ε-condition. Consider the measure ν defined as

ν(dt) =
dt

|t| log2(1 + |t|)
.

Then, it is easy to see that
∫
R inf(1, t2)ν(dt) < ∞ since (|t| log2(1 + |t|))−1 is

integrable at infinity (Bertrand integral), while
∫
|t|≥1

|t|ε ν(dt) = ∞ for any ε >

0. Therefore, the Lévy exponent with Lévy triplet (0, 0, ν) does not satisfy the
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ε-condition. However, all the examples of Lévy noise that we will encountered
(Gaussian, SαS, Laplace, compound Poisson with Gaussian jumps, etc.) easily
satisfies the ε-condition. We characterize the tempered Lévy noise in Theorem 3.1.

Theorem 3.1. A Lévy white noise on D ′(Rd) is almost surely tempered if and
only if its Lévy exponent satisfies the ε-condition. This is equivalent to having
finite εth-moment for some ε > 0.

We prove that the ε-condition is sufficient. For the necessity, see [DH15, The-
orem 3.13]. The sufficiency was first proved in [FAU14, Theorem 3]. The proof
that we propose here differs from the original one. We base our argument on the
following proposition.

Proposition 3.1. If Ψ is a continuous function from R to C such that

• the function ξ 7→ exp(λΨ(ξ)) is positive-definite for any λ ≥ 0, and

• there exist ε > 0 and C > 0 such that |Ψ(ξ)| ≤ C
(
|ξ|ε + |ξ|2

)
for any ξ ∈ R,

then the functional P̂ : ϕ 7→ exp(
∫
Rd Ψ(ϕ(x))dx) is well-defined and positive-

definite over S (Rd).

Proof. In [GV64, Section 4.2.2, Theorem 2], Gelfand and Vilenkin prove that P̂ is
positive-definite over D(Rd) if and only if ξ 7→ exp(λΨ(ξ)) is positive-definite for
any λ > 0. We essentially adapt their proof from D(Rd) to S (Rd). The positive-

definiteness of P̂ is equivalent to the following condition: For any ϕ1, . . . , ϕN ∈
S (Rd), the matrix A of size N ×N , defined as

A[m,n] = P̂(ϕn − ϕm),

is positive-definite. For k ≥ 1 an integer, we set

Ak[m,n] =
1

k

∑
u∈Zd

Ψ
(
ϕn

(u
k

)
− ϕm

(u
k

))
.

For any ϕ ∈ S (Rd), our bound on Ψ(ξ) easily implies that∫
Rd
|Ψ(ϕ(x))|dx ≤ C

(
‖ϕ‖εε + ‖ϕ‖22

)
<∞. (3.4)
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It means in particular that x 7→ Ψ(ϕ(x)) is integrable, and that P̂ is well-defined
over S (Rd). Hence, x 7→ Ψ

(
ϕn(x) − ϕm(x)

)
is integrable, and we recognize a

Riemann sum in (3.1.1), from which we deduce that Ak → A as k → ∞. We also
set, and for k ≥ 1, u ∈ Zd, and M ≥ 1, the matrices with entries given by

Auk [m,n] =
1

k
Ψ(ϕn(u/k)− ϕm(u/k)) and Ak,M [m,n] =

∏
|u|≤M

Auk [m,n].

Then, Ak,M → Ak when M →∞.
To conclude the proof, we remark that the matrix Auk is positive-definite, using

the positive-definiteness of ξ 7→ exp( 1
kΨ(ξ)) (chose ξn = ϕn(u/k) in the definition of

the positive-definiteness of the function). The Schur product theorem ensures that
the Hadamard product of positive-definite matrices is positive-definite. Therefore,
Ak,M is positive-definite, a property that the Ak, and then A, inherit as M,k →
∞.

Proof of Theorem 3.1: The sufficiency. Let Ψ be the Lévy exponent of w. We need

to prove that P̂ is a valid characteristic functional on S (Rd), knowing that it is
a characteristic functional on D(Rd). Of course, the functional vanishes at 0. We
show that it is well-defined, positive-definite, and continuous over S (Rd).

Positive-definiteness: The mapping ξ 7→ exp(λΨ(ξ)) is posititive-definite for
any λ according to Theorem 2.2. Since we already know that Ψ satisfies (2.3)

for some p = ε ∈ (0, 1], we apply Proposition 3.1 to deduce that P̂ : ϕ 7→
exp(

∫
Rd Ψ(ϕ(x))dx) is well-defined and positive-definite.

Continuity: The functional being positive-definite, it is enough to show its
continuity at the origin (Proposition 2.11). For this, we simply remark that we
have, using (3.4), ∣∣∣log P̂w(ϕ)

∣∣∣ ≤ C (‖ϕ‖εε + ‖ϕ‖22
)
.

Hence, log P̂w(ϕ)→ 0 = log P̂w(0) when ϕ→ 0 in S (Rd).

Remark. In order to apply the Bochner-Minlos theorem on S ′(Rd), it is re-
quired to prove the continuity and the positive-definiteness of the functional (3.3)
over S (Rd). In [FAU14], we proved the sufficiency in Theorem 3.1 using a differ-
ent approach. We first showed the continuity of the characteristic functional over
S (Rd), and deduce the positive-definiteness by density (knowing a priori that the
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characteristic functional is positive-definite over the space D(Rd), dense in S (Rd)).
By contrast, we gave here a proof of the positive-definiteness before investigating
the continuity. It is then sufficient to establish the continuity at the origin, which
happens to be much less technical. Based on Theorem 3.1, we define the class of
tempered Lévy noises.

Definition 3.3. Let Ψ be a Lévy exponent satisfying the ε-condition. Then, the
generalized random process w with characteristic functional (3.3) is called a tem-
pered Lévy white noise.

When the context is clear, we omit to specify that the noise is tempered.

Tempered Lévy noise in D ′(Rd). This discussion is highly linked with the
results of Section 2.3.3. If Ψ is a Lévy exponent satisfying the ε-condition, we
apply the Bochner-Minlos theorem to specify two probability measures as follows.

• We denote by PD′ the probability measure on D ′(Rd) with characteristic

functional P̂D′(ϕ) = exp(
∫
Rd Ψ(ϕ(x))dx) for any ϕ ∈ D(Rd).

• We denote by PS ′ the probability measure on S ′(Rd) with characteristic

functional P̂S ′(ϕ) = exp(
∫
Rd Ψ(ϕ(x))dx) for any ϕ ∈ S (Rd).

We recall that the spaces D ′(Rd) and S ′(Rd) are endowed with the Borel σ-fields
B(D ′(Rd)) and B(S ′(Rd)) associated to their respective weak*-topology. The con-
nection between the two probability measure is deduced from the work of X. Fer-
nique, and summarized here. The following result is included in [Fer67, Section
III.3].

Proposition 3.2. The space S ′(Rd) is measurable in D ′(Rd), i.e., S ′(Rd) ∈
B(D ′(Rd)). Moreover, we have that

B(S ′(Rd)) = B(D ′(Rd)) ∩S ′(Rd).

Proposition 3.2 implies that, for any B ∈ B(S ′(Rd)) ⊂ B(D ′(Rd)), we have
PD′(B) = PS ′(B). In particular PD′(S ′(Rd)) = 1. This has two direct con-
sequences. First, the generalized random process sD′ in D ′(Rd) with law PD′ is
almost surely tempered, so it admits a version in S ′(Rd). Second, the tempered
generalized random process sS ′ in S ′(Rd) with law PS ′ can be extended into a
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generalized random process in D ′(Rd) with law PD′(B) = PS ′(B ∩S ′(Rd)) for
any B ∈ B(D ′(Rd)). This new process is almost surely in S ′(Rd).

Finally, the Lévy noises on D ′(Rd) whose Lévy exponent satisfy the ε-conditions
admit a tempered version that is the associated tempered Lévy noise. In the next
chapters, we will only consider tempered Lévy white noises with this connection
with the original construction of Gelfand and Vilenkin in mind.

3.1.2 Independence, Invariance, and Examples of Lévy noises

We recall the independence and invariances properties of the Lévy noise, as studied
in [GV64, Chapter III] The proofs are simple when relying on the characteristic
functional.

Proposition 3.3. A tempered Lévy noise is independent at every point.

This is deduced from the form of the characteristic functional of the Lévy noise
and Proposition 2.14.

Proposition 3.4. A tempered Lévy noise is stationary and isotropic. It is sym-
metric if and only if the underlying infinitely divisible random variable is.

Again, the form of the characteristic functional coupled with Proposition 2.15
directly gives the result. Propositions 3.3 and 3.4 are really reasonable in the sense
that a white noise should clearly satisfy them. We note however that they do not
characterize the class of Lévy noises. For instance, in dimension 1, the derivative
of a Lévy noise is also independent at every point, stationary, and isotropic. This
remark is extended in dimension d when considering partial derivatives of the Lévy
noise.

Nomenclature of Lévy noise. Consider a Lévy exponent Ψ satisfying the ε-
condition. Let X and w be the underlying infinitely divisible random variable and
Lévy noise, respectively. The law of w is fully characterized by the one of X. By
convention, the terminology for the random variable X is inherited by the Lévy
noise w. It means in particular that we define Gaussian, SαS, compound Poisson,
and generalized Laplace noise from their corresponding Gaussian, SαS, compound
Poisson, and generalized Laplace random variables introduced in Section 2.1.3.
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The compound Poisson case. Consider a compound Poisson random variable
with parameter λ > 0 and law of jump P and w the corresponding compound
Poisson noise. Then, we have that

w
(L)
=
∑
k≥0

akδ(· − xk) (3.5)

where the ak are i.i.d with common law P , and the xk, independent of the ak, are
such that Card{k, xk ∈ B} is a Poisson random variable with parameter λLeb(B)
for any bounded Borel set B ⊂ Rd. This is a standard result in the theory of
scattered random measure [RR89]: Poisson random measures are characterized by
their jump locations (the xk) and the intensity of the jumps (the ak). In fact,
(3.5) can be shown almost surely; that is, the random variables ak and the random
vectors xk can be specified from w, but this will not be exploited in the sequel. For
a proof of (3.5) based on the computation of the characteristic functional of the
right term of the relation, see [UT11, Appendix II]. The representation (3.5) of a
compound Poisson noise will be exploited many times in the sequel.
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3.2 The Domain of Definition of Lévy Noise

This section is based on our work done in collaboration with T. Humeau [FH17].
In Section 3.1.1, a tempered Lévy white noise is a random element in S ′(Rd). This
means that we can a priori apply the noise against a smooth and rapidly decaying
test function. As shall be illustrated throughout this thesis, this very conservative
restriction can to be relaxed. We give here some motivations in that direction.

• From Lévy noises to Lévy processes: A Lévy process s is solution of the
stochastic differential equation Ds = w with boundary condition s(0) = 0. It
is well known that, contrary to the Lévy noise, the Lévy process is a pointwise
process, with càdlàg1 trajectories [Ber98]. Formally, a Lévy process satisfies
the relation s(t) = 〈w,1[0,t]〉, where 1A denotes the indicator function of the
set A. In particular, we aim to define rigorously 〈w, f〉 for test functions of the
form f = 1[0,t]. This question was already addressed, for instance in [LS06].
Our construction will also provide a full answer.

• Expansion of the Lévy noise into orthonormal bases: Consider an orthonor-
mal basis (fn) of L2(Rd). We want to know when it is reasonable to consider
the family of the coefficients 〈w, fn〉 of the Lévy noise w. This will for instance
be exploited in Section 5.2 where we use the Daubechies wavelets coefficients
of a Lévy noise to estimate its regularity. Daubechies wavelets are compactly
supported but have a limited smoothness [Dau88]. We will see that the expan-
sion on any Daubechies wavelet basis is possible for every Lévy noise. More
generally, we may be interested in bases whose elements are not compactly
supported and/or not smooth.

• Support localization of the Lévy white noise: The domain of definition of Lévy
noise is also the domain of continuity of its characteristic functional. There
are strong connections between the continuity properties of the characteristic
functional and the localization of the process, for instance in Sobolev spaces.
The more we can extend the domain of definition, the more we learn about
the regularity of the Lévy noise. This idea has been exploited in [FFU17,
Section 5].

1Càdlàg is the French acronym for right continuous functions with left limit at each point.
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• Construction of solutions of SDEs driven by Lévy noise: By extending the
domain of definition of the Lévy noise, one weakens the conditions on the
compatibility between whitening operator L and the noise w. Indeed, we
have formally that

〈s, ϕ〉 = 〈L−1w,ϕ〉 = 〈w, (L−1)∗{ϕ}〉, (3.6)

where (L−1)∗ is the adjoint of L−1. We therefore see that we essentially need
that (L−1)∗{ϕ} belongs to the domain of definition of w for any ϕ ∈ S (Rd)
to give a meaning to (3.6). This principle will be used extensively in Section
3.3 to construct generalized Lévy processes and in Chapters 4 and 5 when
studying generalized Lévy processes.

The previous examples show the interest of extending the domain of definition of
the Lévy noise. We also want to go further, and to identify the broadest possible
set of test functions such that the random variable 〈w, f〉 is well-defined. To do
so, we connect the concept of Lévy noise as generalized random process with the
independently scattered random measures studied by B. Rajput and J. Rosinski in
[RR89].

3.2.1 Lévy Noises As Independently Scattered Random Mea-
sures

A random measure is as a random process whose test functions are indicator func-
tions: To each measurable set, we associate a random variable. It is very popular for
stochastic integration, the integral being defined for simple functions (i.e., linear
combinations of indicator functions), and extended by a limit argument. Essen-
tially, a random measure is independently scattered when two indicator functions
with disjoint supports define independent random variables. For a proper definition,
see [RR89, Section 1].

We show in this section that a Lévy noise is an example of an independently
scattered random measure. In [FH17], we treat the general case of a Lévy noise in
D ′(Rd). In accordance with the rest of the thesis, we restrict ourselves to tempered
Lévy noise. A consequence is that the Lévy exponent is easier to control, which
simplifies the proofs. We first extend the domain of definition of the noise to test
functions of the form 1B where B ∈ B(R)d a Borel set with finite Lebesgue measure.
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A mollifier is a function θ ∈ D(Rd) that is positive and such that
∫
Rd θ(x)dx = 1.

We set θk(x) = kdθ(kx).

Proposition 3.5. We consider a Lévy noise w in S ′(Rd). Let B ∈ B(Rd) be a
Borel set and θ be a mollifier.

• If ϕ ∈ D(Rd), then the random variables 〈w,ϕ · (θk ∗1B)〉 converge in L0(Ω).
The limit does not depend on θ and is denoted by 〈w,ϕ · 1B〉.

• In particular, if B is bounded, then the random variables 〈w,ϕ · 1B〉 do not
depend on ϕ as soon as ϕ equals 1 on B. We denote by 〈w,1B〉 the common
random variable.

• If LebB < ∞, then the random variables 〈w,1B∩[−k,k]d〉 converge in L0(Ω)
to a random variable denoted by 〈w,1B〉.

Proof. The function θk ∗ 1B is smooth, therefore ϕ · (θk ∗ 1B) ∈ D(Rd) and the
random variable Xk := 〈w,ϕ · (θk ∗1B)〉 is well-defined in L0(Ω). The space L0(Ω)
being complete, we need to show that the Xk are Cauchy in probability. Because
the convergence in law to 0 implies the convergence in probability, it suffices to
show that Xk is Cauchy in law. We have, for k, ` ≥ 0, that

E[eiξ(Xk−X`)] = exp

(∫
Rd

Ψ(ϕ(x)((θk − θ`) ∗ 1B)(x))dx

)
.

According to Proposition 2.4, there exists 0 < ε ≤ 1 and C > 0 such that |Ψ(ξ)| ≤
C(|ξ|ε + |ξ|2). Let K be the support of ϕ. We readily see that∣∣∣∣∫

Rd
Ψ(ϕ(x)((θk − θ`) ∗ 1B)(x))dx

∣∣∣∣ ≤ C( ∫
K

|ϕ(x)|ε |((θk − θ`) ∗ 1B)(x)|ε dx

+

∫
K

|ϕ(x)|2 |((θk − θ`) ∗ 1B)(x)|2 dx
)

≤ C
(
‖ϕ‖ε∞

∫
K

|((θk − θ`) ∗ 1B)(x)|ε dx

+ ‖ϕ‖2∞
∫
K

|((θk − θ`) ∗ 1B)(x)|2 dx
)
.

(3.7)
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The two terms in (3.7) go to 0. This is well-known for the second term, because
the regularization of a function in L2(K) converges to the function in L2(K). It is
still valid for the first term since the integral is over the compact set K. Indeed,
the Hölder inequality implies that(∫

K

|((θk − θ`) ∗ 1B)(x)|ε dx

) 1
ε

≤ Leb(K)
1
ε
− 1

2

(∫
K

|((θk − θ`) ∗ 1B)(x)|2 dx

) 1
2

,

and we are back to the L2 case. Thus, E[eiξ(Xk−X`)] vanishes as k, `→∞ and (Xk)
is a Cauchy sequence converging to a limit X in the complete space L0(Ω).

If θ̃ is another mollifier and Y is the limit of the Cauchy sequence Yk := 〈w,ϕ(θ̃k∗
1B)〉, then we readily see that Xk − Yk = 〈w,ϕ · (θk − θ̃k) ∗ 1B〉 vanishes. This
implies that X = Y in probability and the limit does not depend on the choice of
the mollifier θ.

For the second point, we simply remark that ϕ1B = ϕ̃1B if ϕ and ϕ̃ are equal
to 1 over B, therefore 〈w,ϕ1B〉 = 〈w, ϕ̃1B〉. For the last point, we show as we did
for the first point that (〈w,1B∩[−k,k]d〉) is a Cauchy sequence in L0(Ω).

Proposition 3.6. Let w be a Lévy noise and B a Borel set of Rd with finite
Lebesgue measure. The characteristic function of the random variable 〈w,1B〉 is
given for ξ ∈ R by

P̂〈w,1B〉(ξ) = exp (Leb(B)Ψ(ξ)) (3.8)

where Ψ is the Lévy exponent of w.

For any disjoint sets A,B ∈ B(Rd) with finite Lebesgue measure, the random
variables 〈w,1A〉 and 〈w,1B〉 are independent and

〈w,1A∪B〉 = 〈w,1A〉+ 〈w,1B〉 (3.9)

almost surely.

Proof. We have the convergence Ψ(ϕ(x)(θk ∗ 1B)(x)) → Ψ(ϕ(x)1B(x)) for every
x as k increases. Moreover, with Proposition 2.4, we have that

|Ψ(ϕ(x)(θk ∗ 1B)(x))| ≤ C(|ϕ(x)|ε |(θk ∗ 1B)(x)|ε + |ϕ(x)|2 |(θk ∗ 1B)(x)|2)

≤ C(|ϕ(x)|ε + |ϕ(x)|2), (3.10)
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that is an integrable function. In the second inequality of (3.10), we used that
0 ≤ θk ∗1B(x) =

∫
B
θk(x−y)dy ≤

∫
Rd θk(x−y)dy = 1. The Lebesgue dominated

convergence theorem then implies that, for any ξ ∈ R,

P̂〈w,ϕ(θk∗1B)〉(ξ) −→
k→∞

exp

(∫
B

Ψ(ξϕ(x))dx

)
.

If B is included in a compact set, we deduce, by selecting ϕ ∈ D(Rd) such that
ϕ = 1 on B, that

P̂〈w,1B〉(ξ) = exp

(∫
B

Ψ(ξ)dx

)
= exp (Leb(B)Ψ(ξ)) .

The third point of Proposition 3.5 ensures that this property is extended to B with
finite Lebesgue measure, but not necessarily bounded.

If A and B are disjoint, we directly deduce from the form of the characteristic

function (3.8) that P̂〈w,1A∪B〉(ξ) = P̂〈w,1A〉+〈w,1B〉(ξ) = P̂〈w,1A〉(ξ) · P̂〈w,1B〉(ξ),
implying the independence property. The almost sure equality (3.9) is due to
the linearity of w, easily extended to indicator functions, and to the fact that
1A∪B = 1A + 1B .

We denote by A(Rd) the δ-ring2 of Borel subsets of Rd with finite Lebesgue
measure.

Theorem 3.2. Let w be a Lévy noise on S ′(Rd). We consider the extension of
w to indicator functions on Borel sets with finite Lebesgue measure. The mapping
B 7→ 〈w,1B〉 from A(Rd) to L0(Ω) defines an independently scattered random
measure in the sense of [RR89, Section 1].

Proof. Consider a sequence (Bk)k∈N of disjoint elements of A(Rd). We have to
show that: (i) theBk are independent, and (ii) the series

∑
k∈N〈w,1Bk〉 converges to

〈w,1∩kBk〉 as soon as ∩kBk ∈ A(Rd). For the first point, we simply adapt the proof
given in Proposition 3.6 for two random variables to the case of any finite collection
of Bk. For the second point, we know that

∑K
k=0〈w,1Bk〉 = 〈w,1∪Kk=0Bk

〉 almost

2A δ-ring is a collection of sets that is closed under finite union, countable intersection, and
relative complementation [Bog07, Definition 1.2.13]. It appears in measure theory, especially when
one want to avoid sets with infinite measure.
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surely for any K ∈ N. If, in addition,
∑
k∈N Leb(Bk) <∞, then ∩k∈NBk ∈ A(Rd).

With the expression of the characteristic function (3.8), we easily show that

P̂∑K
k=0〈w,1Bk 〉

(ξ) = P̂〈w,1∪K
k=0

Bk
〉(ξ) −→

K→∞
P̂〈w,1∪k∈NBk 〉(ξ)

for any ξ ∈ R. Therefore, the series of the independent random variables 〈w,1Bk〉
converges in probability to 〈w,1∪k∈NBk〉. By [Chu01, Theorem 5.3.4], the sum
converges almost surely, which concludes the proof.

3.2.2 Extension of the Domain of Definition

Having connected Lévy white noises with independently scattered random mea-
sures, it is then possible to extend the domain to other test functions. This was
done by Rajput and Rosinski in [RR89]. We restate here the main definitions and
theorems of their work.

We say that f is a simple function if it can be written as f =
∑N
n=1 an1Bn ,

where an ∈ R and the Bn ∈ A(Rd) are Borel subsets of Rd with finite Lebesgue
measure. For any Borel set B and simple function f , we use Proposition 3.5 to
define the random variable

〈w, f · 1B〉 :=

N∑
n=1

an 〈w,1Bn∩B〉 .

Definition 3.4. Consider a Lévy noise w. We say that a measurable function
f : Rd → R is w-integrable if there exists a sequence of simple functions (fk)k∈N
such that

• the fk converge almost everywhere (for the Lebesgue measure) to f , and

• for any Borel set B in Rd, the random variables 〈w, fk · 1B〉 converge in
probability.

Then, we define the random variable

〈w, f · 1B〉 := lim
k→∞

〈w, fk · 1B〉 .

Definition 3.4 identifies the class of measurable test functions such that 〈w, f〉
is well-defined. We have the following characterization of w-integrable functions,
proved in [RR89, Theorem 2.7].
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Theorem 3.3. Let w be a Lévy noise with characteristic triplet (µ, σ2, ν), and
f : Rd → R be a measurable function. Then, the measurable function f is w-
integrable if and only if the following conditions are satisfied:

1.
∫
Rd
∣∣µf(x) +

∫
R tf(x)

(
1|tf(x)|≤1 − 1|t|≤1

)
ν(dt)

∣∣dx <∞,

2.
∫
Rd σ

2 |f(x)|2 dx <∞,

3.
∫
Rd×R min(1, |tf(x)|2)ν(dt)dx <∞.

Then, if we set

Θ(ξ) =
∣∣∣µξ +

∫
R
tξ
(
1|tξ|≤1 − 1|t|≤1

)
ν(dt)

∣∣∣+ σ2ξ2 +

∫
R

min(1, |tξ|2)ν(dt), (3.11)

the measurable function f is w-integrable if and only if
∫
Rd Θ(f(x))dx <∞.

We propose to call the function Θ the Rajput-Rosinski exponent of the Lévy noise
w. We denote by LΘ(Rd) the space of w-integrable functions of the d-dimensional
Lévy noise w with Rajput-Rosinski exponent Θ. The space LΘ(Rd) is called the
domain of definition of w.

Moments of 〈w, f〉. When we restrict ourselves to ϕ ∈ S (Rd), the random
variables 〈w,ϕ〉 have finite pth moments if and only if the underlying infinitely
divisible random variable has a finite pth moment itself [UT14]. The situation is
different once we have extended the domain. The following characterization arises
[RR89, Theorem 3.3].

Proposition 3.7. Consider a Lévy noise w with finite pth-moments for p > 0. For
f ∈ LΘ(Rd), we have the equivalence

E[|〈w, f〉|p] <∞⇐⇒
∫
Rd

∫
R

(
|tf(x)|p1|tf(x)|>1 + |tf(x)|21|tf(x)|≤1

)
ν(dt)dx <∞.

Therefore, if we set

Θp(ξ) :=
∣∣∣µξ +

∫
R
tξ
(
1|tξ|≤1 − 1|t|≤1

)
ν(dt)

∣∣∣+ σ2ξ2

+

∫
R

(
|tξ|p1|tξ|>1 + |tξ|21|tξ|≤1

)
ν(dt), (3.12)

then, E[|〈w, f〉|p] <∞ if and only if
∫
Rd Θp(f(x))dx <∞.
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The function Θp is called the pth-order Rajput-Rosinski exponent and the do-
main of finite pth-moments is denoted by LΘp(Rd). From now on, we also denote
Θ0 = Θ and LΘ0

(Rd) = LΘ(Rd). If the pth moments of w are infinite (that is, if
the underlying infinite divisible random variable X satisfies E[|X|p] =∞), then the
exponent Θp defined in (3.12) is infinite for every ξ 6= 0. Therefore, we can extend
the definition of the domain of finite pth-moments by setting LΘp(Rd) = {0}.

Structure of LΘp(Rd).

Definition 3.5. We say that ρ : R → R+ is a ϕ-function if ρ(0) = 0 and ρ is
symmetric, continuous, and nondecreasing on R+. The ϕ-function ρ is ∆2-regular
if

ρ(2ξ) ≤Mρ(ξ)

for some M, ξ0 > 0, and every ξ ≥ ξ0.
Let ρ be a ϕ-function. For f : Rd → R, we set ρ(f) :=

∫
Rd ρ(f(x))dx. The

generalized Orlicz space associated to ρ is

Lρ(Rd) := {f measurable | ∃λ > 0, ρ(f/λ) <∞} .

Remark. Orlicz spaces were introduced in [BO31] as natural generalizations
of Lp-spaces for p ≥ 1. A systematic study with important extensions was done
by J. Musielak [Mus83]. The initial theory deals with Banach spaces, excluding
for instance the Lp-spaces with 0 < p < 1. Definition 3.5 generalizes the Orlicz
spaces in two ways: One does not require that ρ is convex, neither that ρ(ξ)→∞
as ξ → ∞. The need for a non-locally convex framework (related to non-convex
ϕ-function) is notable in stochastic integration. It was initiated by K. Urbanik and
W.A. Woyczyns [UW67]. It is at the heart of the study of the structure developed
by Rajput and Rosinski. We follow here the exposition of M.M. Rao and Z.D. Ren
in [RR91, Chapter X]. Proposition 3.8 summarizes the results on generalized Orlicz
spaces.

Proposition 3.8. If ρ is a ∆2-regular ϕ-function, then we have

Lρ(Rd) = {f measurable | ∀λ > 0, ρ(f/λ) <∞}
= {f measurable | ρ(f) <∞} .
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The space Lρ(Rd) is a complete linear metric space for the F-norm

‖f‖ρ := inf {λ > 0 | ρ(f/λ) ≤ λ}

on which simple functions are dense. Moreover, we have the equivalence, for any
sequence of elements fk ∈ Lρ(Rd),

‖fk‖ρ −→
k→∞

0⇔ ρ(fk) −→
k→∞

0.

For p > 0, the exponent Θp of a white noise with finite pth moment is a ∆2-
regular ϕ-function [RR89, Lemma 3.1]. We set Θp(f) =

∫
Rd Θp(f(x))dx. Proposi-

tion 3.8 then directly implies the following result.

Proposition 3.9. Fix p > 0 and w a Lévy noise with pth-order Rajput-Rosinski
exponent Θp. Then, LΘp(Rd) is a generalized Orlicz space. In particular, it is a
complete linear metric space. A sequence (fk)k∈N converges to 0 in LΘp(Rd) if and
only if

Θp(fk) =

∫
Rd

Θp(fk(x))dx −→
k→∞

0.

Lévy noise as a random linear function on its domain. We are now ready
to extend the domain of definition of w, according to [RR89, Theorem 3.3].

Theorem 3.4. Let w be a Lévy white noise with finite pth-moments for p ≥ 0.
Then, the functional

w : LΘp(Rd)→ Lp(Ω)

f 7→ 〈w, f〉

is linear and continuous.

Theorem 3.4 with p = 0 identifies the domain of definition of w; that is, the
broadest class of test functions on which w is a random linear functional. Once the
random variable 〈w, f〉 is well-defined, it is important to identify its characteristic
function. The following result is the last part of [RR89, Theorem 2.7].

Proposition 3.10. For f ∈ LΘ(Rd), the characteristic function of 〈w, f〉 is given
by

P̂〈w,f〉(ξ) = exp

(∫
Rd

Ψ(ξf(x))dx

)
.
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3.2.3 The spaces Lp0,p∞(Rd)

We introduce the family of function spaces that generalize the Lp-spaces for 0 < p <
∞. They will be identified in the sequel as the domains of definition of important
classes of Lévy white noises. We first give some notations. For 0 ≤ p0, p∞ <∞, we
set

ρp0,p∞(ξ) := |ξ|p01|ξ|>1 + |ξ|p∞1|ξ|≤1,

ρlog,p∞(ξ) := (1 + log|ξ|)1|ξ|>1 + |ξ|p∞1|ξ|≤1,

with the convention that 00 = 1.

Definition 3.6. For 0 ≤ p0, p∞ <∞, we set

Lp0,p∞(Rd) =

{
f measurable

∣∣∣∣ ρp0,p∞(f) :=

∫
Rd
ρp0,p∞(f(x))dx <∞

}
,

Llog,p∞(Rd) =

{
f measurable

∣∣∣∣ ρp0,p∞(f) :=

∫
Rd
ρlog,p∞(f(x))dx <∞

}
.

For p > 0, we have Lp,p(Rd) = Lp(Rd). Roughly speaking, p0 measures the local
integrability of a function, while p∞ indicates the asymptotic one. This is illustrated
by the following example. For α, β > 0, the function f(x) = ‖x‖−α1‖x‖<1 +

‖x‖−β1‖x‖≥1 is such that

ρp0,p∞(f) =

∫
Rd

(
|f(x)|p01|f(x)|>1 + |f(x)|p∞1|f(x)|≤1

)
dx

=

∫
‖x‖<1

‖x‖−p0αdx+

∫
‖x‖≥1

‖x‖−p∞βdx.

Therefore, f is in Lp0,p∞(Rd) if and only if

α <
d

p0
and β >

d

p∞
.

The first inequality effectively refers to the integrability of f at the origin (or local
integrability), while the second covers its asymptotic integrability.
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Structure of Lp0,p∞(Rd). As we did in Section 3.2.2 with the spaces LΘp(Rd),
we rely on generalized Orlicz spaces [RR91, Chapter X] to identify the structure of
the spaces Lp0,p∞(Rd).

Proposition 3.11. We fix p0 ≥ 0 and p∞ > 0. The function ρp0,p∞ : R→ R is a
∆2-regular ϕ-function. Therefore, Lp0,p∞(Rd) is a complete linear metric space on
which the convergence of fk to 0 is equivalent to

ρp0,p∞(fk) −→
k→∞

0.

The same conclusions occur for the function ρlog,p∞ and the space Llog,p∞(Rd).

Proof. To simplify the notation, we write ρ = ρp0,p∞ in this proof. The function ρ is
continuous, non-decreasing, symmetric, and vanishes at the origin (since p∞ 6= 0).
It is therefore a ϕ-function. Moreover, we have that, for any ξ ∈ R and λ > 0,

mρ(ξ) ≤ ρ(ξ/λ) ≤Mρ(ξ), (3.13)

where we set I = [min(1, λ),max(1, λ)] and

m = min
I

xp0−p∞

λp0
= min(λ−p0 , λ−p∞),

M = max
I

xp0−p∞

λp0
= max(λ−p0 , λ−p∞).

To show these inequalities, we first remark that, for any min(1, λ) ≤ |ξ| ≤ max(1, λ),

m |ξ|p∞ ≤ λ−p0 |ξ|p0 ≤M |ξ|p∞ . (3.14)

Then, we have the following decomposition

ρ(ξ/λ) = λ−p0 |ξ|−p0 1|ξ|>1 + λ−p0 |ξ|p0 1λ<|ξ|≤1 + λ−p∞ |ξ|p∞ 1|ξ|≤λ. (3.15)

Using (3.14) to bound λ−p0 |ξ|p0 1λ<|ξ|≤1 in (3.15), we easily obtain (3.13). Taking

λ = 1/2, this shows that ρ is ∆2-regular. The structure of Lp0,p∞(Rd) then follows
from Proposition 3.8. The proof for ρlog,p∞ and Llog,p∞(Rd) is very similar.

Remark. In Proposition 3.11, we restricted ourselves to the case when p∞ 6= 0.
The reason is that ρp0,0(0) 6= 0, so that ρp0,0 is not a ϕ-function. Therefore, we do
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not define a generalized Orlicz space in the sense of Rao and Ren [RR91]. The space
Lp0,0(Rd) can be described as follows. It is the space of functions in Lp0(Rd) whose
support has a finite Lebesgue measure. We do not specify any topological structure
on those vector spaces, since they will not appear as the domain of definition of any
Lévy noise. However, the space L2,0(Rd) will play a role as a common subspace to
all the domains of definition of the Lévy noises (see Proposition 3.17).

3.2.4 Practical Determination of the Domain

We provide here several criteria for the practical identification of the domain of def-
inition of a Lévy noise. We apply our result to Gaussian, SαS, compound Poisson,
and generalized Laplace noises. To the best of our knowledge, the results presented
here are new for the two latter classes of noise. Similar considerations are given for
the domain of finite pth moments for 0 < p ≤ 2.

Proposition 3.12. Let w be a Lévy noise with finite pth-moments for p ≥ 0.

• Linearity: for f, g ∈ LΘp(Rd) and λ ∈ R, f + λg ∈ LΘp(Rd).

• Invariances: for f ∈ LΘp(Rd) and H : Rd → Rd a C1-diffeomorphism, we
have

x 7→ f(H(x)) ∈ LΘp(Rd).

In particular, the translations Tx0
f , rescalings Saf , and rotations Rθ0f of f

are in LΘp(Rd).

Proof. We already know that LΘp(Rd) is a linear space (Proposition 3.9). For the
invariance, we simply remark that, by the substitution y = H(x), we have∫

Rd
Θp(f(H(x)))dx =

1

|det JH|

∫
Rd

Θp(f(y))dy

with JH the invertible Jacobian matrix of H.

If w is a Lévy noise, so are aw and the rescaling w(·/a) for a 6= 0. If w1 and w2

are two independent Lévy noises, then w1 +w2 is also a Lévy noise. In Proposition
3.13, we denote by Θp(w) the pth-order Rajput-Rosinski exponent of w, in order
to distinguish the exponents of the different noises.
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Proposition 3.13. Let w be a Lévy noise with finite pth-moments for p ≥ 0. Then
we have, for a 6= 0,

LΘp(w)(Rd) = LΘp(aw)(Rd) = LΘp(w(·/a))(Rd).

If w1 and w2 are two independent Lévy noises, then

LΘp(w1)(Rd) ∩ LΘp(w2)(Rd) ⊆ LΘp(w1+w2)(Rd), (3.16)

with equality when at least one of the two Lévy noises is symmetric.

Proof. We have 〈w(·/a), f〉 = 〈w, adf(a·)〉. Thus, f ∈ LΘp(w(·/a))(Rd) if and only if

adf(a·) ∈ LΘp(Rd). Since LΘp(Rd) is a linear space invariant by rescaling (Propo-
sition 3.12), the latter condition is equivalent to f ∈ LΘp(Rd). This shows that
LΘp(w(·/a))(Rd) = LΘp(Rd). We proceed similarly for LΘp(aw)(Rd).

For i = 1, 2, the Lévy triplet of wi (w, respectively) is denoted by (µi, σ
2
i , νi)

((µ, σ2, ν), respectively), and the corresponding Rajput-Rosinski exponent is Θp,i

(Θp, respectively). If w1 and w2 are independent, we have the relations

µ = µ1 + µ2, σ
2 = σ2

1 + σ2
2 , ν = ν1 + ν2.

Therefore, we have, by the triangular inequality,

Θp(ξ) =
∣∣∣(µ1 + µ2)ξ +

∫
R
tξ
(
1|tξ|≤1 − 1|t|≤1

)
(ν1 + ν2)(dt)

∣∣∣
+ (σ2

1 + σ2
2)ξ2 +

∫
R

min(|ξt|p, |ξt|2)(ν1 + ν2)(dt)

≤ Θp,1(ξ) + Θp,2(ξ),

which proves (3.16). If for instance w1 is symmetric, the latter inequality is an
equality since µ1ξ+

∫
R tξ

(
1|tξ|≤1 − 1|t|≤1

)
ν1(dt) = 0 and (3.16) is an equality.

In general, (3.16) is only an inclusion. Consider for instance the case where w1

and w2 have Lévy triplet (1, 1, 0) and (−1, 0, 0) respectively, meaning that w1 is a
Gaussian noise with drift µ = 1 and w2 a pure drift µ = −1. Then, w1 and w2

are clearly independent, and w1 +w2 is a Gaussian noise without drift. Therefore,
LΘp(w1+w2)(Rd) = L2(Rd) but LΘp(w1)(Rd) ∩ LΘp(w2)(Rd) = L1(Rd) ∩ L2(Rd).
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Reduction to the symmetric case without Gaussian part. For µ ∈ R and
ν a Lévy measure, we set

mµ,ν(ξ) =

∣∣∣∣µξ +

∫
R
tξ(1|tξ|≤1 − 1|t|≤1)ν(dt)

∣∣∣∣ .
Proposition 3.14. Let (µ, σ2, µ) be a Lévy triplet and Θ the corresponding Rajput-
Rosinski exponent. We also denote by νsym the symmetrization of ν. We consider
the following Lévy noises:

• w with Lévy triplet (µ, σ2, ν),

• w2 with Lévy triplet (µ, 0, ν) and Rajput-Rosinski exponent Θp,2,

• wsym with Lévy triplet (0, σ2, νsym) and Rajput-Rosinski exponent Θp,sym.

Then, we have the following relations for p ≥ 0:

• If σ2 6= 0, then

LΘp(Rd) = L2(Rd) ∩ LΘp,2(Rd). (3.17)

• In any case,

LΘp(Rd) = LΘp,sym(Rd) ∩
{
f ∈ LΘ(Rd)

∣∣∣∣ ∫
Rd
mµ,ν(f(x))dx <∞

}
. (3.18)

Proof. We can decompose w = w2 + wG, where w2 and wG are independent with
respective Lévy triplets (µ, 0, ν) and (0, σ2, 0). Then, wG is a Gaussian noise, for
which LΘp,G(Rd) = L2(Rd). We apply (3.16) with equality (wG being symmetric)
to obtain (3.17). Finally, (3.18) is a reformulation of [RR89, Proposition 2.9].

Based on Proposition 3.14, we restrict our attention to symmetric Lévy noises
without Gaussian parts. We first reduce to the case when σ2 = 0, thanks to (3.17).
The only remaining part to deduce the general case from the symmetric one is the
identification of functions f satisfying∫

Rd
mµ,ν(f(x))dx <∞.

Primarily, for non-symmetric noise, this usually relies on L1-type conditions, but
we shall not investigate this question in details here.
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Practical criteria. We consider a symmetric Lévy noise w without Gaussian
part and with symmetric Lévy measure ν. The function Θp defined in (3.12) simply
becomes, for p ≥ 0,

Θp(ξ) =

∫
R

min(|tξ|p, |tξ|2)ν(dt)

= |ξ|2
∫
|t|≤1/|ξ|

|t|2ν(dt) + |ξ|p
∫
|t|>1/|ξ|

|t|pν(dt) (3.19)

=

∫
R
ρp,2(tξ)ν(dt).

We recall that Θp is finite as soon as
∫
|t|>1

|t|p ν(dt) =∞. Otherwise, we have that

LΘp(Rd) = {0} and no nontrivial test function has a finite pth moment.
We provide powerful results that will be used in practice to determine the

domain of definition of specific Lévy noise (SαS, compound Poisson, generalized
Laplace). The first criterion is useful as soon as we are able to estimate the behav-
ior of the Rajput-Rosinski exponent at the origin or at infinity.

Proposition 3.15. Let w be a symmetric Lévy noise without Gaussian part and
p ≥ 0. The pth-order Rajput-Rosinski exponent of w is denoted by Θp.

1. Assume that Θp(ξ) ≤ Cρp0,p∞(ξ) for some constant C > 0 and every ξ, then
we have the embedding

Lp0,p∞(Rd) ⊆ LΘp(Rd). (3.20)

2. Assume that ρp0,p∞(ξ) ≤ CΘp(ξ) for some constant C > 0 and every ξ, then
we have the embedding

LΘp(Rd) ⊆ Lp0,p∞(Rd). (3.21)

3. Assume that Θp(ξ) ∼
0
A|ξ|p∞ and Θp(ξ) ∼∞ B|ξ|p0 , then

LΘp(Rd) = Lp0,p∞(Rd). (3.22)

4. The same holds with Llog,p∞(Rd) instead of Lp0,p∞(Rd) if we replace |ξ|p0 by
log|ξ|.
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Proof. The condition Θp(ξ) ≤ Cρp0,p∞(ξ) implies that, for any function f ∈
Lp0,p∞(Rd), we have

Θp(f) =

∫
Rd

Θp(f(x))dx ≤ C
∫
Rd
ρp0,p∞(f(x))dx = C‖f‖p0,p∞ .

Therefore, the identity is continuous from Lp0,p∞(Rd) to LΘp(Rd) proving (3.20).
The proof of (3.21) is similar. For the last point, we remark that the two functions
Θp and ρp0,p∞ do not vanish for ξ 6= 0. Moreover, they are continuous (for Θp, this
comes from [RR89, Lemma 3.1]) and are equivalent at 0 and ∞. Thus, there exists
two constants such that

C1ρp0,p∞(ξ) ≤ Θp(ξ) ≤ C2ρp0,p∞(ξ).

We then apply (3.20) and (3.21) to obtain (3.22).

Note that the local integrability of test functions (parameter p0) is linked with
the asymptotic behavior of Θp, while the asymptotic integrability (parameter p∞)
is linked to the behavior of Θp at 0.

If we know that the Lévy measure has some finite moments, then we obtain new
information on the domain of definition of the Lévy noise. For p, q ≥ 0, we set

mp,q(ν) :=

∫
R
ρp,q(t)ν(dt),

called the generalized moments of ν. Then, ν being a Lévy measure, we have that
m0,2(ν) <∞. If in addition the underlying infinitely divisible random variable has
a finite pth moment, we can reformulate Proposition 2.3 as mp,2(ν) <∞.

Proposition 3.16. Let w be a symmetric Lévy noise without Gaussian part and
with Lévy measure ν.

• We assume that mp,2(ν) < ∞ for some 0 ≤ p ≤ 2. Then, we have, for any
ξ ∈ R, that

mp,2(ν)ρp,2(ξ) ≤ Θp(ξ) ≤ mp,2(ν)ρ2,p(ξ). (3.23)

• We assume that mp,2(ν) <∞ for some p ≥ 2. Then, we have, for any ξ ∈ R,
that

mp,2(ν)ρ2,p(ξ) ≤ Θp(ξ) ≤ mp,2(ν)ρp,2(ξ). (3.24)
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• For p > 0, we condense (3.23) and (3.24) as

mp,2(ν)ρmin(p,2),max(p,2)(ξ) ≤ Θp(ξ) ≤ mp,2(ν)ρmax(p,2),min(p,2)(ξ).

• If mp∞,p0(ν) <∞ for some 0 ≤ p0 ≤ 2, 0 < p∞ <∞ and if p ≤ p0, p∞, then

Θp(ξ) ≤ mmin(p∞,2),p0(ν)ρp0,min(p∞,2)(ξ). (3.25)

Proof. All the inequalities will be obtained by exploiting the position of |t|, |ξ|, or
|tξ| with respect to 1. We first show (3.23), the proof for (3.24) being very similar.
We start proving the upper bound of (3.23). We first assume that |ξ| ≤ 1. Then,
using (3.19), we decompose Θp as

Θp(ξ) =

∫
|t|≤1

|tξ|2ν(dt) +

∫
1<|t|≤ 1

|ξ|

|tξ|2ν(dt) +

∫
|t|> 1

|ξ|

|tξ|pν(dt). (3.26)

Since p ≤ 2, we have that

Θp(ξ) ≤
∫
|t|≤1

|t|2|ξ|pν(dt) +

∫
1<|t|≤ 1

|ξ|

|tξ|pν(dt) +

∫
|t|> 1

|ξ|

|tξ|pν(dt)

=

(∫
|t|≤1

|t|2 ν(dt) +

∫
1<|t|

|t|p ν(dt)

)
|ξ|p

= mp,2(ν) |ξ|p . (3.27)

Assume now that |ξ| > 1. Then, we use the decomposition

Θp(ξ) =

∫
|t|≤ 1

|ξ|

|tξ|2ν(dt) +

∫
1
|ξ|<|t|≤1

|tξ|pν(dt) +

∫
|t|>1

|tξ|pν(dt). (3.28)

Again, due to p ≤ 2, we have that

Θp(ξ) ≤
∫
|t|≤ 1

|ξ|

|tξ|2ν(dt) +

∫
1
|ξ|<|t|≤1

|tξ|2ν(dt) +

∫
|t|>1

|t|p |ξ|2 ν(dt)

=

(∫
|t|≤1

|t|2 ν(dt) +

∫
1<|t|

|t|p ν(dt)

)
|ξ|2

= mp,2(ν) |ξ|2 . (3.29)
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Combining (3.27) and (3.29), we deduce that Θp(ξ) ≤ mp,2(ν)ρ2,p(ξ).
For the lower bound in (3.23), we first assume that |ξ| ≤ 1. Then, starting from

(3.26), we have that

Θp(ξ) ≥
∫
|t|≤1

|t|2|ξ|2ν(dt) +

∫
1<|t|≤ 1

|ξ|

|t|p |ξ|2 ν(dt) +

∫
|t|> 1

|ξ|

|t|p|ξ|2ν(dt)

= mp,2(ν) |ξ|2 . (3.30)

And finally, when |ξ| > 1, we have, using (3.28), that

Θp(ξ) ≥
∫
|t|≤ 1

|ξ|

|t|2 |ξ|p ν(dt) +

∫
1
|ξ|<|t|≤1

|t|2 |ξ|p ν(dt) +

∫
|t|>1

|tξ|p ν(dt)

= mp,2(ν) |ξ|p . (3.31)

With (3.30) and (3.32), we deduce that Θp(ξ) ≥ mp,2(ν)ρp,2(ξ) and (3.23) is proved.

Finally, (3.25) is proved on the same principle. We assume that |ξ| ≤ 1 and
p ≤ p∞ ≤ 2. Then, using (3.26), we deduce that

Θp(ξ) ≤
∫
|t|≤1

|t|2|ξ|p∞ν(dt) +

∫
1<|t|≤ 1

|ξ|

|tξ|p∞ν(dt) +

∫
|t|> 1

|ξ|

|tξ|p∞ν(dt)

= mp∞,2(ν) |ξ|p .

If now p∞ > 2, we have, still for |ξ| ≤ 1, that

Θp(ξ) ≤
∫
|t|≤1

|t|2|ξ|2ν(dt) +

∫
1<|t|≤ 1

|ξ|

|t|p∞ |ξ|2 ν(dt) +

∫
|t|> 1

|ξ|

|ξ|2 ν(dt)

= m2,2(ν) |ξ|2 .

We deduce that Θp(ξ) ≤ mmin(p∞,2),2(ν) |ξ|min(p∞,2)
.

When |ξ| > 1, p ≤ p0 ≤ 2, and p < p∞, we have using (3.28) that

Θp(ξ) ≥
∫
|t|≤ 1

|ξ|

|tξ|p0 ν(dt) +

∫
1
|ξ|<|t|≤1

|tξ|p0 ν(dt) +

∫
|t|>1

|t|min(p∞,2) |ξ|p0 ν(dt)

= mmin(p∞,2),p0(ν) |ξ|p0 . (3.32)
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Remarking that mmin(p∞,2),2(ν) ≤ mmin(p∞,2),p0(ν) and combining the bounds for
|ξ| ≤ 1 and |ξ| > 1, we deduce (3.25).

Proposition 3.17. For any Lévy noise, we have

L2,0(Rd) ⊆ LΘ(Rd) ⊆ L0,2(Rd), (3.33)

Let 0 < p ≤ 2. For any symmetric Lévy noise such that mp,2(ν) <∞, we have

L2,p(Rd) ⊆ LΘp(Rd) ⊆ Lp,2(Rd). (3.34)

Let p ≥ 2. For any symmetric Lévy noise such that mp,2(ν) <∞, we have

Lp,2(Rd) ⊆ LΘp(Rd) ⊆ L2,p(Rd). (3.35)

For p > 0, assuming that mp,2(ν) <∞, we condense (3.34) and (3.35) as

Lmax(p,2),min(p,2)(Rd) ⊆ LΘp(Rd) ⊆ Lmin(p,2),max(p,2)(Rd). (3.36)

In particular, for any symmetric finite-variance Lévy noise

LΘ2(Rd) = L2(Rd). (3.37)

For any symmetric Lévy noise without Gaussian part such that mp∞,p0(ν) < ∞,
with 0 ≤ p ≤ p0, p∞ ≤ 2, we have

Lp0,p∞(Rd) ⊆ LΘp(Rd). (3.38)

Proof. When w is symmetric without Gaussian part, (3.33), (3.34), and (3.37) are
directly deduced from (3.23) by taking p = 0, p general, and p = 2, respectively.
Adding a Gaussian part with Rajput-Rosinski exponent ΘG does not change the
conclusions since L2,p(Rd) ⊆ LΘp,G(Rd) = L2(Rd) ⊆ Lp,2(Rd) for all 0 ≤ p ≤ 2 and
thanks to (3.17).

We now consider a general Lévy noise w with Lévy triplet (µ, σ2, ν) and wsym

its symmetric version with triplet (0, σ2, νsym). We already now that L2,0(Rd) ⊆
LΘsym

(Rd) ⊆ L0,2(Rd). Moreover, from (3.18), we know that

LΘ(Rd) = LΘsym
(Rd) ∩

{
f ∈ LΘ(Rd)

∣∣∣∣ ∫
Rd
mµ,ν(f(x))dx <∞

}
. (3.39)
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First, we have that LΘ(Rd) ⊆ LΘsym(Rd) ⊆ L0,2(Rd). Second, due to (3.39), it is
sufficient to prove that

L2,0(Rd) ⊆
{
f ∈ LΘ(Rd)

∣∣∣∣ ∫
Rd
mµ,ν(f(x))dx <∞

}
to deduce that L2,0(Rd) ⊆ LΘ(Rd). We remark that, for |ξ| ≤ 1,

mµ,ν(ξ) =

∣∣∣∣∣µξ +

∫
1≤|t|≤ 1

|ξ|

ξtν(dt)

∣∣∣∣∣ ≤ |µξ|+
∫

1≤|t|≤ 1
|ξ|

ν(dt)

≤|µ|+
∫

1≤|t|
ν(dt),

and that, for |ξ| > 1,

mµ,ν(ξ) =

∣∣∣∣∣µξ +

∫
1
|ξ|≤|t|≤1

ξtν(dt)

∣∣∣∣∣ ≤ |µξ|+
∫

1
|ξ|≤|t|≤1

|ξt|2ν(dt)

≤

(
|µ|+

∫
|t|≤1

t2ν(dt)

)
ξ2.

Therefore, we have mµ,ν(ξ) ≤ Cρ2,0(ξ) for some constant C, which implies that
L2,0(Rd) is included into

{
f ∈ LΘ(Rd)

∣∣ ∫
Rd mµ,ν(f(x))dx <∞

}
, as expected.

Finally, (3.38) is a direct consequence of (3.25).

Remarks.

• The embeddings (3.33) inform on the extreme cases. In particular, a func-
tion in L2,0(Rd)—the space of functions in L2(Rd) whose support has a finite
Lebesgue measure—can be applied to any Lévy noise. This includes in par-
ticular all the indicator functions 1B with B a Borel set with finite Lebesgue
measure, or the Daubechies wavelets that are compactly supported and in
L2(Rd). Finite-variance compound Poisson noises reach the largest possible
domain of definition L0,2(Rd) (see Proposition 3.19 below).

• Moreover, (3.38) is particularly important as it gives the implication of having
finite moments of the form

∫
|t|>1

|t|p∞ ν(dt) < ∞ and
∫
|t|≤1

|t|p0 ν(dt) < ∞.

This result will play a crucial role when identifying compatibility conditions
between a whitening operator and a Lévy noise in Section 3.3.1.
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• The embeddings (3.36) are useful to understand the finiteness of the moments
of 〈w, f〉 for a Lévy noise with finite pth-moments. In particular, a test
function f that is bounded with compact support is in the domain of definition
of any noise and 〈w, f〉 has a finite pth-moment as soon as w has.

• Finally, we point out that the behavior of the Rajput-Rosinski exponent Θ
at the origin (at the infinity, respectively) is related to the moments of ν at
the infinity (at the origin, respectively): The local and asymptotic behaviors
of ν and Θ are inverted. This reminds us of the Fourier transform. The local
regularity of a function is directly connected to the decay properties of its
Fourier transform, and vice versa. This is not surprising. For instance, for
compound Poisson processes, the Lévy exponent is the Fourier transform of
the Lévy measure up to the addition of a constant term, and the Rajput-
Rosinski exponent is highly related to the Lévy exponent.

We see how the indices αloc and αasymp influence the domain of definition and
the domain of pth-moments of the Lévy noise.

Proposition 3.18. Assume that w is a symmetric Lévy noise with local and asymp-
totic indices αloc ∈ [0, 2], αasymp ∈ (0,∞]. For p ≤ αloc, 2 and p < αasymp, if ε > 0
is small enough, we have the embedding

Lαloc+ε,αasymp−ε(Rd) ⊆ LΘp(Rd)

if αasymp ≤ 2, and

Lαloc+ε,2(Rd) ⊆ LΘp(Rd)

if αasymp > 2, with Θp the pth-order Rajput-Rosinski exponent of w.

Proof. Let ε be small enough such that p ≤ αasymp − ε. Then, we have that∫
R
ρmin(αasymp−ε,2),αloc

(t)ν(dt) <∞,

by definition of the indices (see Definition 2.8). We can therefore apply (3.38) with
the adequate conditions on p to deduce Proposition 3.18. The distinction between
αasymp ≤ 2 and αasymp > 2 comes from the fact that p∞ ≤ 2 in (3.38).
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Examples. We shall see how our results apply to specific Lévy noises. For these
different classes, introduced in Section 2.1.3, we specify the domain of definition
LΘ(Rd) and the domains of finite pth moments LΘp(Rd).

The Gaussian noise of variance σ2 is characterized by the Lévy triplet (0, σ2, 0).
With Theorem 3.3, we obtain that, for every 0 ≤ p ≤ 2,

LΘp,Gauss
(Rd) = L2(Rd).

Note that Theorem 3.3 is on Θ0, but Θp = Θ0 in the Gaussian case. Based on
these considerations and on Proposition 3.14, we shall consider Lévy triplets with
σ2 = 0 from now on.

Proposition 3.19. The domains of definition of the following Lévy noises are
completely characterized.

• If wα is a SαS noise with 0 < α < 2, then, for every 0 ≤ p < α, we have

LΘp,α(Rd) = Lα(Rd).

For p ≥ α, we have LΘp,α(Rd) = {0}.

• If wPoisson is a symmetric compound Poisson noise with finite variance, then

LΘp,Poisson
(Rd) = Lp,2(Rd).

for every 0 ≤ p ≤ 2.

• If wLaplace is a generalized Laplace noise, then we have

LΘLaplace
(Rd) = Llog,2(Rd). (3.40)

Moreover, for 0 < p ≤ 2, we have

LΘp,Laplace
(Rd) = Lp,2(Rd). (3.41)

Proof. We study each case separately.

• SαS: Without loss of generality, one can assume that γ = 1. The Lévy
measure of wα is ν(dt) = Cα

|t|α+1 dt with Cα a constant (see Section 2.1.3). A
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non-trivial SαS random variable has an infinite pth-moment for p ≥ α, and
for every f ∈ L(wα), 〈w, f〉 is a SαS random variable. Hence Lp(w) = {0}
for p ≥ α. The case of interest is therefore 0 ≤ p < α. Then, from (3.19),

Θp(ξ) = 2Cα

∫ 1/|ξ|

0

ξ2

tα+1
dt+ 2Cα

∫
1/|ξ|

|ξ|p

xα+1−p dt

= 2Cα|ξ|α
(∫ 1

0

dy

yα−1
+

∫ ∞
1

dy

yα+1−p

)
=

(
2(2− p)Cα

(2− α)(α− p)

)
|ξ|α.

where we perfomed the change of variable y = ξx. The result eventually
follows from Proposition 3.15.

• Compound Poisson: We denote by λ and P the sparsity parameter and the
law of jumps of wPoisson, respectively. The Lévy measure is then λP . First,
LΘp,Poisson

(Rd) ⊆ Lp,2(Rd) as for any symmetric Lévy noise, according to
(3.34). Moreover, for a compound Poisson noise with finite variance, we have
for every q ∈ [0, 2] that

∫
R|t|

qP (dt) <∞. Therefore, we have

Θp(ξ) = λ

∫
R

min(|tξ|p, |tξ|2)P (dt)

≤ λmin

(
|ξ|p

∫
R
|t|pP (dt), |ξ|2

∫
R
|t|2P (dt)

)
≤ C min(|ξ|p, |ξ|2) = ρp,2(ξ),

so that ‖f‖Θ ≤ C‖f‖p,2. This means that Lp,2(Rd) ⊆ LΘp,Poisson
(Rd), con-

cluding the proof.

• Laplace: Let 0 ≤ p ≤ 2. Without loss of generality, we fix the parameters of
the generalized Laplace noise as σ2 = 2 and τ = 1. Then, the Lévy measure

is ν(dt) = e−|t|

|t| dt. We start from (3.19) and write

Θp(ξ) = ξ2

∫
|t|≤1/|ξ|

x2ν(dt) + |ξ|p
∫
|x|>1/|ξ|

|t|pν(dt) := Θp,1(ξ) + Θp,2(ξ).
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Then, by integration by parts, we have

Θp,1(ξ) = 2|ξ|2
∫ 1/|ξ|

0

te−tdt

= 2|ξ|2
(

1− e−1/|ξ|
(

1 +
1

|ξ|

))
Hence, we have Θp,1(ξ) −→

ξ→∞
2 and Θp,1(ξ) ∼

ξ→0
2|ξ|2.

For Θp,2(ξ) = |ξ|p
∫
|t|>1/|ξ||t|

pν(dt), we shall distinguish between p = 0

and p > 0. For p > 0, the function tp−1e−t is integrable over R, so that
Θp,2(ξ) ∼

ξ→∞

(∫
R t

p−1e−tdt
)
|ξ|p. For p = 0, the function t−1e−t is not any-

more integrable around 0. Using the equivalence t−1e−t ∼
t→0

t−1, we deduce

that

Θ0,2(ξ) = 2

∫ ∞
1
|ξ|

t−1e−tdt ∼
ξ→∞

2

∫ 1

1
|ξ|

t−1e−tdt ∼
ξ→∞

2

∫ 1

1
|ξ|

t−1dt = 2 log |ξ| .

Moreover, since p ≤ 2, we have by integration by parts,

Θp,2(ξ) = 2

∫
t|ξ|>1

(t|ξ|)pe−t dt
t
≤ 2

∫
t|ξ|>1

(t|ξ|)2e−t
dt

t
= 2|ξ|(1 + |ξ|)e−1/|ξ|,

implying that Θp,2(ξ) =
ξ→0

o(|ξ|2). By combining the results on Θp,1 and Θp,2,

we obtain that

– for 0 ≤ p ≤ 2, Θp(ξ) ∼
ξ→0

2|ξ|2;

– for 0 < p ≤ 2, Θp(ξ) ∼
ξ→∞

(∫
R x

p−1e−xdt
)
|ξ|p;

– for p = 0, Θ0(ξ) = Θ(ξ) ∼
ξ→∞

2 log|ξ|.

We finally apply Proposition 3.15 to deduce (3.40) and (3.41).

We summarize the results of this section in Table 3.1. The Lévy noises are
characterized by their Lévy exponent. We refer to Section 2.1.3 for the complete
definition of the corresponding infinite divisible laws.
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Table 3.1: Domain of Definition of Lévy Noise

Lévy noise Ψ(ξ) LΘ(Rd) LΘp(Rd)
0 < p ≤ 2

Gaussian − 1
2σ

2ξ2 L2(Rd) L2(Rd)

SαS −cα|ξ|α Lα(Rd)

{
Lα(Rd) if p < α

{0} if p ≥ α
symmetric finite-variance λ(P̂ (ξ)− 1) L0,2(Rd) Lp,2(Rd)

compound Poisson

generalized −τ log(1 + σ2ξ/2) Llog,2(Rd) Lp,2(Rd)
Laplace

text
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3.3 Generalized Lévy Processes

We constructed and studied the Lévy noise on S ′(Rd) in Sections 3.1 and 3.2. We
now investigate the existence of generalized Lévy processes that are solutions of a
stochastic differential equations driven by tempered Lévy noise. Section 3.3.1 is
dedicated to the specification of a general criterion for the construction of general-
ized Lévy processes. It is based on [FH17, Section 6] and extends previous results
of [FAU14, UT14, UTS14, FU16]. Section 3.3.2 presents classes of generalized Lévy
processes associated with specific differential or pseudo-differential whitening oper-
ators.

3.3.1 Existence Criterion

Our goal is to give general conditions of compatibility between the operator L and
the Lévy noise w such that the process s in (3.1) exists. By exploiting the results
of Section 3.2, we first show that the domain of definition of the Lévy noise is also
the domain of continuity of its characteristic functional.

Proposition 3.20. The characteristic functional of the Lévy noise w is well-

defined, continuous, positive-definite over LΘ(Rd), and normalized such that P̂w(0) =
1.

Proof. The characteristic functional ϕ 7→ P̂w(ϕ) = E[ei〈w,ϕ〉] is a priori continuous
over S (Rd). For f ∈ LΘ(Rd), the random variable 〈w, f〉 is well-defined and
its characteristic function is ξ 7→ E[eiξ〈w,f〉] = exp

(∫
Rd Ψ(ξf(x))dx

)
(Proposition

3.10). We can therefore extend P̂w to LΘ(Rd) by setting

P̂w(f) = E[ei〈w,f〉] = exp

(∫
Rd

Ψ(f(x))dx

)
for f ∈ LΘ(Rd).

Positive-definiteness. Let N ≥ 1, an ∈ C, fn ∈ LΘ(Rd), n = 1, . . . , N . Simple
functions are dense in the generalized Orlicz space LΘ(Rd). Moreover, any simple
function can be approximated by functions of S (Rd) in LΘ(Rd), so that, S (Rd)
is dense in LΘ(Rd). Let us fix N sequences (ϕn,k)k∈N such that the ϕk,n converge
to fn in LΘ(Rd) for n = 1, . . . , N as k goes to infinity. From Theorem 3.4, we
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know that f 7→ 〈w, f〉 is continuous from LΘ(Rd) to L0(Ω). In particular, we have

E[ei〈w,ϕik−ϕ
j
k〉] −→

k→∞
E[ei〈w,fi−fj〉] for every 1 ≤ i, j ≤ N . This implies that

∑
1≤i,j≤N

aia
∗
jP̂w(fi − fj) =

∑
1≤i,j≤N

aia
∗
jE[ei〈w,fi−fj〉]

= lim
k→∞

∑
1≤i,j≤N

aia
∗
jE[ei〈w,ϕik−ϕ

j
k〉]

= lim
k→∞

∑
1≤i,j≤N

aia
∗
jP̂w(ϕik − ϕ

j
k)

≥ 0,

where we used the positive-definiteness of P̂w over S (Rd).
Continuity. Using the Lévy-Khintchine representation (2.1) of Ψ with Lévy

triplet (µ, σ2, ν), we have

|Ψ(ξ)| =
∣∣∣iµξ + i

∫
R
tξ
(
1|tξ|≤1 − 1|t|≤1

)
ν(dt) + σ2ξ2 +

∫
R
(eitξ − 1− itξ1|tξ|≤1)ν(dt)

∣∣∣
≤
∣∣∣µξ +

∫
R
tξ
(
1|tξ|≤1 − 1|t|≤1

)
ν(dt)

∣∣∣+ σ2ξ2 + 2

∫
R

min(1, |tξ|2)ν(dt)

≤ 2Θ(ξ), (3.42)

where we used the triangular inequality and the relation |eiy − 1 − iy1|y|≤1| ≤
2 min(1, y2) applied to y = tξ. Applying (3.42) to ξ = f(x) and integrating over
Rd, we have for every f ∈ LΘ(Rd),

|log P̂w(f)| ≤
∫
Rd
|Ψ(f(x))|dx ≤ 2Θ(f).

This shows that P̂w is continuous at 0. The functional P̂w is positive-definite and
continuous at 0, and therefore continuous (Proposition 2.11).

Combining Proposition 3.20 with the Bochner-Minlos theorem, we obtain the
following general criterion for the existence of solution of stochastic differential
equations driven by Lévy noise.
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Theorem 3.5. Consider a Lévy noise w in S (Rd). For any linear operator T
continuous from S (Rd) to LΘ(Rd), there exists a generalized random process s
such that

P̂s(ϕ) = P̂w(T{ϕ}). (3.43)

In particular, if T is a left-inverse of the adjoint L∗ of a linear, continuous, and
shift-invariant operator L from S (Rd) to S ′(Rd), then

Ls
(L)
= w. (3.44)

If moreover the operator T continuously maps S (Rd) to LΘp(Rd) for some 0 < p ≤
2, then the process s has finite pth-moments.

Proof. The operator T is continuous from S (Rd) to LΘ(Rd) and P̂w is continuous

over LΘ(Rd) according to Proposition 3.20. Hence, the functional P̂ = P̂w(T{·})
is continuous over S (Rd). The positive-definiteness of P̂ over S (Rd) is a di-

rect consequence of the positive-definiteness of P̂w over LΘ(Rd) (again thanks to
Proposition 3.20), and the fact that T{ϕ} ∈ LΘ(Rd) for ϕ ∈ D(Rd). Finally,

P̂(0) = P̂w(T{0}) = P̂w(0) = 1. We are therefore in the conditions of the
Bochner-Minlos theorem: The process s with characteristic functional (3.43) ex-
ists.

For the second part, we remark that, for ϕ ∈ S (Rd),

P̂Ls(ϕ) = P̂s(L
∗{ϕ}) = P̂w(TL∗{ϕ}) = P̂w(ϕ),

due to the left-inverse property. Then, the processes Ls and w, having the same
characteristic functional, are equal in law.

For the last part, we simply remark that, for any ϕ ∈ S (Rd), E[|〈s, ϕ〉|p] =
E[|〈w,T{ϕ}〉|p] <∞ since T{ϕ} ∈ LΘp(Rd).

Definition 3.7. Consider a tempered Lévy noise w and a continuous, linear, and
shift-invariant operator L from S (Rd) to S ′(Rd). We say that the generalized
random process s is a generalized Lévy process driven by w and whitened by L if
there exists a left-inverse operator T of L∗, continuous from S (Rd) to LΘ(Rd),
such that

P̂s(ϕ) = P̂w(T{ϕ}). (3.45)

The operator L is the whitening operator of s.
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Under the conditions of Definition 3.7, s satisfies (3.44). The following result
links the stability property of the corrected left-inverse (operator T) with the finite-
ness of generalized moments of the Lévy measure of w.

Proposition 3.21. We consider a symmetric Lévy noise without Gaussian part
w and a linear, continuous, and shift-invariant operator L. We assume that, for
0 ≤ p0, p∞ ≤ 2, we have

•
∫
R ρp∞,p0(t)ν(dt) <∞, and

• the adjoint operator L∗ admits a left-inverse T that maps continuously S (Rd)
to Lp0,p∞(Rd).

Then, there exists a generalized Lévy process s with characteristic functional (3.43)

that satisfies Ls
(L)
= w.

Proof. Applying (3.38) with p = 0, the condition
∫
R ρp∞,p0(t)ν(dt) < ∞ ensures

that Lp0,p∞(Rd) ⊂ LΘ(Rd). This embedding and the assumption on T imply that
T maps continuously S (Rd) to LΘ(Rd), and Theorem 3.5 applies.

Comparison with previous works. Proposition 3.21 can be compared with
other conditions of compatibility between the whitening operator L and the Lévy
noise w. The results are reformulated with our notation.

• For 1 ≤ p ≤ 2, Ψ is p-admissibile if |Ψ(ξ)|+ |ξ| |Ψ′(ξ)| ≤ C |ξ|p. Note that the
derivative Ψ′(ξ) is well-defined as soon as the first moment of the underlying
infinitely divisible random variable is finite, what we assume now. This notion
was introduced in [UT14] together with the following compatibility condition:
if Ψ is p-admissible and T continuously map S (Rd) to Lp(Rd), then (3.43)
specifies a valid characteristic functional. A sufficient condition for the p-
admissible is that

∫
R |t|

p
ν(dt) <∞. Therefore, (3.43) is a valid characteristic

functional as soon as
∫
R |t|

p
<∞ and T maps continuously S (Rd) to Lp(Rd)

for some 1 ≤ p ≤ 2. We recover this by selecting p0 = p∞ = p in Proposition
3.21. Our result extends this criterion in two ways. First, we can distinguish
between the behavior of ν around 0 and at ∞. Second, we do not restrict to
the case p ≥ 1 (this second improvement was already achieved in our work
[FU16] thanks to a relaxation of the p-admissibility).
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• In our work with A. Amini and M. Unser, we have shown that the character-
istic functional (3.45) specifies a generalized Lévy process if

∫
R ρp∞,p0(t)ν(dt)

and T maps continuously S (Rd) to Lp0,p∞(Rd) for 0 < p∞ ≤ p0 ≤ 2 [FAU14,
Theorem 5]. When p∞ ≤ p0, we have that

max(|ξ|p0 , |ξ|p∞) ≤ ρp0,p∞(ξ) ≤ |ξ|p0 + |ξ|p∞ .

Therefore, Lp0,p∞(Rd) = Lp0(Rd) ∩ Lp∞(Rd) and we recover our previous
result (at least for symmetric Lévy noise without Gaussian part). Moreover,
Proposition 3.21 is a improvement, since one can consider p∞ > p0. In that
case, Lp0,p∞(Rd) contains but is strictly bigger than Lp0(Rd) ∩ Lp∞(Rd) and
the requirement on T is less strong: our new criterion is applicable to a more
general class of operators.

• Combining (3.38) and Proposition 3.20, we generalize [AU14, Theorem 2]
again by considering the case p∞ > p0: we are able to specify a larger domain
of definition and of continuity than Lp0(Rd) ∩ Lp∞(Rd) in that case.

3.3.2 Specific Classes of Generalized Lévy Processes

We introduce the generalized Lévy processes associated with the classes of differen-
tial and pseudo-differential operators presented in Section 2.2.2. The model (3.44)
appears to contain many classical families of random processes related to Lévy
noise, both in the univariate and multivariate settings. The main aspect here is to
understand on concrete examples when the operator L and the Lévy noise w are
compatible so to generate a generalized Lévy process.

The whitening operators that we shall consider share the following properties.
They are linear, shift-invariant, continuous from S (Rd) to S ′(Rd), and admits
a measurable Green’s function of slow growth ρL; that is, a measurable function,
bounded by a polynomial, such that such that L{ρL} = δ. Then, the function
ρL∗(x) = ρL(−x) is a Green’s function of the adjoint operator L∗.

We have seen in Theorem 3.5 that a natural way to define a solution s to (3.44)
is to identify a (left-)inverse to L∗. The natural candidate is the shift-invariant
operator (L∗)−1, inverse of L∗, defined for ϕ ∈ S (Rd) as

(L∗)−1{ϕ} = ρL∗ ∗ ϕ. (3.46)
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Note that the convolution is well-defined since ρL∗ is of slow growth. Two different
scenarios occur in practice.

• If (L∗)−1 continuously maps S (Rd) to LΘ(Rd), then one selects T = (L∗)−1

in (3.45) to define s solution of (3.44). We then have s = ρL ∗ w, and the
process s is stationary.

• For many operators L, the Green’s function ρL does not decay at infinity,
so that one easily finds ϕ ∈ S (Rd) with (L∗)−1ϕ /∈ LΘ(Rd). In that case,
we need to correct the operator (L∗)−1. In doing so, we do not look for a
standard two-sided inverse since we know from Theorem 3.5 that we only need
to specify a left-inverse. The construction of valid left-inverses will be crucial
in the examples below, for which we rely on existing works on operators.

When the operator (L∗)−1 is unstable, we are looking for left-inverses T of L∗

satisfying one of the two following properties for the construction of generalized
Lévy processes:

• Condition (C1): T is continuous from S (Rd) to R(Rd). In this scenario,
Tϕ is possibly non-smooth but has nice decay properties.

• Condition (C2): T is continuous from S (Rd) to Lp(Rd) for some 0 < p ≤ 2.
Again, T should preserve some stability, but this is much less restrictive.

Condition (C1) will concern ordinary differential operators. This situation is partic-
ularly pleasant: Due to the embeddings R(Rd) ⊆ LΘ(Rd), valid for any noise, one
can construct generalized Lévy processes whitened by L for any noise w. Condition
(C2) is of interest for pseudo-differential operators that are fractional versions of
the differential operators. In that case, the generalized Lévy process is well-defined
provided that Lp(Rd) ⊆ LΘ(Rd). Consequently, under (C2), there are restrictions
on the class of Lévy noises that are compatible with L.

Lévy processes. Most traditionally, Lévy processes are introduced as the unique
random processes (s(t))t∈R+ that have stationary and independent increments, are
continuous in probability, and vanishes at 0 [App09, Ber98]. They are unseparable
from the infinitely divisible laws [Sat13].

In the framework of generalized random processes, Lévy processes are solutions
of the equation Ds = w where w is a one-dimensional Lévy noise and the whitening
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operator L = D is the derivative. This construction is developed more extensively,
with generalizations to Nth-order Lévy processes, in [UTS14]. The function −1R+

is a Green’s function of D∗ = −D. The inverse (3.46) is therefore (D∗)−1ϕ =
−(1R+ ∗ ϕ)(x). Since −1R+ does not decay at infinity, the operator (D∗)−1 is
unstable. We introduce the corrected version of (D∗)−1 as the operator I0 defined
by

I0{ϕ}(x) = −(1R+ ∗ ϕ)(x) + ϕ̂(0)1R+(x). (3.47)

The operator I0 is a left-inverse of −D (since D̂ϕ(0) = 0 for any ϕ ∈ S (Rd)), that
continuously maps S (Rd) to R(Rd) [UTS14, Proposition 2].

For any tempered Lévy noise, I0 is therefore continuous from S (Rd) to LΘ(Rd).
Applying Theorem 3.5, there exists a generalized random process s such that

P̂s(ϕ) = P̂w(I0{ϕ}) = exp

(∫
R

Ψ(I0{ϕ}(x))dx

)
(3.48)

for any ϕ ∈ S (Rd), with Ψ the Lévy exponent of w. Such a process is called a
Lévy process. It is solution of the differential equation

Ds
(L)
= w.

We recover the well-known fact that the Lévy noise can be thought as the derivative
of the Lévy process in 1D. Finally, I0{δ}(x) = 1R+(x)− 1R+(x) = 0, so that

s(0) = 〈s, δ〉 (L)
= 〈w, I0{δ}〉 = 0.

By exploiting the properties of the characteristic functional (3.48) and the criteria
in Propositions 2.14 and 2.15, we easily show that s has first-order independent and
stationary increments. Again thanks to Proposition 2.15, we show that if the Lévy
noise is H-self-similar, then the corresponding Lévy process is (H + 1)-self-similar.

An in depth discussion on the two constructions—Lévy processes as generalized
random processes and Lévy processes as pointwise stochastically continuous random
processes with stationary and independent increments—can be found in [DH15].

Remark. The class of processes we study in this thesis are named generalized
Lévy processes. They generalize Lévy processes in two ways: they are built using
more for general differential or pseudo-differential whitening operators L, and they
can be defined on Rd with d ≥ 2—in which case we talk about generalized Lévy
fields.



3.3 Generalized Lévy Processes 103

CARMA Lévy processes. A N th-order CARMA (continuous auto-regressive
moving average) Lévy process is a stationary solution of the stochastic differential
equation

P (D)s = w (3.49)

with w a 1-dimensional Lévy noise and P (X) a polynomial of degree N . Requiring
the stationarity of s put constraints on the roots of the polynomial P . Essentially,
the condition is that P has no purely imaginary roots [UTS14]. For instance, when
P (X) = X, we recover the stochastic differential equation (3.48) that does not
admit any stationary solution.

We construct the CARMA Lévy process solution of (3.49) by decomposing P
as

P = XN + aN−1X
N−1 + · · ·+ a0 =

N∏
n=1

(X − αn)

with αn ∈ C, <{αn} 6= 0 for all n. We assume here that the coefficient aN = 1
without loss of generality.

For <{α} 6= 0, the operator (D− αId)∗ = −(D + αId) is a continuous bijection
from S (Rd) to S (Rd) with a continuous and shift-invariant inverse −(D +αId)−1.
The Fourier multiplier of the inverse is ω 7→ −(iω + α)−1 (the denominator does
not vanish by assumption on α). By selecting T = −(D + αId)−1 in (3.45), we
construct s from its characteristic functional

P̂s(ϕ) = exp

(∫
R

Ψ(−(D + αId)−1{ϕ}(x))dx

)
by applying Theorem 3.5. Then, s satisfies (D−αId)s

(L)
= w and is stationary. It is

therefore a first-order CARMA process, often called an Ornstein-Uhlenbeck process
driven by a Lévy noise. The general solution of (3.49) is constructed following the
same principle by composing the operators −(D + αnId)−1 for 1 ≤ n ≤ N .

Several authors are more generally considering CARMA (p, q) processes, that
are solutions of P (D)s = Q(D)w (the integers p and q are the degrees of P and Q,
respectively), as classical processes [MS07] or generalized random processes [Bro01,
BL09, BH10]. The construction is easily deduced from the one we exposed by
applying Q(D) to the solution of (3.49).

By combining the construction of Lévy processes and of CARMA processes,
one can also construct the random solution of any differential equation of the form
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P (D)s = w, where P is any polynomial. See [UTS14] for more details.

Until now, we defined univariate random processes. The next ones are defined
over Rd with d ≥ 1. Note that there is not a unique way to extend Lévy processes to
higher dimensions. One approach, different from ours, is proposed in [DJ12], with
a discussion on the definition of multivariate Lévy processes. The same remark
applies for multivariate generalized Lévy processes, for which we propose two types
of random fields. The random sheets, are based on separable whitening operators, as
direct transposition of the 1-dimensional case. The isotropic random fields involve
rotation-invariant operators.

Lévy sheets. The d-dimensional Lévy sheet is a generalized Lévy process whitened
by the operator Λ = D1 · · ·Dd. Its markovian properties have been studied in the
Gaussian case in [DW92b] and in the general case in [DW92a]. In the theory of
sparse stochastic processes, it is presented as the Mondrian process for its ability
to reproduce Mondrian-like patterns [UT11, UT14].

In the framework of generalized Lévy processes, the construction of the Lévy
sheet is very similar to the one of the Lévy process. As for the derivative, the
operator Λ has no stable inverse and we need to specify a corrected left-inverse.
For i = 1 . . . d, we set

I0,i{ϕ}(x) = −
∫ xi

0

ϕ(x+ (y − xi)ei)dy + 1R+(xi)

∫
R
ϕ(x+ (y − xi)ei)dy,

where the ei are the canonical basis of Rd. When d = 1, we recover the operator I0

defined in (3.47). As for I0, we show that
∏d
i=1 I0,i is a left-inverse of Λ∗ = (−1)dΛ

that continuously maps S (Rd) to R(Rd). This is developed for a general class
of multivariate operators in our work [FAU14, Section 4.2]. The stability of the
left-inverse ensures that the Lévy sheet with characteristic functional

exp

(∫
Rd

Ψ

(
d∏
i=1

I0,i{ϕ}(x)

)
dx

)

is well-defined for any tempered Lévy noise w with Lévy exponent Ψ. Lévy sheets
have d-order independent and stationary increments.
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CARMA Lévy sheets. We define CARMA Lévy sheets that generalizes CARMA
Lévy processes. For α ∈ C with <{α} 6= 0, we set Λα =

∏d
i=1(Di − αId). As

we did in dimension 1, one defines a stable (right and left) inverse (Λ∗α)−1 to

Λ∗α = (−1)d
∏d
i=1(Di + αId). Then, the generalized Lévy process with charac-

teristic functional

exp

(∫
Rd

Ψ
(
(Λ∗α)−1{ϕ}(x)

)
dx

)
is well-defined and stationary for every Lévy noise w with Lévy exponent Ψ. More
details can be found in [FAU14, Section 4.2] that also includes the specification of
a more general class of directional Lévy fields.

Fractional Lévy processes and fields. Fractional Lévy processes are solution
of the equation

(−∆)γ/2s = w

with (−∆)γ/2 the fractional Laplacian of order γ > 0 and w a d-dimensional Lévy
noise. In the 1-dimensional setting, one can consider similarly the stochastic pseudo-
differential equation Dγs = w with Dγ the fractional derivative. As soon as d ≥ 2,
we talk about fractional Lévy fields. As for Lévy processes, fractional Lévy pro-
cesses are classically defined as pointwise processes. In dimension 1, the fractional
Brownian motion is Gaussian with 0 < γ < 1 and was introduced by B.B. Mandel-
brot and J.W. Van Ness in [MN68]. Higher-order extensions (γ ≥ 1) are studied in
[PHBJ+01]. Fractional SαS processes are studied as pointwise process, for instance,
in [ST94, EM00], while the general Lévy case is considered in [Mar06, EW13]. In the
framework of generalized random processes, the fractional Lévy process was con-
structed for Gaussian noise in [BU07, LSSW16], for Poisson noise in [UT11, SU12],
and for SαS noise in [HL07] (for α > 1). The multivariate case is studied for
instance in [LSSW16, UT11, UT14].

The construction of fractional Lévy processes and fields in the framework of
generalized random processes was considered in [SU12]. This work was dedicated
to the construction of stable left-inverses of (−∆)γ/2 with the adequate invariances
that we exploited to extend the construction of fractional Lévy processes as gener-
alized random processes in [FAU14, Section 4.1]. The operator (−∆)γ/2 admits a
unique shift- and scale- invariant left-inverse operator as soon as (γ − d) /∈ N. It is
the operator Iγ with frequency response ‖ω‖γ [SU12, Theorem 1.1]. In general, this
operator is not stable from S (Rd) to Lp(Rd). By giving up the shift-invariance
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property, it is possible to specify stable left-inverses. For p ≥ 1, we define the
operator Iγ,p for any ϕ ∈ S (Rd) by

F{Iγ,pϕ}(ω) :=

F{ϕ}(ω)−
∑

|m|≤γ−d(1−1/p)

1

m!
(Dmϕ)(0)ωm

 ‖ω‖−γ ,
with the usual multi-index notation. Then, according to [SU12, Theorem 1.2], as
soon as γ /∈ N and γ−d+d/p /∈ N, the operator Iγ,p is the unique (−γ)-homogeneous
left inverse of the fractional Laplacian (−∆)γ/2 that continuously maps S (Rd) to
Lp(Rd).

Therefore, for any Lévy noise w with exponents Ψ and Θ such that Lp(Rd) ⊆
LΘ(Rd), the generalized random process s with characteristic functional

exp

(∫
Rd

Ψ (Iγ,p{ϕ}(x)) dx

)

is well-defined and satisfies (−∆)γ/2s
(L)
= w according to Theorem 3.5. From Propo-

sition 3.15, we know, for instance, that Lp(Rd) ⊆ LΘ(Rd) as soon as Θ(ξ) ≤ C |ξ|p
over R for some constant C > 0. Sufficient conditions on the Lévy measures for the
well-definiteness of s are given in [FAU14, Proposition 6].

To summarize, we have characterized classes of generalized Lévy processes based
on their whitening operator. By focusing on specific types of Lévy noises, we may
also define the class of CARMA compound Poisson processes (for L a differential
operator with no purely imaginary characteristic roots and w a 1-dimensional com-
pound Poisson noise), fractional SαS processes (for L = (−∆)γ/2 and w a SαS
noise, assumed to be compatible), etc.



Chapter 4

Limit Theorems for
Generalized Lévy Processes

In this chapter, we establish two different asymptotic results for generalized Lévy
processes. Both of them highlight important properties of the considered pro-
cesses. In Section 4.1, we review the fundamental theorem on the convergence in
law of generalized random processes, which is the source of our contributions: the
Fernique-Lévy theorem. We then prove that any generalized Lévy process is the
limit in law of a family of generalized Poisson processes in Section 4.2. In Section
4.3, we investigate the coarse and fine scale behavior of generalized Lévy Processes.
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4.1 The Lévy-Fernique Theorem

In finite dimensions, the convergence in law of a sequence of random variables is
equivalent to the pointwise convergence of the underlying characteristic function:
This is the Lévy continuity theorem presented in Section 2.1.

The generalization of this result to infinite-dimensional Hilbert spaces is not
straightforward. For instance, the domain of definition of the characteristic func-
tional of a random variable in H′ is not H, in contrast to the finite-dimensional
case. Nevertheless, there is one class of function spaces on which the Lévy theorem
is directly generalizable: the nuclear multi-Hilbertian spaces introduced in Section
2.2.1. Here, we restrict ourselves to tempered generalized random processes in
S ′(Rd), but the result remains valid for generalized random processes in D ′(Rd).

Definition 4.1. We say that the sequence of tempered generalized random processes
(sk) converges in law to the tempered generalized random process s if the underlying
probability laws Psk converge weakly to the probability law Ps; that is, if∫

S ′(Rd)

f(u)dPsk(u) −→
k→∞

∫
S ′(Rd)

f(u)dPs(u)

for every bounded and continuous functional f from S ′(Rd) to R.

Theorem 4.1 (Lévy-Fernique continuity theorem). A sequence of tempered gener-
alized random processes (sk) converges in law to the tempered generalized random
process s if and only if

P̂sk(ϕ) −→
k→∞

P̂s(ϕ)

for every ϕ ∈ S (Rd).

Theorem 4.1 is a powerful tool to deduce the limit in law of generalized random
processes. We shall exploit it extensively in this chapter. It was proved by X.
Fernique on D ′(Rd) [Fer67, Theorem III.6.5]. Along the same line as the Bochner-
Minlos theorem, we call Theorem 4.1 the Lévy-Fernique theorem, the result on
random vectors of the former mathematician being generalized for generalized ran-
dom processes by the latter. P. Boulicaut has shown that the result is valid on any
nuclear space [Bou74, Theorem 4.5]. He also obtained a converse result applicable to
countably multi-Hilbertian spaces. If X is a Fréchet space, or the dual of a Fréchet
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space ((DF)-space), the convergence in law of X ′-valued random variables is equiv-
alent to the pointwise convergence of the characteristic functionals on X if and only
if the space X is nuclear [Bou74, Theorems 5.3 and 5.4]. This demonstrates that the
nuclearity is essential for a direct generalization of the finite-dimensional concepts
of probability theory to function spaces. Other infinite-dimensional generalizations
(not only for nuclear spaces) of the Lévy theorem are extensively developed in
[Mus96].
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4.2 Generalized Poisson Processes Generate Gen-
eralized Lévy Processes

In their landmark paper on linear prediction [BS50], H.W. Bode and C.E. Shannon
proposed that “a (...) noise can be thought of as made up of a large number of
closely spaced and very short impulses.” In this section, we formulate this intuitive
interpretation of a white noise in a mathematically rigorous way. This allows us to
extend this intuition beyond noise and to draw additional properties for the class
of generalized Lévy processes. More precisely, we show that these processes can
be statistically approximated as closely as desired by generalized Poisson processes
that can also be viewed as random L-splines. This section is mostly based on
our publication [FUU17]. A preliminary version of this work was presented to the
SampTA conference [FWU15].

4.2.1 Generalized Poisson Processes are L-Splines

Splines are continuous-domain functions characterized by a sequence of knots and
sample values. They provide a powerful framework to build discrete descriptions
of continuous objets in sampling theory [Uns99]. Initially defined as piecewise-
polynomial functions [Sch73a], they were further generalized by exploiting their
connection with differential operators [SV67, MN90, UB00]. Recently, in the one-
dimensional setting, a very general formulation has been proposed to specify under
which condition a linear operator can be associated to a spline [AMU].

A linear and continuous operator L from S (Rd) to S ′(Rd) is spline-admissible
if it is shift-invariant and if there exists a measurable function of slow growth ρL

such that
L{ρL} = δ.

The function ρL is a Green’s function of L. The differential and pseudo-differential
operators of Section 2.2.2 are spline-admissible. The corresponding Green’s func-
tions and adequate references are given in Table 4.1.

Definition 4.2. Let L be a spline-admissible operator with measurable Green’s
function ρL. A nonuniform L-spline is a function s such that

Ls =
∑
k≥0

akδ(· − xk) := wδ. (4.1)
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Table 4.1: Some families of spline-admeissible operators

Operator Parameter ρL(x) Spline type

DN N ∈ N\{0} 1
(N−1)!x

N−1
1x≥0 B-splines [Uns99, Sch73a]

(D + αId) α ∈ C,<(α) > 0 e−αx1x≥0 E-splines [UB05]
Dγ γ > 0 1

Γ(γ)x
γ−1

1x≥0 fractional splines

[UB00, UB07]

D1 · · ·Dd - 1x≥0 =
∏d
i=1 1xi≥0 separable splines [UT14]

(−∆)m/2 m− d ∈ 2N cm,d‖x‖m−d log‖x‖ cardinal polyharmonic
splines [MN90]

(−∆)γ/2 γ − d ∈ R+\2N cγ,d‖x‖γ−d fractional polyharmonic
splines [VBU05]

The ak are the weights, the xk the knots, and wδ is the innovation of the spline.

The generic expression for a nonuniform L-spline is

s = p0 +
∑
k≥0

akρL(· − xk)

with p0 in the null space of L (i.e., Lp0 = 0). Indeed, we have, by linearity and
shift-invariance of L, that

L
{
s−

∑
k≥0

akρL(· − xk)
}

= Ls−
∑
k≥0

akδ(· − xk).

Therefore,
(
s−

∑
k≥0 akρL(· − xk)

)
is in the null space of L.

By comparing (3.1) and (4.1), one easily realizes that the operator L connects the
random and deterministic frameworks. The link is even stronger when one notices
that compound Poisson white noises can be written as wPoisson = wδ according to
(3.5). This means that generalized Poisson processes are (random) L-splines.

4.2.2 The Convergence Theorem

Our main result uncovers the link between L-splines and generalized Lévy processes
through the use of generalized Poisson processes. A compound Poisson noise is
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made of a sparse sequence of weighted impulses whose jumps follow a common law.
The average density of impulses λ is the primary parameter of such a Poisson white
noise: Upon increasing λ, one increases the average number of impulses by unit of
time. Meanwhile, the intensity of the impulses is governed by the common law of
the jumps of the noise: Upon decreasing this intensity, one makes the weights of
the impulses smaller. By combining these two effects, one can recover the intuitive
conceptualization of a white noise proposed by Bode and Shannon in [BS50].

We start by fixing some notation. For simplicity, we shall consider symmetric
Lévy noise without Gaussian part. The extension to the general case can be made
thanks to Proposition 3.14 and is done in [FUU17]. If Ψ is a Lévy exponent, we
set PΨ the compound Poisson law with sparsity parameter λ = 1 and law of jumps
the infinitely divisible law with exponent Ψ. Then, for λ, τ > 0, we define the Lévy
exponent

Ψλ,τ (ξ) = λ(eτΨ(ξ) − 1), (4.2)

that corresponds to the compound Poisson law with sparsity parameter λ and law
of jumps PτΨ.

Proposition 4.1. We consider a Lévy exponent Ψ with Lévy measure ν, associated
to a symmetric Lévy noise without Gaussian part. For λ, τ > 0, we denote by νλ,τ
the Lévy measure associated to the Lévy exponent Ψλ,τ defined in (4.2). If∫

R
ρp∞,p0(t)ν(dt) <∞ (4.3)

for some 0 ≤ p∞, p0 ≤ 2, then,∫
R
ρp∞,p0(t)νλ,τ (dt) <∞ (4.4)

for any λ, τ > 0.

Therefore, under (4.3), if T maps continuously S (Rd) to Lp0,p∞(Rd), then T
maps continuously S (Rd) to LΘλ,τ (Rd) for any λ, τ > 0, where Θλ,τ is the Rajput-
Rosinski exponent associated to the Lévy exponent Ψλ,τ .

Proof. The Lévy measure of the compound Poisson noise wλ,τ is νλ,τ = λPτΨ.
Without loss of generality, one can assume that λ = 1. First,

∫
|t|≤1

|t|p0 PτΨ(dt) is
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finite because PτΨ is a probability measure. To show (4.4), it suffices to show that∫
|t|>1

|t|p∞ PτΨ(dt) <∞. This is equivalent to E[|Y |p∞ ] <∞, where

Y =

N∑
i=1

Xi

is a compound Poisson random variable, with N ∼ P(1) and the Xk are i.i.d.,
infinitely divisible with common Lévy exponent τΨ. Let us fix x, y ∈ R and 0 <
p < 1, then we have that

|x+ y|p ≤ |x|p + |y|p.

On the contrary, if 1 ≤ p ≤ 2, then the inequality∣∣∣∣x+ y

2

∣∣∣∣p ≤ |x|p + |y|p

2

follows from the convexity of x 7→ xp on R+. From these two inequalities, we readily
see that for any 0 < p ≤ 2 and (xi)1≤i≤N ,

∣∣∣ N∑
i=1

xi

∣∣∣p ≤ Nmax(p−1,0)
N∑
i=1

|xi|p ≤ N
N∑
i=1

|xi|p. (4.5)

Therefore, we have that

E[|Y |p∞ ] = E
[∣∣∣ N∑
i=1

Xi

∣∣∣p∞] ≤ E
[
N

N∑
i=1

|Xi|p∞
]

=
∑
n≥0

P(N = n)E
[
n

n∑
i=1

|Xi|p∞
]

=
(∑
n≥0

n2P(N = n)
)
× E [|X1|p∞ ]

=2E [|X1|p∞ ] , (4.6)

using that
∑
n≥0 n

2P(N = n) = E[N2] = 2λ = 2. Finally, we conclude by remark-

ing that E [|X1|p∞ ] < ∞, what is equivalent to
∫
|t|>1

|t|p∞ ν(dt) < ∞ according to

Proposition 2.3.
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From (4.4), we deduce with Proposition 3.17 that Lp0,p∞(Rd) ⊆ LΘ(wλ,τ )(Rd),
implying directly the second part of Proposition 4.1.

Proposition 4.1 has an important consequence. If a whitening operator L and a
Lévy noise w with Lévy exponent Ψ satisfy together the conditions of Proposition
3.21 (and are therefore compatible), then L is also compatible with any compound
Poisson noise whose law of jumps has Lévy exponent τΨ.

Proposition 4.2. Let w be a symmetric Lévy noise without Gaussian part, whose
Lévy measure ν satisfies ∫

R
ρp∞,p0(t)ν(dt) <∞

for some 0 ≤ p0, p∞ ≤ 2. We define, for k ≥ 1,

Ψk(ξ) = k
(

eΨ(ξ)/k − 1
)
. (4.7)

Then, the followings hold.

• The function Ψk is the Lévy exponent of the compound Poisson noise wk
with sparsity parameter λ = k and infinitely divisible law of jumps with Lévy
exponent eΨ/k.

• The characteristic functionals P̂wk are well-defined, continuous, and positive
definite over Lp0,p∞(Rd).

• For any ϕ ∈ Lp0,p∞(Rd), we have that

P̂wk(ϕ) −→
k→∞

P̂w(ϕ). (4.8)

Proof. The first point is obvious. Remark that eΨ/k is a valid characteristic function
because Ψ is a Lévy exponent (see Theorem 2.2). We set Θ (Θk, respectively)
the Rajput-Rosinski exponent of w (of wk, respectively). The second point of
Proposition 4.2 is a consequence of the embeddings Lp0,p∞(Rd) ⊆ LΘ(Rd) and
Lp0,p∞(Rd) ⊆ LΘk(Rd), deduced from Proposition 4.1, and of the extension of the
domain of continuity of the characteristic functional with Proposition 3.20. We can
now prove the convergence (4.8). For every fixed x ∈ Rd, we have that

Ψk(ϕ(x)) = k
(

eΨ(ϕ(x))/k − 1
)
−→
k→∞

Ψ(ϕ(x)).
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Due to the convexity of the exponential, we have that |ex − 1| ≤ |x| for any x ≤ 0.
The symmetry of w implies the one of the wk. Hence, both Ψ and the Ψk are real
and negative. Therefore, we have that

|Ψk(ϕ(x))| = k|eΨ(ϕ(x))/k − 1| ≤ |Ψ(ϕ(x))|,

which is integrable for ϕ ∈ Lp0,p∞(Rd). The Lebesgue dominated convergence
theorem implies then that∫

Rd
Ψk(ϕ(x))dx −→

k→∞

∫
Rd

Ψ(ϕ(x))dx

and, therefore, (4.8) holds.

We are now ready to state the main result of this section.

Theorem 4.2. Let s be a generalized Lévy process with characteristic functional

ϕ 7→ P̂w(Tϕ) as in Theorem 3.5, with w a symmetric Lévy noise without Gaussian
part. We assume that there exist 0 ≤ p0, p∞ ≤ 2 such that

• the Lévy measure ν of s satisfies
∫
R ρp∞,p0(t)ν(dt) <∞, and

• the operator T continuously maps S (Rd) to Lp0,p∞(Rd).

For k ≥ 1, let wk be the compound Poisson noise with Lévy exponent (4.7), then

• the characteristic functional ϕ 7→ P̂wk(Tϕ) specifies a generalized Poisson
process sk, and

• we have the convergence in law

sk
(L)−→
k→∞

s. (4.9)

Proof. The conditions on w and T ensures with Proposition 4.1 that T continuously
maps S (Rd) to the domain of definition of all the wk. Therefore, the generalized
Poisson process sk is well-defined for all k ≥ 1.

For the second point, we fix ϕ ∈ S (Rd). Then, Tϕ ∈ Lp0,p∞(Rd), and we have
with Proposition 4.2 that

P̂sk(ϕ) = P̂wk(T{ϕ}) −→
k→∞

P̂w(T{ϕ}) = P̂s(ϕ).

The Lévy-Fernique theorem then implies (4.9).
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4.2.3 Examples and Simulations

We illustrate the convergence result of Theorem 4.2 on generalized Lévy processes
of three types, namely

• Gaussian processes based on Gaussian noise, which are non-sparse;

• Laplace processes based on Laplace noise, which are sparse and have finite
variance;

• Cauchy processes based on Cauchy noise, our prototypical example of infinite-
variance sparse model.

Table 4.2: Lévy noises used in Section 4.2.3.

Lévy Noise Parameters Lévy Exponent

Gaussian σ2 > 0 −σ
2ξ2

2

Laplace σ2 > 0 − log
(

1 + σ2ξ2

2

)
Cauchy c > 0 −c|ξ|

Gauss-Poisson λ, σ2 > 0 λ
(

e−
σ2ξ2

2λ − 1
)

Laplace-Poisson λ, σ2 > 0 λ
(

1
(1+σ2ξ2/2)1/λ

− 1
)

Cauchy-Poisson λ, c > 0 λ
(

e−
c|ξ|
λ − 1

)
For a given Lévy noise w with Lévy exponent Ψ, we consider compound Pois-

son processes that follow the principle of Proposition 4.2. Therefore, we consider
compound Poisson noise with parameter λ and law of jumps with Lévy exponent
Ψ(ξ)/λ, for increasing values of λ. In Table 4.2, we specify the parameters and
Lévy exponents of six types of noise: Gaussian, Laplace, Cauchy, and their corre-
sponding compound Poisson noises. We name a compound Poisson noise in relation
to the law of its jumps (e.g., the compound Poisson noise with Gaussian jumps is
called a Gauss-Poisson noise). As λ increases, the associated compound Poisson
noise features more and more jumps on average (λ per unit of volume) and is more
and more concentrated towards 0. For instance, in the Gaussian case, the Gauss-

Poisson noise has jumps with variance σ2

λ −→
λ→∞

0. To illustrate our results, we

provide simulations for the 1-D and 2-D settings.
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Simulations in 1-D. We consider two families of 1-D processes:

• (D + αI)s = w, with parameter α > 0;

• Ds = w.

All the processes are plotted the interval [0, 10]. We show in Figure 4.1 a Cauchy
process generated by D + αI. In Figure 4.2 and 4.3, we show a Gaussian and a
Laplace process, respectively. Both of them are whitened by D. In all cases, we
first plot the processes generated with compound Poisson noises with increasing
values of λ. Then, we show the processes obtained from the corresponding Lévy
noise.

(a) λ = 0.5 (b) λ = 3 (c) λ = 100 (d) λ→∞

Figure 4.1: Processes whitened by D + αI, α = 0.1. In (a)-(c), Cauchy-Poisson
noises. In (d), Cauchy noise.

Interestingly, we observe that the processes obtained with Poisson noises of small
λ in Figures 4.2 and 4.3 are very similar. However, their asymptotic processes (large
λ) differ, as expected from the fact that they converge to processes obtained from
different Lévy noises.

Simulations in 2-D. We consider three families of 2-D fields s:

• DxDys = w;

• (Dx + αI)(Dy + αI)s = w, with parameter α > 0;

• (−∆)γ/2s = w, with parameter γ > 0.
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(a) λ = 0.5 (b) λ = 3 (c) λ = 100 (d) λ→∞

Figure 4.2: Processes whitened by D. In (a)-(c) Gauss-Poisson noises. In (d),
Gaussian noise.

(a) λ = 0.5 (b) λ = 3 (c) λ = 100 (d) λ→∞

Figure 4.3: Processes whitened by D. In (a)-(c), Laplace-Poisson noises. In (d),
Laplace noise.

We represent our 2-D examples in two ways: first as an image, with gray levels that
correspond to the amplitude of the process (lowest value is dark, highest value is
white); second as a 3-D plot. All processes are plotted on [0, 10]2. In Figures 4.4
and 4.5, we show a Gaussian process with D as whitening operator. A Gaussian
process generated by the fractional Laplacian (−∆)γ/2 is illustrated in Figures 4.6
and 4.7. Finally, we plot in Figures 4.8 and 4.9 a Laplace process generated by
D + αI. We always first show the process generated with an appropriate Poisson
noise with increasing λ and then plot the processes obtained from the corresponding
Lévy noise.
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(a) λ = 0.1 (b) λ = 1 (c) λ = 50 (d) λ→∞

Figure 4.4: Processes whitened by DxDy. In (a)-(c), Gauss-Poisson noise. In (d),
Gaussian noise.

(a) λ = 0.1 (b) λ = 1 (c) λ = 50 (d) λ→∞

Figure 4.5: 3-D representation of the processes in Figure 4.4.

(a) λ = 0.1 (b) λ = 1 (c) λ = 50 (d) λ→∞

Figure 4.6: Processes whitened by (−∆)γ/2, γ = 1.5. In (a)-(c), Gauss-Poisson
noises. In (d), Gaussian noise.
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(a) λ = 0.1 (b) λ = 1 (c) λ = 50 (d) λ→∞

Figure 4.7: 3-D representation of the processes in Figure 4.6

(a) λ = 0.1 (b) λ = 1 (c) λ = 50 (d) λ→∞

Figure 4.8: Processes whitened by (Dx+αI)(Dy+αI), α = 0.1. In (a)-(c), Laplace-
Poisson noises. In (d), Laplace noise.

(a) λ = 0.1 (b) λ = 1 (c) λ = 50 (d) λ→∞

Figure 4.9: 3-D representation of the processes in Figure 4.8.

text
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4.3 Scaling Limits of Generalized Lévy Processes

In this section, we focus on the impact of rescaling operations for a broad class of
generalized Lévy processes that are asymptotically self-similar. Consider a solution
s of the stochastic (pseudo-)differential equation Ls = w, with w a d-dimensional
Lévy noise and L a linear, continuous, and shift invariant operator. Our aim is
to study the statistical behavior of the rescaling x 7→ s(x/a) of s when a > 0 is
varying. The two questions we focus on are:

• What is the asymptotic behavior of s(·/a) when we zoom out the process
(i.e., when a→ 0)?

• What is the asymptotic behavior when we zoom in (i.e., when a→∞)?

Our main contribution is to identify sufficient conditions such that the rescaling
aHs(·/a) has a self-similar asymptotic limit as a goes to 0 or ∞. When this limit
exists, the parameter H is unique and depends essentially on the degree of homo-
geneity γ of L and on the indices αloc and αasymp of w introduced in Definition 2.8.
These indices are used in the literature to characterize the local and asymptotic
behaviors of Lévy processes that are not self-similar [BG61, Pru81, BSW14].

This section is based on two publications [FBU15, FBU14]. In [FBU15], we
study the coarse scale behavior of finite-variance generalized Lévy processes and
apply our results to the wavelet expansion of wide-sense self-similar sparse processes.
This work also contains statistical experiments on real-world images and is an
extension of an earlier conference paper [FBU14]. We address the general case in
[FU16], both at coarse and fine scales, for possibly infinite-variance processes. The
organization of this section is mainly based on this second publication.

4.3.1 Self-Similar Generalized Lévy Processes

The study of self-similar processes and self-similar fields is a branch of probabil-
ity theory [EM00]. Self-similar processes and fields have been applied in areas
such as signal and image processing [BU07, FBU15, PPV02] or traffic network
[LTWW94, MRRS02], among others [Man82]. Many notorious random processes
are self-similar, starting with fractional Brownian motions [MN68] and their higher-
order extensions [PHBJ+01]. It also allows for infinite-variance stable processes
[ST94] and their fractional versions [HL07]. Self-similar random fields have also
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been investigated both in the Gaussian [BS81, Dob79, LSSW16, TU10] and the
α-stable case [ARX07, BS81].

Self-similar processes are intimately linked with stable laws [ST94]. Stable laws
are indeed known to be the only possible probabilistic limits of the renormalized
sum of independent and identically distributed random variables: This is the well-
known (generalized) central-limit theorem. From this result, self-similar processes
are scaling limits of many discretization schemes and stochastic models [Sur81,
BEK10, BD09, DGP09, KLNS07, Sin76].

We recall (Definition 2.19) that a generalized random process s is self-similar
of order H if aHs(·/a) and s have the same law for all a > 0. The parameter H is
often referred to as the Hurst exponent of s. The coarse and fine scale behaviors
of a self-similar process are obvious, since the law of the process is not changed by
scaling, up to renormalization.

Here, we consider generalized Lévy processes solution of (pseudo-)differential
equations of the form

Lγs = wα, (4.10)

with Lγ a γ-homogeneous operator with adequate invertibility properties and w a
SαS noise.

Proposition 4.3. Assume that

• w = wα is a SαS noise with α ∈ (0, 2], and

• T = Tγ is a linear, continuous, and (−γ)-homogeneous operator from S (Rd)
to Lα(Rd).

Then, the generalized random process s with characteristic functional

P̂s(ϕ) = exp (−cα‖Tγ{ϕ}‖αα) ,

where c > 0, is well-defined, self-similar, with Hurst exponent

H = γ + d

(
1

α
− 1

)
. (4.11)

In particular, when Tγ is a left-inverse of the adjoint L∗γ of a γ-homogeneous whiten-
ing operator Lγ , then s is a self-similar generalized Lévy process solution of (4.10).
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Proof. First, the domain of definition of the SαS noise wα is Lα(Rd) (Proposition
3.19). Therefore, the assumption on Tγ ensure that s is well-defined, according to
Theorem 3.5.

Fix H according to (4.11). Then, H + d = γ + d/α and we have, for any
ϕ ∈ S (Rd),

P̂s(a
H+dϕ(a·)) = P̂s(a

γ+d/αϕ(a·))

= exp
(
−cα‖aγ+d/αTγ{ϕ(a·)}‖αα

)
= exp

(
−cα‖ad/α{Tγϕ}(a·)‖αα

)
(4.12)

= exp (−cα‖Tγϕ‖αα) (4.13)

= P̂s(ϕ),

where we used respectively the (−γ)-homogeneity of Tγ and the change of variable
y = ax in (4.12) and (4.13). According to Proposition 2.15, this implies that s is
self-similar with Hurst exponent H.

Remark. We should comment on the assumptions of Proposition 4.3. First, in
order to have a well-defined generalized Lévy process s, we require Tγ to be at
least continuous form S (Rd) to L(wα) = Lα(Rd) (see Theorem 3.5). The addi-
tional assumption is on the homogeneity of Tγ . If Tγ is a homogeneous left-inverse
of a γ-homogeneous operator L∗γ , then the order of homogeneity of Tγ is necessarily
(−γ). However, we do not know a priori whether one can select a left-inverse with
this invariance. The construction of such a stable homogeneous left-inverse is not
straightforward, as seen for instance the case of the fractional Laplacian studied
in [SU12]. This assumption is nevertheless crucial to ensures the self-similarity of s.

Among the classes of generalized Lévy processes introduced in Section 3.3.2,
the self-similarity is achieved under two conditions. First, the underlying Lévy
noise must be stable. Second, the adjoint of Lγ must admit a (−γ)-homogeneous
left-inverse with the adequate stability properties.

• SαS noise: Any d-dimensional stable noise is self-similar. Stable noises are
actually the only self-similar Lévy noise [EM00, Theorem 4.2]. The complete
family of stable laws is presented for instance in [ST94]. Here, we restrict
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ourselves to symmetric ones, called SαS (see Section 2.1.3 for more details).
All the self-similar generalized Lévy processes that we consider are driven by
SαS noise. The Hurst exponent of a SαS noise is H = d (1/α− 1).

• SαS processes: The operator D∗ = −D admits a (−1)-homogeneous left-
inverse with adequate stability property (it is the operator I0 introduced in
2.2.2). Therefore, the Lévy process driven by a SαS noise is self-similar. Its
Lévy exponent is H = 1 + (1/α− 1) = 1/α.

• Fractional SαS processes: The fractional derivative Dγ is γ homogeneous.
It admits a (−γ)-homogeneous that is continuous from S (Rd) to Lα(Rd) if
α ≥ 1, γ > 0, and γ−1+1/α /∈ N [UT14]. Under this condition, the fractional
SαS process exists according to Theorem 3.5 and is self-similar with Hurst
exponent H = γ+(1/α−1). In particular, we recover the fractional Brownian
motion when α = 2, which gives H = γ − 1/2.

• SαS sheets: We now consider generalized random fields. The d-dimensional
Lévy sheets driven by a SαS is also self-similar. It is based on the (−d)-
homogeneous left-inverse of the adjoint of Λ = D(1,...,1) introduced for instance
in [FAU14, Section 4.2]. Its Hurst exponent is H = d/α.

• Fractional Lévy fields: The fractional Laplacian (−∆)γ/2 of order γ > 0 ad-
mits a continuous and (−γ)-homogeneous left-adjoint from S (Rd) to Lα(Rd)
as soon as α ≥ 1, γ /∈ N, and γ − d(1− 1/α) /∈ N [SU12]. Using Theorem 3.5,
one can construct the generalized Lévy process such that (−∆)γ/2s = wα.
Then, the process s is self-similar with Hurst exponent H = γ + d (1/α− 1).

4.3.2 Generalized Lévy Processes at Coarse and Fine Scales

The self-similarity imposes a strong constraint on the law of the random process.
In particular, it intimately links the behaviors at coarse and fine scales. Many
phenomenon are adequately modeled by self-similar processes [Man97]. However,
it can also appear to be too restrictive.

An advantage of the general class of Lévy processes is to overcome this restric-
tion. Poisson processes are dramatic examples that are piecewise constant and
possibly self-similar at coarse scales as we shall see. As such, they can be used
as stochastic models for piecewise constant signals [UT11]. In the study of many
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physical systems, the Cauchy process (also referred to as the Lévy flight) share
many good properties with the observations, while the variance of the phenomenon
is by essence finite. This motivated the construction of the so-called truncated Lévy
flight, that allows for a tradeoff between this two a priori contradictory require-
ments [MS94]. More generally, Rosinski introduced tempered stable processes that
are α-stable at fine scale (with 0 < α < 2) and Gaussian at coarse scales [Ros07].
Here we consider the general problem of characterizing the coarse and large scale
behaviors of generalized Lévy processes.

Inspired by Theorem 3.5, we study random processes s with characteristic func-
tional of the form

P̂s(ϕ) = P̂w(Tγ{ϕ}) (4.14)

with w a Lévy noise and Tγ a linear and continuous operator from S (Rd) to L(w).

We have seen in Section 4.3.1 that two ingredients are sufficient to make a
generalized Lévy process self-similar: the self-similarity of the Lévy noise and the
homogeneity of the left-inverse operator appearing in (4.14). This second point
is the reason why we index the operator with γ, the order of homogeneity of the
underlying whitening operator Lγ . Moreover, the self-similarity of a Lévy noise
is equivalent to the stability of the underlying infinitely divisible random variable
[ST94]. Even if generalized Lévy processes are not self-similar in general, one can
recover some self-similarity by zooming the process in or out.

Definition 4.3. We say that the generalized random process s is asymptotically
self-similar of order Hasymp if the rescaled processes aHasymps(·/a) converge in law
to a non-trivial Hasymp-self-similar process as a→ 0.

We say that the generalized random process s is locally self-similar of order Hloc

if the rescaled processes aHlocs(·/a) converge in law to a non-trivial Hloc-self-similar
process as a→∞.

The main issues that remain are the following: When is a generalized Lévy
process asymptotically self-similar, when is it locally self-similar, and, if so, what
are the asymptotic and local Hurst exponents?

One crucial question is the compatibility of the noise w and the operator Lγ ,
through the operator Tγ). We are used to this for well-defined processes s. Here, we
reinforce the stability properties for the left-inverse Tγ so that Lγ is also compatible
with the adequate SαS noise. In what follows, we consider two scenarios:
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• Condition (C1): We assume that Tγ is continuous from S (Rd) to R(Rd),
with no restriction on the noise w.

• Condition (C2): We assume that Tγ is continuous from S (Rd) to Lp(Rd)
and that Lp(Rd) is embedded into L(w) for some adequate value of p ∈ (0, 2].

The whitening operators presented in Section 2.2.2 satisfy one of these two prop-
erties. Typically, differential operators satisfy (C1), while pseudo-differential (or
fractional) ones meet (C2). These assumptions will be discussed later.

In order to emphasize the different assumptions, we analyse the coarse and fine
scale behavior separately even if the methods of proof are similar. The relevant
parameter of the underlying white noise is the index αasymp at coarse scales and
αloc at fine scales.

Theorem 4.3. Let Lγ be a homogeneous whitening operator of order γ ≥ 0 and w
be a Lévy noise with Lévy exponent Ψ and asymptotic index 0 < αasymp ≤ 2. We
assume that there exists a (−γ)-homogeneous left-inverse Tγ of L∗γ that satisfies
one of the two following conditions.

• Condition (C1): Tγ is continuous from S (Rd) to R(Rd), or

• Condition (C2): Tγ is continuous from S (Rd) to Lmin(αasymp,2)(Rd) and

the Lévy exponent is bounded as |Ψ(ξ)| ≤M |ξ|min(αasymp,2)
for some constant

M > 0.

Let s be the generalized Lévy process with characteristic function P̂s(ϕ) = P̂w(Tγϕ).

Then, if the Lévy exponent Ψ satisfies Ψ(ξ) ∼
0
−C |ξ|min(αasymp,2)

for some constant

C > 0, we have the convergence in law

a
γ+d

(
1

min(αasymp,2)
−1
)
s(·/a)

(L)−→
a→0

sLγ ,min(αasymp,2), (4.15)

where LγsLγ ,min(αasymp,2)
(L)
= wmin(αasymp,2) is a SαS white noise with α = min(αasymp, 2).

In particular, the process s is asymptotically self-similar with asymptotic Hurst ex-
ponent

Hasymp = γ +
d

min(αasymp, 2)
− d.
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Proof. For this proof, we set α = min(αasymp, 2). Assume first that (C1) holds.
Then, Tγ is continuous over L(w) and L(wα) = Lα(Rd) since R(Rd) is embedded
in the domain of definition of any Lévy noise. We can therefore apply Theorem
3.5 to deduce that both s and sLγ ,α are well-defined. Now, if (C2) holds, then the
bound of Ψ implies that Lα(Rd) ⊆ L(w), and Tγ is still continuous from S (Rd) to
L(w). The processes are thus again well-defined with Theorem 3.5.

By the Lévy-Fernique theorem (Theorem 4.1), we know in addition that the
convergence in law (4.15) is equivalent to the pointwise convergence of the charac-
teristic functionals. Hence, we have to prove that, for every ϕ ∈ S (Rd),

log P̂aγ+d(1/α−1)s(·/a)(ϕ) −→
a→0

log P̂wα(Tγϕ) = −C‖Tγϕ‖αα. (4.16)

Let ϕ ∈ S (Rd). Then, we have

〈aγ+d(1/α−1)s(·/a), ϕ〉 = 〈w, aγ+d/αϕ(a·)〉
= 〈w,Tγ{aγ+d/αϕ(a·)}〉 (4.17)

= 〈w, ad/α{Tγϕ}(a·)〉, (4.18)

where we have used that 〈s, ϕ〉 = 〈w,Tγϕ〉 and the (−γ)-homogeneity of T in (4.17)
and (4.18), respectively. Therefore, we have

log P̂aγ+d(1/α−1)s(·/a)(ϕ) = log P̂w(ad/α{Tγϕ}(a·))

=

∫
Rd

Ψ(ad/α{Tγϕ}(ax))dx

=

∫
Rd

(
a−dΨ(ad/αTγϕ(y)

)
dy. (4.19)

By assumption on Ψ, we moreover have that, for every y ∈ Rd,

a−dΨ(ad/αTγϕ(y)) −→
a→0
−C |Tγϕ(y)|α .

We split the proof in two parts depending on whether Tγ and Ψ satisfy (C1) or
(C2).

• We start with (C2). The bound on Ψ implies that∣∣∣a−dΨ(ad/αTγϕ(y))
∣∣∣ ≤M |Tγϕ(y)|α (4.20)
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for every y ∈ Rd. The right term of (4.20) is integrable by assumption on Tγ .
The Lebesgue dominated convergence theorem therefore applies and (4.16) is
proven.

• We assume now (C1). In that case, we do not have a full bound on Ψ.
However, we know that Tγϕ is bounded, so that ‖Tγϕ‖∞ < ∞. Since Ψ
is continuous and behaves like (−C |ξ|α) at 0, there exists M > 0 such that
|Ψ(ξ)| ≤ M |ξ|α for every |ξ| ≤ ‖Tγϕ‖∞. Hence, for all a ≤ 1, we have∣∣ad/αTγϕ(y)

∣∣ ≤ 1, and (4.20) is still valid. Again, we deduce (4.16) from the
Lebesgue dominated convergence theorem.

Theorem 4.4. Let Lγ be a homogeneous whitening operator of order γ ≥ 0 and w
be a Lévy noise with Lévy exponent Ψ and Blumenthal-Getoor index 0 < αloc ≤ 2.
We assume that there exists a (−γ)-homogeneous left-inverse Tγ of L∗γ that satisfies
one of the two following conditions.

• Condition (C1): Tγ is continuous from S (Rd) to R(Rd), or

• Condition (C2): Tγ is continuous from S (Rd) to Lαloc
(Rd) and the Lévy

exponent is bounded as |Ψ(ξ)| ≤M |ξ|αloc for some constant M > 0.

Let s be the generalized Lévy process with characteristic function P̂s(ϕ) = P̂w(Tγϕ).
Then, if the Lévy exponent Ψ satisfies Ψ(ξ) ∼

∞
−C |ξ|αloc for some constant C > 0,

we have the convergence in law

a
γ+d

(
1

αloc
−1
)
s(·/a)

(L)−→
a→∞

sLγ ,αloc
,

where LsLγ ,αloc

(L)
= wαloc

is a SαS white noise with α = αloc. In particular, the
process s is locally self-similar with local Hurst exponent

Hloc = γ +
d

αloc
− d.

Proof. The proof is very similar to the one of Theorem 4.3, thus we only develop
the parts that differ. If Tγ and Ψ satisfy (C2), the proof follows exactly the line
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of Theorem 4.3. We should therefore assume that Tγ continuously maps S (Rd)
to R(Rd). Restarting from (4.19) with αloc instead of min(αasymp, 2), we split the
integral into two parts and get

log P̂
aγ+d(1/αloc−1)s(·/a)

(ϕ) =

∫
Rd
1|Tγϕ(y)|ad/αloc≥1a

−dΨ(ad/αlocTγϕ(y))dy

+

∫
Rd
1|Tγϕ(y)|ad/αloc<1a

−dΨ(ad/αlocTγϕ(y))dy

:= I(a) + J(a).

Control of I(a): By assumption on Ψ, we have that, for any y ∈ Rd,

1|Tγϕ(y)|ad/αloc≥1a
−dΨ(ad/αlocTγϕ(y)) −→

a→∞
−C |Tγϕ(y)|αloc .

Moreover, since the continuous function Ψ asymptotically behaves like (−C |ξ|αloc),
there exists a constant C ′ such that |Ψ(ξ)| ≤ C ′ |ξ|αloc for every ξ with |ξ| ≥ 1. The
function Tγϕ, which is in R(Rd), is bounded. Hence, for any a > 0, we have that∣∣∣1|Tγϕ(y)|ad/αloc≥1a

−dΨ(ad/αlocTγϕ(y))
∣∣∣ ≤ C ′1|Tγϕ(y)|ad/αloc≥1 |Tγϕ(y))|αloc

≤ C ′ |Tγϕ(y)|αloc

for all y ∈ Rd. The function on the right is integrable, and the Lebesgue dominated
convergence thus applies We obtain finally that I(a) −→

a→∞
−C‖Tγϕ‖αloc

αloc
.

Control of J(a): The Lévy noise being tempered and, according to Proposition 2.4,

there exists C ′ > 0 and ε > 0 such that |Ψ(ξ)| ≤ C ′(|ξ|ε + |ξ|2). Without loss of
generality, one can choose ε < αloc. Then, for |ξ| ≤ 1, we have |Ψ(ξ)| ≤ 2C ′ |ξ|ε
and, therefore,∣∣∣∣∫

Rd
1|Tγϕ(y)|ad/αloc<1a

−dΨ(ad/αlocTγϕ(y))dy

∣∣∣∣ ≤ 2C ′ad(ε/αloc−1)‖Tγϕ‖εε.

Since R(Rd) ⊂ Lε(Rd) and ε < αloc, we have ‖Tγϕ‖εε <∞ and ad(ε/αloc−1) −→
a→∞

0,

which implies that J(a) −→
a→∞

0. Finally, we have shown that

log P̂
aγ+d(1/αloc−1)s(·/a)

(ϕ) = I(a) + J(a) −→
a→∞

−C |Tγϕ(y)|αloc ,

as expected.
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Remarks.

• The renormalization procedures in Theorems 4.3 and 4.4 have to be compared
with the index H = γ + d(1/α− 1) of a self-similar generalized Lévy process
(see Proposition 4.3). One can say that the lack of self-similarity of s is
asymptotically or locally removed.

• (C1) has to be understood as the sufficient assumption on the operator Tγ

such that the process s with characteristic functional P̂w(Tγϕ) is well-defined
without any additional assumption on the Lévy white noise w. Therefore,
(C1) is restrictive for the operator but not for the noise.

• The previous remark is in contrast to (C2). Here, the restriction on Tγ is
minimal since the process sLγ ,α should be well-defined for α = min(αasymp, 2)
or α = αloc. Therefore, Tγ should at least map S (Rd) into Lα(Rd). It means
that (C2) gives sufficient assumptions on the Lévy white noise (more precisely
on the bound of the Lévy exponent) such that the minimal assumption on Tγ
is also sufficient.

• When the variance of the noise is finite, we have in particular that αasymp ≥ 2,
and therefore min(αasymp, 2) = 2. Under the assumptions of Theorem 4.3, the
process aγ−d/2s(·/a) converges to a Gaussian self-similar process. This can be
seen as a central limit theorem for finite-variance generalized Lévy processes.

• For important classes of Lévy white noises, the parameter αloc vanishes, and
Theorem 4.4 does not apply. This includes generalized Laplace noises and
compound Poisson noises (see Section 3.1.2). In that case, the underlying
processes do not admit any scaling limit at fine scales, at least when Tγ
satisfies (C1), as shown in Proposition 4.4.

Proposition 4.4. Let Lγ be a homogeneous whitening operator of order γ ≥ 0 and
w be a Lévy noise with Lévy exponent Ψ and Blumenthal-Getoor index αloc = 0.
We assume that there exists a (−γ)-homogeneous left-inverse Tγ of L∗γ , continuous

from S (Rd) to R(Rd). Let s be the generalized Lévy process with characteristic

function P̂s(ϕ) = P̂w(Tγϕ). Then, for every H ∈ R,

aHs(·/a)
(L)−→
a→∞

0.
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Proof. Due to the Lévy-Fernique theorem, we have to show that, for every ϕ ∈
S (Rd),

log P̂aHs(·/a)(ϕ) −→
a→∞

0.

Proceeding as in Theorem 4.3, we easily show that

log P̂aHs(·/a)(ϕ) =

∫
Rd
a−dΨ(ad+HTγϕ(y))dy. (4.21)

According to Proposition 2.4, there exists ε, C ′ > 0 such that |Ψ(ξ)| ≤ C ′ |ξ|ε for
|ξ| ≤ 1. Without loss of generality, one can assume that ε < d

d+|H| . This implies in

particular that ε(d+H)− d < 0. The knowledge that αloc = 0 is enough to deduce
that Ψ(ξ) is also dominated by |ξ|ε for |ξ| ≥ 1, and that there exists C > 0 such
that

|Ψ(ξ)| ≤ C |ξ|ε

for every ξ ∈ R. Resuming from (4.21), we obtain that∣∣∣log P̂aHs(·/a)(ϕ)
∣∣∣ ≤ C ∫

Rd
aε(d+H)−d |Tγϕ(y)|ε dy = C‖Tγϕ‖εεaε(d+H)−d,

which vanishes when a→∞ due to our choice of ε. This concludes the proof.

4.3.3 Examples and Simulations

The processes consider in this section have been introduced in Section 3.3.2.

Lévy processes and sheets. We recall the notation Λ = D1 · · ·Dd. We consider
Lévy sheets solutions of Λs = w. The left-inverse of Λ introduced in Section 3.3.2 is
(−d)-homogeneous and continuous from S (Rd) to R(Rd). We satisfy therefore the
Condition (C1) Applying the results of Section 4.3.2, we directly deduce Proposition
4.5. We denote the SαS Lévy sheet for α ∈ (0, 2] by sΛ,α.

Proposition 4.5. Let w be a Lévy noise with indices αasymp ∈ (0,∞] and αloc ∈
[0, 2] and s the Lévy sheet driven by w.

• If Ψ(ξ) ∼
0
−C |ξ|min(αasymp,2)

for some C > 0, then

ad/min(αasymp,2)s(·/a) −→
a→0

sΛ,min(αasymp,2).
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• If αloc 6= 0 and Ψ(ξ) ∼
∞
−C |ξ|αloc for some C > 0, then

ad/αlocs(·/a) −→
a→∞

sΛ,αloc
.

We illustrate our results in 1-dimension with simulations of Lévy processes.
First, we consider three Lévy processes driven by the Laplace white noise, the
Gaussian-Poisson white noise, and the Cauchy-Poisson white noise, respectively.
We look at the processes at three different scales by representing them on [0, 1],
[0, 10], and [0, 1000]. We only generate one process of each type and represent it

Figure 4.10: Lévy processes at three different scale and comparison with the corre-
sponding self-similar process at large scale according to Theorem 4.3.
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on the different intervals, which corresponds to zooming out of it. The theoretical
prediction at large scale is as follows. The Laplace and Poisson-Gaussian pro-
cess should be statistically indistinguishable from the Brownian motion, while the
Poisson-Cauchy process should be statistically indistinguishable from the Cauchy
process (also called Lévy flight). We see in Figure 4.10 that this can indeed be ob-
served on simulations. For comparison purposes, we also represent one realization
of the expected limit process.

We also depict the difference between fine-scale and coarse scale behaviors. To
do so, we consider a Lévy noise w, which is the sum of two independent Gaussian and
Cauchy noises. The prediction states that the Lévy process driven by w converges
to the Brownian motion at fine scales and to the Cauchy process (or Lévy flight)
at coarse scales. Again, this theoretical result is observed on simulations in Figure
4.11, where one realization of the process is represented on [0, 0.1] (fine-scale), [0, 10]
(medium scale), and [0, 1000] (coarse scale).

Figure 4.11: Sum of a Lévy flight and a Brownian motion at three different scales.

Fractional Lévy Processes and Fields In dimension d, we consider the stochas-
tic differential equation (−∆)γ/2s = w, where (−∆)γ/2 is the fractional Laplacian.
The conditions of existence of s were discussed in Section 3.3.2 and we assume that
they are satisfied. Again, the direct application of the results of Section 4.3.2 yields
Proposition 4.6. We denote by s(−∆)γ/2,α the fractional Lévy process driven by the
SαS Lévy noise (assuming that it is well-defined).
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Proposition 4.6. Let w be a Lévy noise with indices αasymp ∈ (0,∞] and αloc ∈
[0, 2] and s be the fractional Lévy process driven by w (which is assumed to exist).

• If Ψ(ξ) ∼
0
−C |ξ|min(αasymp,2)

and |Ψ(ξ)| ≤ C ′ |ξ|min(αasymp,2)
for some C,C ′ >

0, then

aγ+d(1/min(αasymp,2)−1)s(·/a) −→
a→0

s(−∆)γ/2,min(αasymp,2).

• If αloc 6= 0, Ψ(ξ) ∼
∞
−C |ξ|αloc , and |Ψ(ξ)| ≤ C ′ |ξ|αloc for some C,C ′ > 0,

then
aγ+d(1/αloc−1)s(·/a) −→

a→∞
s(−∆)γ/2,αloc

.

In dimension d = 1, one can construct generalized Lévy field whitened by the
fractional derivative L = Dγ . This includes the fractional Brownian motion [MN68]
when considering the Gaussian noise and Lévy driven generalizations [EW13]. For
a left-inverse-based approach in this case, see [UT14, Section 7.5].



Chapter 5

Regularity of Generalized
Lévy Processes

In this chapter, we aim at specifying in which function spaces, associated to different
notions of regularity (Hölder, Sobolev, and more generally Besov), the generalized
Lévy processes are localized. A special attention will be given to the Lévy noise,
for which we identify the local smoothness and the asymptotic decay rate. We then
deduce local smoothness of the generalized Lévy processes specified in the periodic
framework. This chapter is based on our publications [FUW17c, FFU17, AFU], in
collaboration with S. Aziznejad, A. Fallah, M. Unser, and J.P. Ward.
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5.1 Smoothness and Decay Rate in S ′(Rd)

For us, random processes are constructed as random elements in the space of tem-
pered generalized functions. We will therefore describe their smoothness and decay
properties as we would do for a (deterministic) tempered generalized function.

For p = 2, we have seen that the space of tempered distribution is the union of
the weighted Sobolev spaces (see (2.17)). More generally, if we fix the integrability
rate 0 < p ≤ ∞, the space of tempered generalized functions satisfies [Kab08,
Proposition 1]

S ′(Rd) =
⋃
τ,ρ∈R

Bτp (Rd; ρ), (5.1)

where the weighted Besov spaces Bτp (Rd; ρ) are introduced in Section 2.2.3. Ideally,

for f ∈ S ′(Rd), we want to identify the set

Ep(f) =
{

(τ, ρ) ∈ R2
∣∣ f ∈ Bτp (Rd; ρ)

}
.

We remark that Ep(f) is non-empty due to (5.1). When τ1 ≤ τ2 and ρ1 ≤ ρ2, we
have the embeddings

Bτ2p (Rd; ρ) ⊆ Bτ1p (Rd; ρ),

Bτp (Rd; ρ2) ⊆ Bτp (Rd; ρ1).

Thus, if (τ0, ρ0) ∈ Ep(f), then

(−∞, τ0]× (−∞, ρ0] ⊂ Ep(f).

Assume that we know two quantities τp(f) ∈ (−∞,∞] and ρp(f) ∈ (−∞,∞]
such that:

• if τ < τp(f) and ρ < ρp(f), then f ∈ Bτp (Rd; ρ); while

• if τ > τp(f) or ρ > ρp(f), then f /∈ Bτp (Rd; ρ).

The case τp(f) =∞ corresponds to infinitely differentiable functions, and ρp(f) =∞
means that f is rapidly decaying. When these two quantities are finite, we have
that

(−∞, τp(f))× (−∞, ρp(f)) ⊂ Ep(f) ⊂ (−∞, τp(f)]× (−∞, ρp(f)]. (5.2)
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The value of τp(f) measures the local smoothness of f in the Lp-scale, while ρp(f)
quantifies its asymptotic decay rate. Knowing τp(f) and ρp(f) allows to almost
completely characterize in which weighted Besov spaces the generalized function f
is. The only remaining part is precisely when τ = τp(f) or ρ = ρp(f).

Remark. We do not claim that τp(f) and ρp(f) are well-defined for any f ∈
S ′(Rd) and 0 < p ≤ ∞. In particular, the space Ep(f) is not necessarily sandwiched
between open and closed separable spaces in R2 as in (5.2). Nevertheless, the
description of the Besov regularity of f is particularly simple when it occurs. This
is true for the Lévy noise, as we shall see in Section 5.2. It is also the case for the
Dirac impulse, for which τp(δ) = d/p− d and ρp(δ) = +∞, as easily deduced from
Proposition 2.7.
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5.2 Besov Regularity of the Lévy Noise

This section is dedicated to the identification of the local smoothness τp(w) and
the asymptotic decay rate ρp(w) of the Lévy noise for 0 < p ≤ ∞. We will see that
these quantities are well-defined.

Our results are based on the wavelet characterization of Besov spaces exposed
in Section 2.2.3, where we used Daubechies wavelet bases. In order to identify
a certain Besov regularity, we therefore need to justify that one can analyse the
Lévy noise with Daubechies wavelets. We have seen in Section 3.2 that any Lévy
noise can be extended as a random linear and continuous functional on its domain
of definition (Theorem 3.4). Moreover, the domain of definition always includes
the space of compactly supported functions, which is a subspace of L2,0(Rd) (see
Proposition 3.17). This means that the family of random variables

(〈w,ψj,G,k〉)j≥0, G∈Gj , k∈Zd (5.3)

is always well-defined in a compatible way (with the notation of Section 2.2.3).
An alternative justification of the well-definiteness of (5.3) was exposed in our

works [FFU17, FUW17c]. There, we have shown, based on considerations on the
characteristic functional, that a Lévy noise is almost surely located in the Sobolev
space W τ

2 (Rd; ρ) as soon as τ < −d/2 and ρ < −d/min(αasymp, 2) [FFU17, Propo-
sition 8]. Then, it suffices to take a Daubechies wavelet basis with a sufficient
regularity in accordance with Proposition 2.9 to justify the wavelet analysis. The
two approaches convey the same message: we can apply Daubechies wavelets to
any Lévy noise.

We split the different cases as follows. In Sections 5.2.1 and 5.2.2, we fully
characterize the Besov regularity of the Gaussian noise and the compound Poisson
noise, respectively. The case of Lévy noise without Gaussian part (or sparse Lévy
noise) is treated in Section 5.2.3. We combine and comment all the results in
Section 5.2.4.

We briefly present the strategy of the proof, which is similar for the differ-
ent classes of noise. Showing that the noise is almost surely (almost surely not,
respectively) in a given Besov space is called a positive result (a negative result, re-
spectively). Given a Lévy noise and a Besov space Bτp (Rd; ρ), we study the random
variable

‖w‖p
Bτp (Rd;ρ)

=
∑
j≥0

2j(τp−d+ dp
2 )
∑
G∈Gj

∑
k∈Zd
〈2−jk〉ρp|〈w,ψj,G,k〉|p. (5.4)
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We assume that we have identified (or guessed) the values τp(w) and ρp(w).

• For τ < τp(w) and ρ < ρp(w), we show that ‖w‖Bτp (Rd;ρ) < ∞ almost surely.

For p < αasymp, we show the strongest result that E[‖w‖p
Bτp (Rd;ρ)

] <∞. This

requires a precise estimation of the behavior of E[|〈w,ψj,G,k〉|p] as j goes to
infinity. When p > αasymp, the random variables 〈w,ψj,G,k〉 have an infinite
pth moment and the method is not applicable. For p ≥ αasymp, we actually
deduce the result using the embeddings between Besov spaces. It appears
that this approach is sufficient to obtain sharp positive results.

• For τ > τp(w), we show that ‖w‖Bτp (Rd;ρ) = ∞ almost surely. To do so, we

consider only the mother wavelet (gender G = Md) and restrain the shifts k
to retain the lower bound

‖w‖p
Bτp (Rd;ρ)

≥ C
∑
j≥0

2j(τp−d+ dp
2 )

∑
0≤k1,...,kd<2j

|〈w,ψj,Md,k〉|p, (5.5)

with C smaller than 〈2−jk〉ρp for the considered range of k. We need to
show then that |〈w,ψj,G,k〉| cannot be too small, with Borel-Cantelli-type
arguments.

• For ρ > ρp(w), we show again that ‖w‖Bτp (Rd;ρ) =∞ almost surely. It appears
that the evolution among the scale j is not what makes the Besov norm
explode. We only consider the father wavelet (gender G = F d) in (5.4), and
use the lower bound

‖w‖p
Bτp (Rd;ρ)

≥
∑
k∈Zd
〈k〉ρp|〈w,ψ0,Fd,k〉|p. (5.6)

Again, a Borel-Cantelli-type argument is used to show that the |〈w,ψ0,Fd,k〉|
cannot be too small, and that the Besov norm is almost surely infinite.

5.2.1 Gaussian Noise

The Gaussian case is much simpler than the general one since the wavelet coefficients
of the Gaussian noise are independent and identically distributed. We present it
separately for three reasons: (i) it can be considered as an instructive toy problem
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that already contains some of the technicalities that will appear for the general
case, (ii) it cannot be deduced from the other sections, where the results are based
on a careful study of the Lévy measure, and (iii) the localization of the Gaussian
noise in weighted Besov spaces has not been addressed in the literature, to the best
of our knowledge (for the local Besov regularity, a complete answer was given in
[Ver10]). We first state a lemma that will be useful throughout this section.

Lemma 5.1. Assume that (Xk)k∈Zd , is a sequence of i.i.d. nonzero random vari-
ables. Then, ∑

k∈Zd

|Xk|
〈k〉d

=∞ a.s.

Proof. Lemma 5.1 can be easily proved using for instance Kolmogorov’s three-series
theorem. We propose here a short and self-contained proof. First of all, the result
for any dimension d is easily deduced from the one-dimensional case. Moreover,
|k| and 〈k〉 are equivalent asymptotically, so that it is equivalent to show that∑
k≥1

|Xk|
k =∞ for Xk i.i.d. For k ≥ 1, we set Zk = 1

2k

∑2k−1
l=2k−1 |Xl|, so that

∑
k≥1

|Xk|
k

=
∑
k≥1

2k−1∑
l=2k−1

|Xl|
l
≥
∑
k≥1

1

2k

2k−1∑
l=2k−1

|Xl| =
∑
k≥1

Zk

The Zk are independent because the Xk are. Moreover, we have E[Zk] = E[|X1|]
for all k. The weak law of large numbers ensures that P(Zk > E[|X1|]/2) goes to
1, therefore

∑
k≥1 P(Zk > E[|X1|]/2) =∞. Since the events {Zk > E[|X1|]/2} are

independent, we apply the Borel-Cantelli lemma to deduce that infinitely many Zk
are bigger than E[|X1|]/2 almost surely. Finally, this implies that

∑
k≥1 Zk = ∞

almost surely and the result is proved.

Theorem 5.1. Let 0 < p <∞. The Gaussian noise wGauss is

• almost surely in Bτp (Rd; ρ) if τ < −d/2 and ρ < −d/p, and

• almost surely not in Bτp (Rd; ρ) if τ ≥ −d/2 or ρ ≥ −d/p.

Proof. Without loss of generality, we assume that the variance of the Gaussian
noise is 1.
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If τ < −d/2 and ρ < −d/p. For p > 0, we denote by Cp the p-th moment
of a Gaussian random variable with mean 0 and variance 1. For the Gaussian
noise, 〈wGauss, ϕ1〉 and 〈wGauss, ϕ2〉 are independent if and only if 〈ϕ1, ϕ2〉 = 0, and
〈wGauss, ϕ〉 is a Gaussian random variable with variance ‖ϕ‖22 [UT14]. The family
of functions (ψj,G,k)j,G,k being orthonormal, the random variables 〈wGauss, ψj,G,k〉
are therefore i.i.d. with law N (0, 1). We then have

E[‖wGauss‖pBτp (Rd;ρ)
] =

∑
j≥0

2j(τp−d+ dp
2 )
∑
G∈Gj

∑
k∈Zd
〈2−jk〉ρpE[|〈wGauss, ψj,G,k〉|p]

= Cp
∑
j≥0

2j(τp−d+ dp
2 )Card(Gj)

∑
k∈Zd
〈2−jk〉ρp

≤ 2dCp
∑
j≥0

2j(τp−d+ dp
2 )
∑
k∈Zd
〈2−jk〉ρp.

The last inequality is due to Card(Gj) ≤ 2d. Since ρp < −d and 〈2−jk〉 ∼
∞

2−j‖k‖,
we have that

∑
k∈Zd〈2jk〉ρp < ∞. Moreover, we recognize a Riemann sum and

have the convergence

2−jd
∑
k∈Zd
〈2jk〉ρp −→

j→∞

∫
Rd
〈x〉ρpdx <∞.

In particular, the series
∑
j 2j(τp+

dp
2 )
(
2−jd

∑
k〈2−jk〉ρp

)
converges if and only if

the series
∑
j 2j(τp+

dp
2 ) does; that is, if and only if τ < d/2. Finally, if τ < d/2

and ρ < −d/p, we have shown that E[‖wGauss‖pBτp (Rd;ρ)
] < ∞, and therefore

wGauss ∈ Bτp (Rd; ρ) almost surely.

If τ ≥ −d/2. We then have 2j(τ−d+dp/2) ≥ 2−jd. We aim at finding a lower
bound for the Besov norm of w and we restrict ourselves to the wavelet with gender
G = Md ∈ Gj for any j ≥ 0. Using (5.5), we have that

‖wGauss‖pBτp (Rd;ρ)
≥ C

∑
j≥0

2−jd
∑

0≤k1,...,kd<2j

|〈wGauss, ψj,Md,k〉|p := C
∑
j≥0

Zj .

The random variables Zj = 2−jd
∑

0≤k1,...,kd<2j |〈wGauss, ψj,Md,k〉|p are indepen-
dent, non-negative, and have the same average E[Zj ] = Cp equals to the pth-
moment of a Gaussian random variable with variance 1. The same argument as in
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Lemma 5.1 therefore implies that
∑
j≥0 Zj =∞ almost surely, hence ‖wGauss‖pBτp (Rd;ρ)

=

∞ almost surely.

If ρ ≥ −d/p. Using (5.6), we have the lower bound

‖wGauss‖pBτp (Rd;ρ)
≥
∑
k∈Zd
〈k〉ρp|〈wGauss, ψ0,Fd,k〉|p ≥

∑
k∈Zd

|〈wGauss, ψ0,Fd,k〉|p

〈k〉d
.

Finally, the random variables 〈wGauss, ψ0,Fd,k〉 being i.i.d., Lemma 5.1 applies, im-
plying that ‖wGauss‖pBτp (Rd;ρ)

=∞ almost surely.

Theorem 5.1 fully characterizes the Besov localization of the Gaussian noise.
We reinterpret it as

Ep(wGauss) = (−∞,−d/2)× (−∞,−d/p)

for any 0 < p <∞.

The proof of Theorem 5.1 for the case ρ ≥ −d/p uses an argument that is valid
for any Lévy noise. We state this result right now in full generality.

Proposition 5.1. Fix 0 < p < ∞ and τ, ρ ∈ R. If w is a nontrivial Lévy white
noise, then, w /∈ Bτp (Rd; ρ) as soon as ρ ≥ −d/p.

Proof. By restricting to the scale j ≥ 0, with only the father wavelet (gender
G = F d), and selecting k0 such that the ψ0,Fd,k have disjoint supports two by two
for k ∈ k0Zd, we have the lower bound

‖w‖p
Bτp (Rd;ρ)

≥
∑

k∈k0Zd
〈k〉ρp|〈w,ψ0,Fd,k〉|p ≥

∑
k∈k0Zd

|〈w,ψ0,Fd,k〉|p

〈k〉d
.

The ψ0,Fd,k having disjoint supports, the random variables 〈w,ψ0,Fd,k〉 are i.i.d.
when k ∈ k0Zd. Lemma 5.1 hence applies and ‖w‖p

Bτp (Rd;ρ)
=∞, as expected.

In other terms, for any Lévy noise w, we have Ep(w) ⊂ R× (−∞,−d/p).
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5.2.2 Compound Poisson Noise

As for the Gaussian case, we treat the Besov regularity of the compound Poisson
noise for every 0 < p < ∞. Our positive results are based on a careful estimation
of the moments for compound Poisson noise.

Lemma 5.2. Let wPoisson be a compound Poisson noise with asymptotic index
αasymp and p < αasymp ≤ ∞. Then, there exists a constant C such that

E[|〈wPoisson, ψj,G,k〉|p] ≤ C2jpd/2−jd

for every j ≥ 0, G ∈ Gj, and k ∈ Zd.

Proof. We denote by λ > 0 and P the sparsity parameter and the law of the jumps
of wPoisson, respectively. We know from (3.5) that we can write

wPoisson
(L)
=
∑
k≥0

akδ(· − xk), (5.7)

where the ak are i.i.d. with law P , and the xk, independent from the ak, are
randomly located such that Card{xk ∈ B} is a Poisson random variable with
parameter λLeb(B) for any Borel set B ⊂ Rd with finite Lebesgue measure. For M
big enough, the support of the ΨG is included in [−M/2,M/2]d. Then, the support

of Ψj,G,k is included in Ij,k :=
∏d
i=1[2−j(ki −M/2), 2−j(ki +M/2)]. We set

Aj,k = Card {k ≥ 0 | xk ∈ Ij,k} .

It is a Poisson random variable with parameter λLeb(Ij,k) = λMd

2jd
. Then, we have

the equality in law

〈wPoisson, ψj,k〉
(L)
=

Aj,k∑
n=1

a′nψj,k(x′n)

where the a′n are i.i.d. with the same law than the ak. The law of the x′n can be
specified explicitly but will play no role in the sequel.
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By conditioning on Aj,k and using the inequality (4.5), we deduce that

E[|〈wPoisson, ψj,G,k〉|p] =

∞∑
N=1

P(Aj,k = N)E [|〈wPoisson, ψj,G,k〉|p |Aj,k = N ]

=

∞∑
N=1

P(Aj,k = N)E

[∣∣∣∣∣
N∑
n=1

a′nψj,G,k(x′n)

∣∣∣∣∣
p]

≤
∞∑
N=1

P(Aj,k = N)Nmax(0,p−1)E

[
N∑
n=1

|a′nψj,G,k(x′n)|p
]

≤ ‖ψj,G,k‖p∞
∞∑
N=1

P(Aj,k = N)Nmax(1,p)E [|a1|p]

= 2jdp/2‖ψG‖p∞E [|a1|p]
∞∑
N=1

Nmax(1,p)P(Aj,k = N). (5.8)

We used at the end the relation ‖ψj,G,k‖p∞ = 2jdp/2‖ψG‖p∞. Knowing the law of
Aj,k, we then have

∞∑
N=1

Nmax(1,p)P(Aj,k = N) =

∞∑
N=1

Nmax(1,p) 1

N !
(Mdλ)N2−jdNe−λM

d2−jd .

Then, 2−jdN ≤ 2−jd for every N ≥ 1 and e−λM
d2−jd ≤ 1, hence,

∞∑
N=1

Nmax(1,p)P(Aj,k = N) ≤ C̃2−jd (5.9)

where C ′ =
∑∞
N=1N

max(1,p) 1
N ! (M

dλ)N < ∞. Finally, including (5.9) into (5.8),
we deduce the result with C = C ′E[|a1|p]‖ψG‖p∞.

Theorem 5.2. Let wPoisson be a compound Poisson noise with asymptotic index
αasymp ∈ (0,∞] and 0 < p <∞. Then, wPoisson is

• almost surely in Bτp (Rd; ρ) if τ < d/p− d and ρ < −d/min(p, αasymp),

• almost surely not in Bτp (Rd; ρ) for p ≤ αasymp if τ ≥ d/p − d or ρ ≥ −d/p,
and
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• almost surely not in Bτp (Rd; ρ) for p > αasymp if τ ≥ d/p − d or ρ >
−d/αasymp.

Proof. If p < αasymp, τ < d/p − d, and ρ < −d/p. Under these assumptions, we
apply Lemma 5.2 to deduce that

E[‖wPoisson‖pBτp (Rd;ρ)
] =

∑
j≥0

2j(τp−d+dp/2)
∑
G,k

〈2−jk〉ρpE[|〈wPoisson, ψj,G,k〉|p]

≤ C2d
∑
j≥0

2j(τp−d+dp) 1

2jd

∑
k∈Zd
〈2−jk〉ρp.

The sum over the gender was removed using that Card(Gj) ≤ 2d. Then,

1

2jd

∑
k∈Zd
〈2−jk〉ρp −→

j→∞

∫
Rd
〈x〉ρpdx <∞

as soon as ρ < −d/p. Assuming this condition on ρ, the sum in is finite if and only
if
∑
j 2j(τp−d+dp) <∞, that is, if and only if τp− d+ d/p < 0, as expected.

If p ≥ αasymp, τ < d/p− d, and ρ < −d/αasymp. From the conditions on τ and
ρ, one can find p0, ρ0, and τ0 such that

ρ < ρ0 < −
d

p0
< − d

αasymp
,

τ +
d

p0
− d

p
< τ0 <

d

p0
− d. (5.10)

Then, in particular, p0 < p, τ0− τ > d/p0− d/p, and ρ0 > ρ, so that Bτ0p0(Rd; ρ0) is

embedded in Bτp (Rd; ρ) (according to (2.22)). Moreover, p0 < αasymp, τ0 < d/p0−d,
and ρ0 < −d/p0. We are therefore back to the first case, for which we have shown
that wPoisson ∈ Bτ0p0(Rd; ρ0) almost surely. In conclusion, wPoisson ∈ Bτp (Rd; ρ) al-
most surely.

Combining these first two cases, we obtain that wPoisson ∈ Bτp (Rd; ρ) if τ <
d/p− d and ρ < −d/min(p, αasymp).
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If τ ≥ d/p− d. We use again the representation (5.7) of the compound Poisson
noise. Assume that wPoisson is in Bτp (Rd; ρ) for some ρ ∈ R. Then, the product

of wPoisson by any compactly supported smooth test function ϕ ∈ D(Rd) is also in
Bτp (Rd; ρ). Choosing ϕ such that ϕ(x0) = 1 and ϕ(xk) = 0 for k 6= 0, we get

ϕ · wPoisson = a0δ(· − x0) ∈ Bτp (Rd; ρ),

which is absurd due to Proposition 2.7. This proves that wPoisson /∈ Bτp (Rd; ρ) for
any ρ ∈ R.

If ρ ≥ −d/p. We already know that wPoisson /∈ Bτp (Rd; ρ) for any τ ∈ R accord-
ing to Proposition 5.1.

If p > αasymp and ρ > −d/αasymp. This means in particular that αasymp <∞.
We treat the case ρ < 0, the extension for ρ ≥ 0 comes easily by embedding. We
set q = −d/ρ. Using (5.6), we have that

‖wPoisson‖pBτp (Rd;ρ)
≥

∑
k∈k0Zd

|〈wPoisson, ψ0,Fd,k〉|p

〈k〉dp/q
. (5.11)

Consider the events Ak = {
∣∣〈wPoisson, ψ0,Fd,k〉

∣∣ ≥ 〈k〉d/q} for k ∈ k0Zd. The Ak
are independent because the Xk = 〈wPoisson, ψ0,Fd,k〉 are. Moreover, the Xk have
the same law since wPoisson is stationary. Set Y = |X0|q. Then,∑

k∈k0Zd
P(Ak) =

∑
k∈k0Zd

P(Y ≥ 〈k〉d) ≥
∑
m≥1

P(Y ≥ mk0). (5.12)

Moreover, exploiting that P(Y ≥ x) is decreasing in x, we have that

E[Y ] =

∫ ∞
0

P(Y ≥ x)dx =
∑
m≥1

∫ (m+1)k0

mk0

P(Y ≥ x)dx ≤
∑
m≥1

P(Y ≥ mk0).

(5.13)
The relation q = d

−ρ > αasymp implies that E[Y ] = E[|X0|q] = ∞. Hence, from

(5.12) and (5.13), we deduce that
∑
k∈k0Zd P(Ak) =∞. The Borel-Cantelli lemma

implies that |Xk|p ≥ 〈k〉pd/q for infinitely many k almost surely. Due to (5.11), this
implies that ‖wPoisson‖pBτp (Rd;ρ)

=∞ almost surely and the result is proved.
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Theorem 5.2 can be reformulated in terms of the Besov localization of the com-
pound Poisson noise as follows:

• If p ≤ αasymp, then

Ep(wPoisson) = (−∞, d/p− d)× (−∞,−d/p).

• If p > αasymp, then

(−∞, d/p− d)× (−∞,−d/αasymp) ⊂ Ep(wPoisson),

Ep(wPoisson) ⊂ (−∞, d/p− d)× (−∞,−d/αasymp].

The only remaining part for a complete characterization of the Besov regularity is
when p > αasymp, τ < d/p − d, and ρ = −d/αasymp. In particular, our results are
complete when all the moments of wPoisson are finite (αasymp =∞). We conjecture
that wPoisson /∈ Bτp (Rd;−d/αasymp) when p > αasymp and τ ∈ R.

5.2.3 Non-Gaussian Lévy Noise

A non-Gaussian Lévy noise is a Lévy noise whose Lévy measure is nonzero. When
it has no Gaussian part (σ2 = 0 in the Lévy-Khintchine representation (2.1)), we
say that the noise is sparse1. When the Gaussian part is nonzero, we say that the
noise is composed in the sense that it has both a Gaussian and a sparse part. This
section is at the heart of our contributions on the Besov regularity of Lévy noise.

Moment estimations. We start with preliminary results that will be used in the
proof. We estimate the moments of a random variable by relaying the fractional
moments to the characteristic function. Proposition 5.2 can be found for instance
in [DS15, Lau80, MP13] with some variations. For the sake of completeness, we
recall the proof, similar to the one of [DS15].

Proposition 5.2. For a random variable X with characteristic function P̂X and
0 < p < 2, we have the relation

E[|X|p] = cp

∫
R

1−<(P̂X)(ξ)

|ξ|p+1
dξ ∈ [0,∞], (5.14)

1This terminology will be justified in Chapter 6.
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for some finite constant cp > 0.

Proof. For p ∈ (0, 2), we have, for every x ∈ R,

h(x) =

∫
R

(1− cos(xξ))
dξ

|ξ|p+1
=

(∫
R

(1− cos(u))
du

|u|p+1

)
|x|p,

which is obtained by the change of variable u = xξ. Applying this relation to x = X

and denoting cp =
(∫

R(1− cos(u)) du
|u|p+1

)−1

, we have by Fubini’s theorem that

E[|X|p] = cpE
[∫

R
(1− cos(ξX))

dξ

|ξ|p+1

]
= cp

∫
R

(1−<(E[eiξX ]))
dξ

|ξ|p+1

= cp

∫
R

1−<(P̂X)(ξ)

|ξ|p+1
dξ.

Proposition 5.3. We consider a Lévy noise w with indices αloc and αasymp. Then,
for 0 < p < min(αasymp, 2) and ε > 0 small enough, there exists C > 0 such that

E[|〈w, f〉|p] ≤ C(‖f‖pαloc+ε + ‖f‖pmin(αasymp,2)−ε) (5.15)

for any f ∈ LΘp(Rd), the domain of finite pth moments of w.

Proof. For simplicity, we write α̃ = min(αasymp, 2) in this proof. We start with a
preliminary property: There exists a constant C > 0 such that, for every z ∈ C
with <(z) ≤ 0, we have that

|1− ez| ≤ C
(

1− e−|z|
)
. (5.16)

Indeed, the function h(z) = |1−ez|
1−e−|z|

is easily shown to be bounded for <(z) ≤ 0 by
a continuity argument.

Defining X = 〈w, f〉 with f ∈ LΘ(Rd), the characteristic function of X is
(Proposition 3.10)

P̂X(ξ) = exp

(∫
Rd

Ψ(ξf(x))dx

)
.
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Moreover, using (3.42) and Proposition 3.18, we deduce that

|Ψ(ξ)| ≤ 2Θ(ξ) ≤ Cραloc+ε,α̃−ε(ξ) ≤ C
(
|ξ|α̃−ε + |ξ|αloc+ε

)
.

This implies that∫
Rd
|Ψ(ξf(x))|dx ≤ C

(
‖f‖α̃−εα̃−ε|ξ|

α̃−ε + ‖f‖αloc+ε
αloc+ε|ξ|αloc+ε

)
. (5.17)

We therefore have that

1−<(P̂X)(ξ) ≤ |1− P̂X(ξ)|
(i)

≤ C

(
1− exp

(
−
∣∣∣∣∫ Ψ(ξf(x))dx

∣∣∣∣))
(ii)

≤ C

(
1− exp

(
−
∫
|Ψ(ξf(x))|dx

))
(iii)

≤ C ′
(

1− e−‖f‖
α̃−ε
α̃−ε|ξ|

α̃−ε
e
−‖f‖αloc+ε

αloc+ε
|ξ|αloc+ε

)
(iv)

≤ C ′
(

(1− e−‖f‖
α̃−ε
α̃−ε|ξ|

α̃−ε
) + (1− e

−‖f‖αloc+ε

αloc+ε
|ξ|αloc+ε

)

)
,

where (i) comes from (5.16), (ii) and (iii) from the fact that x 7→ 1−e−x is increasing,
(iii) from (5.17), and (iv) from the inequality (1 − xy) ≤ (1 − x) + (1 − y). By a
change of variable, we remark that for α ∈ (0, 2) and p < α, there exists a constant
cp,α such that ∫

R

1− e−|xξ|
α

|ξ|p+1
dξ = cp,α|x|p.

Applying this result with (x = ‖f‖α̃−ε, α = α̃− ε) and (x = ‖f‖αloc+ε, α = αloc + ε)
respectively, we deduce using (5.14) that

E[|X|p] = cp

∫
R

1−<(P̂X)(ξ)

|ξ|p+1
dξ ≤ C ′′

(
‖f‖pα̃−ε + ‖f‖pαloc+ε

)
,

which completes the proof.
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Sparse Lévy noise. We first assume that the Lévy noise has no Gaussian part
(σ2 = 0 in the Lévy triplet). We split the main result in different subcases.

Proposition 5.4. Let 0 < p < ∞. Then, the Lévy noise w with indices αloc

and αasymp is almost surely in Bτp (Rd; ρ) if τ < d/max(p, αloc) − d and ρ <
−d/min(p, 2, αasymp).

In particular, if 0 < p < 2, then w is almost surely in Bτp (Rd; ρ) if τ <
d/max(p, αloc)− d and ρ < −d/min(p, αasymp).

We base the proof on the following estimation.

Lemma 5.3. Let w be a Lévy noise whose indices satisfy αloc < min(αasymp, 2).
We fix αloc < α < min(αasymp, 2) and p < α. Then , there exists C > 0 such that

E[|〈w,ψj,G,k〉|p] ≤ C2jdp(1/α−1/2) (5.18)

for any j ≥ 0, G ∈ Gj, and k ∈ Zd.

Proof. For ε > 0 small enough such that αloc + ε ≤ α ≤ min(αasymp, 2) − ε, we
have the embedding Lα(Rd) ⊆ Lαloc+ε(Rd) ∩ Lmin(αasymp,2)−ε(Rd) and there exists
M > 0 such that

‖f‖pαloc+ε + ‖f‖pmin(αasymp,2)−ε ≤M‖f‖
p
α. (5.19)

Applying (5.15) and (5.19) to f = ψj,G,k, we get

E[|〈w,ψj,G,k〉|p] ≤ C(‖ψj,G,k‖pαloc+ε + ‖ψj,G,k‖pmin(αasymp,2)−ε)

≤ CM‖ψj,G,k‖pα
= CM‖ψG‖pα2jdp(1/α−1/2).

Finally, (5.18) is proved for the constant CM supG‖ψG‖pα.

Proof of Proposition 5.4. The second part of Proposition 5.4 is directly deduced
from the first part because min(p, αasymp) = min(p, 2, αasymp) when p < 2. We now
prove the first part.



5.2 Besov Regularity of the Lévy Noise 151

If αloc < min(αasymp, 2) and p < min(αasymp, 2). One select α close enough to
max(p, αloc) such that

max(p, αloc) < α < min(αasymp, 2) and τ <
d

α
− d < d

max(p, αloc)
− d.

Since, in addition, p < αasymp and p < 2, we have p < min(αasymp, 2). We are
in the conditions of Lemma 5.3. Therefore, we know that there exists a constant
C > 0 such that

E[|〈w,ψj,G,k〉|p] ≤ C2jdp(1/2−1/α).

Then, we have that

E[‖w‖p
Bτp (Rd;ρ)

] =
∑
j≥0

2j(τp−d+dp/2)
∑
G,k

〈2−jk〉ρpE[|〈w,ψj,G,k〉|p]

≤ 2dC
∑
j≥0

2j(τp−d+dp/2)+jdp(1/2−1/α)

(∑
k

〈2−jk〉ρp
)
.

By assumption, we have that ρ < −d/min(p, αasymp) = −d/p, and 〈x〉ρp is hence
integrable over Rd. We recognize a Riemman sum and deduce that∑

k

〈2−jk〉ρp ∼
j→∞

2jd
∫
Rd
〈x〉ρpdx. (5.20)

Therefore, for C ′ big enough, we have that

E[‖w‖p
Bτp (Rd;ρ)

] ≤ C ′
∑
j≥0

(2τp+dp−dp/α)j .

The sum converges if and only if τ < d/α− d, which we have assumed. Finally, we
have shown that w is almost surely in Bτp (Rd; ρ).

If αloc < min(αasymp, 2) and p ≥ min(αasymp, 2). We deduce the result by em-
beddings (Proposition 2.8) from the case p < min(αasymp, 2), as we did in (5.10).

General case. The Lévy noise w can be decomposed as w = w1 + w2 where
w1 a compound Poisson noise and w2 a noise with all its moments finite. Then,
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we have that αasymp = αasymp(w1) ≤ αasymp(w2) = ∞ and αloc = αloc(w2) ≥
αloc(w1) = 0. From this, we easily see that τ < d/max(p, αloc(wi)) − d and ρ <
−d/min(p, 2, αasymp(wi)) for i = 1, 2. Moreover, we have that αloc(w1) = 0 <
αasymp(w1) and αloc(w2) ≤ 2 = min(αasymp(w2), 2). Thus, we can apply the first
cases (αloc < min(αasymp, 2)) to deduce that both w1 and w2 ∈ Bτp (Rd; ρ) almost
surely. Besov spaces being linear, w inherits this property.

Remark. Proposition 5.4 gives sufficient conditions relying on the indices αloc

and αasymp. For p < 2, we have seen that one can replace min(αasymp, 2) by
αasymp. Actually, we shall see that the decay rate is captured by the asymptotic
index αasymp and not by the Pruitt index β0 = min(αasymp, 2). This means in
particular that Proposition 5.4 is sharp only for p ≤ 2. This is the reason why we
have reformulated the result for p < 2, with αasymp instead on min(αasymp, 2).

Proposition 5.5. Let p ≥ 2 be an even integer. Then, the Lévy noise w with in-
dices αloc and αasymp is almost surely in Bτp (Rd; ρ) if τ < d/p−d = d/max(p, αloc)−
d and ρ < −d/min(p, αasymp).

The proof is based on the estimation of the moments of the wavelet decompo-
sition of the noise, in particular with the evolution with the scale j.

Lemma 5.4. Let w be a Lévy with finite (2k)-moments, with k ≥ 1 an integer.
Then, there exists a constant C such that

E[|〈w,ψj,G,k〉|2k] ≤ C2jd(k−1)

for every j ≥ 0, G ∈ Gj, and k ∈ Zd.

Proof. Consider a test function f ∈ LΘ(Rd) and set X = 〈w, f〉. The characteristic
function of X is (Proposition 3.10)

P̂X(ξ) = exp

(∫
Rd

Ψ(ξf(x))dx

)
:= exp(Ψf (ξ)).

The functions P̂X and Ψf are (2k)-differentiable because the (2k)-moment of X
is finite. Their Taylor expansions give the moments and the cumulants of X,

respectively. In particular, we have that E[X2k] = (−1)kP̂
(2k)
X (0). The (2k)th
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derivative of P̂X is deduced from the Faà di Bruno formula [Fra78], and is

P̂
(2k)
X (ξ) =

 ∑
n1,...n2k:

∑
u unu=2k

(2k)!

n1! . . . n2k!

2k∏
v=1

(
Ψ

(v)
f (ξ)

v!

)nv P̂X(ξ).

Exploiting that Ψ
(v)
f (0) =

(∫
Rd(f(x))vdx

)
Ψ(v)(0) we obtain the bound, for ξ = 0,

∣∣∣P̂(2k)
X (0)

∣∣∣ ≤ C ′ ∑
n1,...n2k:

∑
u unu=2k

2k∏
v=1

∣∣∣∣∫
Rd
f(x)vdx

∣∣∣∣nv (5.21)

with C > 0 a constant.
We now apply (5.21) to f = ψj,G,k. Since we have∫

Rd
ψj,G(x)vdx = 2jdv/2

∫
Rd
ψG(2jx− k)vdx = 2jd(v/2−1)

∫
Rd
ψG(x)vdx,

we deduce from (5.21) the new bound

E[〈w,ψj,G,k〉2k] =
∣∣∣P̂(2k)
〈w,ψj,G,k〉(0)

∣∣∣
≤ C ′′

∑
n1,...n2k:

∑
u unu=2k

2k∏
v=1

2jd(v/2−1)nv

= C ′′
∑

n1,...n2k:
∑
u unu=2k

2jd
∑
v(nv(v/2−1)).

Finally, since
∑
v vnv = 2k and

∑
v nv ≥ 1, we have

∑
v (nv(v/2− 1)) ≤ k− 1, and

therefore

E[〈w,ψj,G,k〉2k] ≤ C2jd(k−1)

for an adequate C > 0, as expected.

Proof of Proposition 5.5. We set p = 2k with k ≥ 1, k ∈ N. Then, we assume that
τ < d/2k − d and ρ < −d/min(2k, αasymp).
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If αasymp =∞. The assumption on ρ becomes ρ < −d/2k. According to Lemma
5.4, there exists a constant C > 0 such that

E[|〈w,ψj,G,k〉|p] ≤ C2jd(k−1). (5.22)

Applying (5.22), we deduce that

E[‖w‖2kBτ2k(Rd;ρ)] =
∑
j≥0

2j(2kτ−d+dk)
∑
G,k

〈2−jk〉2kρE[|〈w,ψj,G,k〉|2k]

≤ 2dC
∑
j≥0

2j(2kτ−d+dk+dk−d)

(∑
k

〈2−jk〉2ρk
)

≤ C ′
∑
j≥0

(22kτ+2kd−d)j ,

where we have finally used (5.20) for the last inequality, which holds since ρ <
−d/2k. The final sum converges if and only if τ < d/2k − d, which we have as-
sumed. Finally, we have shown that w ∈ Bτ2k(Rd; ρ) almost surely.

General case. We decompose w = w1 + w2 with w1 a compound Poisson noise
and w2 a Lévy noise with αasymp(w2) = ∞, w1 and w2 being independent. Then,
the conditions on τ and ρ easily imply that τ < d/max(p, αloc(wi)) − d and ρ <
−d/min(p, 2, αasymp(wi)) for i = 1, 2. Therefore, w1 ∈ Bτp (Rd; ρ) according to

Theorem 5.2, and w2 ∈ Bτp (Rd; ρ) as we have seen in the previous case. Finally, by

linearity, w = w1 + w2 ∈ Bτp (Rd; ρ) almost surely.

Remark. The second part of Proposition 5.4 and Proposition 5.5 state the same
result for different ranges of p. We conjecture that this result is actually valid
for any p ∈ (0,∞]. What is missing is an adequate estimation of the moments
E[|〈w,ψj,G,k〉|p] for general p, in the spirit of Lemmas 5.3 and 5.4.

We now prove negative results; that is, we identify the Besov spaces to which the
Lévy noise does not belong almost surely. We split the results for the smoothness
(for which we have the result for any p > 0) and for the decay rate (for which we
do not consider the case p > 2, p/2 /∈ N).

Proposition 5.6. Let p > 0. Then, the non-Gaussian Lévy noise w is not in
Bτp (Rd; ρ) almost surely if τ > d/p− d.
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Proof. We adapt the proof of the compound Poisson case to the general case. The
main idea is as follows. We decompose w = w1 + w2 with w1 a compound Poisson
noise and w2 a Lévy noise with finite moments. We can always impose that w1 is not
zero, since w is non-Gaussian. Then, we will see that the jumps of the compound
Poisson part forces the Besov norm to explode, and cannot be compensated by w2.

First, we remark that it is sufficient to show the existence of a test function
ϕ ∈ D(Rd) such that ‖w · ϕ‖Bτp (Rd) = ∞ almost surely. This proves that w /∈
Bτp (Rd; loc), the local Besov space, and therefore w /∈ Bτp (Rd; ρ) ⊆ Bτp (Rd; loc).

According to (3.5), we can write w1 =
∑
k≥0 akδ(· − xk). The random vari-

ables |ak| are i.i.d. and almost surely strictly positive. Let c0 > 0 be such that
P(|ak| ≥ c0) > 0. Then, almost surely, there exists k ≥ 0 such that |ak| ≥ c0. We
fix such a random k0 in the sequel. We therefore have |ak0 | ≥ c0 > 0 almost surely.
We chose ϕ ∈ D(Rd) random such that ϕ(xk) = 0 for k 6= k0, and ϕ = 1 on a
neighbourhood

{
x ∈ Rd

∣∣ ‖x− xk0‖∞ ≤ δ} of xk0 .

We consider a Daubechies mother wavelet such that |ψMd(x)| ≥ m0 > 0 for
x ∈ [−1/2, 1/2]d. This is always possible because the Daubechies wavelets converge
to the sinc function, which admits a strictly positive lower bound over [−1/2, 1/2].
Therefore, it is sufficient to take Daubechies wavelets of a large enough order.

Then, let kj ∈ Zd be the closed multi-integer to 2jxk0 . In particular, 2jxk0 −
kj ∈ [−1/2, 1/2]d and ∣∣ψMd(2jxk0 − kj)

∣∣ ≥ m0 > 0.

This relation is important since it provides a uniform and deterministic lower bound
on the random quantities

∣∣ψMd(2jxk0 − kj)
∣∣. We fix J ∈ N such that

Leb(Suppψj,Md,k) = 2−jdLeb(SuppψMd) ≤ δ

for every j ≥ J and k ∈ Zd. Then, SuppΨj,Md,kj ⊂
{
x ∈ Rd, ‖

∣∣ x− xk0‖∞ ≤ δ}
due to the size of the support of ψj,Md,kj . Therefore, for every j ≥ J , we have that
ϕ(x) · ψj,Md,kj (x) = ψj,Md,kj (x), since ϕ(x) = 1 on the support of ψj,Md,kj .

Then, we set a lower bound on the Besov norm of ϕ·w by restricting to the gender
G = Md, the scales j ≥ J , and k = kj . We then exploit that ϕ·ψj,Md,kj = ψj,Md,kj
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and that 〈w1 · ϕ,ψj,Md,kj 〉 = ak0ψj,Md,kj (xk0) to deduce that

‖ϕ · w‖Bτp (Rd) ≥
∑
j≥J

2j(τp−d+dp)2−jdp/2
∣∣〈w,ϕ · ψj,Md,kj 〉

∣∣p
≥ max

j≥J
2j(τp−d+dp)

∣∣〈w,ψMd(2j · −kj)〉
∣∣p

= max
j≥J

2j(τp−d+dp)
∣∣〈w2, ψMd(2j · −kj)〉+ ak0ψMd(2jxk0 − kj)

∣∣p .
(5.23)

We apply the Markov inequality P(|X| ≥ x) ≤ E[|X|2]/x2 to x = c0m0/2 and
X = 〈w2, ψMd(2j · −kj)〉 and get

P
( ∣∣〈w2, ψMd(2j · −kj)〉

∣∣ ≥ 1

2
c0m0

)
≤ 4

c20m
2
0

E
[
〈w2, ψMd(2j · −kj)〉

2
]
.

The mean of 〈w2, ψMd(2j · −kj)〉 is 0 because the mother wavelet has a 0 mean.
We denote by σ2

0 the variance of the noise w2. Then, we have that

E
[
〈w2, ψMd(2j · −kj)〉

2
]

= σ2
0‖ψMd(2j · −kj)‖22 = σ2

02−jd,

using that the wavelet is normalized. Finally, we have shown that

P
( ∣∣〈w2, ψMd(2j · −kj)〉

∣∣ ≥ 1

2
c0m0

)
≤ 4σ2

0

c20m
2
0

2−jd.

From this, and because
∣∣ψMd(2jxk0 − kj)

∣∣ ≥ m0 and |ak0 | ≥ c0 almost surely,
we deduce that

P
( ∣∣〈w2, ψMd(2j · −kj)〉

∣∣ ≥1

2
|ak0 |

∣∣ψMd(2jxk0 − kj)
∣∣ )

≤P
( ∣∣〈w2, ψMd(2j · −kj)〉

∣∣ ≥ 1

2
c0m0

)
−→
j→∞

0.

This implies that

P

(
∃j ≥ J,

∣∣〈w2, ψMd(2j · −kj)〉
∣∣ < 1

2
|ak0 |

∣∣ψMd(2jxk0 − kj)
∣∣) = 1.
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We denote by Ω0 this space of probability 1. On Ω0, we have that∣∣〈w2, ψMd(2j · −kj)〉+ ak0ψMd(2jxk0 − kj)
∣∣ ≥ ∣∣ak0ψMd(2jxk0 − kj)

∣∣
2

≥ c0m0

2

for some j ≥ J . Finally, using (5.2.3) in (5.23), we deduce that

‖ϕ · w‖Bτp (Rd) ≥ max
j≥J

2j(τp−d+dp) c0m0

2
=∞

almost surely, since τp − d + dp > 0 by assumption. Finally, the noise is almost
surely not in Bτp (Rd; ρ).

Proposition 5.7. Let w be a non-Gaussian Lévy noise with local index αloc > 0
and Lévy exponent Ψ. We assume that

Ψ(ξ) ∼
∞
−C |ξ|αloc (5.24)

for some constant C > 0. We fix p ∈ (0,∞], ρ, τ ∈ R. Then, w is almost surely
not in Bτp (Rd; ρ) almost surely if τ > d/αloc − d.

We base the proof on the following estimation.

Lemma 5.5. Let w be a non-Gaussian Lévy noise with indices αasymp, αloc > 0
and Lévy exponent Ψ satisfying (5.24). Then, for every p < αloc, αasymp, we have,
for every k, G,

E[|〈w,Ψj,G,k〉|p] ∼
j→∞

CG,p,α2
jdp
(

1
2−

1
αloc

)
(5.25)

with CG,p,α > 0 a constant.

Proof. We first remark that

〈w,Ψj,G,k〉 = 2−jd/2〈w(·/2j),ΨG(· − k)〉
= 2j(d/2−d/αloc)〈2jd(1/αloc−1)w(·/2j),ΨG(· − k)〉. (5.26)

Moreover, with Theorem 4.4, we know that 2jd(1/αloc−1)w(·/2j) converges to a SαS

noise wαloc
with α = αloc and P̂wαloc

(ϕ) = e−C‖ϕ‖
αloc
αloc . In particular, for p < αloc,

we have the convergence

E
[∣∣∣〈2jd(1/αloc−1)w(·/2j),ΨG(· − k)〉

∣∣∣p] −→
j→∞

E [|〈wαloc
,ΨG〉|p] . (5.27)
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Finally, (5.25) is a consequence of (5.26) and (5.27).

Proof of Proposition 5.7. By the embeddings Bτ+ε
q (Rd; ρ) ⊆ Bτp (Rd; ρ) valid for

every q > p and ε > 0, it is sufficient to show the result for p arbitrarily small. We
assume that p < αasymp.

Let k0 ≥ 1 be such that the families of random variables (〈w,Ψj,G,k〉)k∈k0Zd
are independent at j ≥ 0 and G ∈ Gj fixed. This is possible because the wavelets
are compactly supported. It therefore suffices to take k0 big enough such that the
supports do not intersect at a given gender and scale. By restricting to G = Md

and the range of k, we have that

‖w‖p
Bτp (Rd;ρ)

≥ C
∑
j≥0

2j(τp−d+dp/2)
∑

k∈k0Zd,0≤ki<k02j

∣∣〈w,ψj,Md,k〉
∣∣p .

We set Xj,k = 2
jd
(

1
αloc
− 1

2

)
〈w,ψj,Md,k〉 and

Mj,p := 2−jd
∑

k∈k0Zd,0≤ki<k02j

|Xj,k|p ,

which is an average among 2jd random variables. According to Lemma 5.5, the se-

quence (2
jdp
(

1
αloc
− 1

2

)
E[|〈w,Ψj,G,k〉|p])j≥0 converges to a strictly positive constant,

and is therefore bounded below and above by some constants mp,Mp > 0, respec-
tively. In particular, we have that mp ≤ E[Mj,p] ≤ Mp for every p < αloc and
j ≥ 0.

We now assume that p < αloc/2. Then, by exploiting the independence of the
Xj,k, we have

E[M2
j,p] = 2−jdE[2−jd

(∑
|Xj,k|p

)2

]

= 2−jdE[2−jd
∑
|Xj,k|2p]

= 2−jdE[Mj,2p]

≤ 2−jdM2p.
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Moreover, due to the Markov inequality, we have that

P (|Mj,p − E[Mj,p]| ≥ δ) ≤ δ−2E
[
|Mj,p − E[Mj,p]|2

]
≤ δ−2E[M2

j,p]

≤ δ−22−jdM2p.

Taking δ = 2−jε with 0 < ε < d/2, we have that

P
(
|Mj,p − E[Mj,p]| ≥ 2−jε

)
≤ 2j(2ε−d)M2p −→

j→∞
0. (5.28)

We fix now N ≥ 0. Let J ≥ 0 big enough such that 2Jp(τ+d−d/αloc) ≥ N (it
exists because τ +d−d/αloc > 0). According to (5.28), if we denote by Ω0 = {∃j ≥
J,Mj,p ≥ mp/2}, we have that P(Ω0) = 1. Then, on Ω0, we have that

‖w‖p
Bτp (Rd;ρ)

≥
∑
j≥J

2jp(τ−d+d/αloc)Mj,p ≥ N
∑
j≥J

Mj,p ≥
Nmp

2
.

This is valid for every N ≥ 0, hence ‖w‖p
Bτp (Rd;ρ)

=∞ almost surely.

Proposition 5.8. Let 0 < p < 2 be real or p ≥ 2 be an even integer. Then, the
non-Gaussian Lévy noise w with asymptotic index αasymp is almost surely not in
Bτp (Rd; ρ) if ρ > −d/min(p, αasymp).

Proof. If ρ ≥ −d/p, we already know that w /∈ Bτp (Rd; ρ) almost surely with Propo-
sition 5.1. One can therefore assume that p > αasymp and that ρ > −d/αasymp.
We make the additional assumption that ρ < −d/p (possible since αasymp < p)
and that τ < d/max(p, αloc) − d. Then, we decompose w = w1 + w2 with w1

a nontrivial compound Poisson noise and w2 a Lévy noise with finite moments.
Since ρ > −d/αasymp = −d/αasymp(w1), we apply Theorem 5.2 to deduce that w1 /∈
Bτp (Rd; ρ) almost surely. Moreover, the upper bounds τ < d/max(p, αloc) − d =
d/max(p, αloc(w2)) − d and ρ < −d/p = −d/min(p, αasymp(w2)) imply that the
Lévy noise w2 ∈ Bτp (Rd; ρ). This come from Proposition 5.4 for p < 2 and from

Proposition 5.5 if p ≥ 2 is an even integer. Thus, w /∈ Bτp (Rd; ρ) as the sum between

an element of Bτp (Rd; ρ) and an element that is not in Bτp (Rd; ρ).
Finally, the assumptions τ < d/max(p, αloc)− d and ρ < −d/p can be removed

by embedding.
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Remarks. Proposition 5.6 does not assume any restriction on p > 0. On the
other hand, Proposition 5.8 has the same restriction than the one we had for the
positive results. This is due to the fact that the proof uses these positive results for
the Besov localization of the Lévy noise with finite moments w2. Therefore, if one
extends Proposition 5.5 to any p ≥ 2, it automatically implies that Proposition 5.8
is also valid for any p > 0.

Besov regularity of non-Gaussian Lévy noise:. Theorem 5.3 condenses the
results of Section 5.2.3 and handles the case of composed Lévy noise, that is, Lévy
noise with both nonzero sparse and Gaussian parts.

Theorem 5.3. Consider a non-Gaussian Lévy noise with indices αloc and αasymp.
We fix 0 < p < 2 a real number or p ≥ 2 an even integer. Then, w is

• almost surely in Bτp (Rd; ρ) if

τ <
d

max(p, αloc)
− d and ρ < − d

min(p, αasymp)
;

• almost surely not in Bτp (Rd; ρ) if

τ >
d

p
− d or ρ > − d

min(p, αasymp)
; and

• almost surely not in Bτp (Rd; ρ) if

τ >
d

max(p, αloc)
− d or ρ > − d

min(p, αasymp)

and under the additional assumption that the Lévy exponent satisfies

Ψ(ξ) ∼
∞
−C |ξ|αloc (5.29)

for some C > 0 when αloc > 0.

Proof. When the Lévy noise is sparse (without a Gaussian part), Theorem 5.3 is a
reformulation of Propositions 5.4 to 5.8. We now assume that w is composed, that
is, w = wGauss + wsparse with w = wGauss and wsparse two independent Gaussian
and sparse noise, respectively. In that case, one has that αloc = 2.
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Theorem 5.3 implies that, for a non-Gaussian Lévy noise and if 0 < p < 2 or
p ≥ 2 is an even integer, then

Ap(αloc, αasymp) ⊂ Ep(w) ⊆ Āp(p, αasymp).

with Ap(x, y) =
(
−∞, d

max(p,x) − d
)
×
(
−∞,− d

min(p,y)

)
and Āp(x, y) its closure.

If in addition the Lévy exponent behaves adequately at infinity, then we have the
more precise estimate

Ap(αloc, αasymp) ⊂ Ep(w) ⊆ Āp(αloc, αasymp). (5.30)

Several questions remain for a complete characterization of the Besov localiza-
tion of Lévy noise.

• First, and most importantly, the negative result on the smoothness is not
complete. In the general case, we only showed that the Lévy noise is not in
the corresponding Besov space if τ > d/p−d. Under an additional assumption
on the Lévy exponent (see (5.29)) , we showed that this condition becomes
τ > d/max(p, αloc)−d. This latter condition is sharp, as we see by comparing
with the positive results. We conjecture that this results remain valid in
general. In particular, this would imply that (5.30) is valid for any non-
Gaussian Lévy noise.

• We did not treat the case p ≥ 2 in full generality. We conjecture that our
conclusions are also valid in this case.

• Finally, we did not consider the limit cases when τ = d/max(p, αloc) − d or
ρ = −d/min(p, αasymp) in general. For these smoothness or decay rate values,
we conjecture that the Lévy noise is not in the corresponding Besov space, in
analogy with the Gaussian case.

5.2.4 Smoothness and Decay Rate of Lévy Noise

In light of the above, we deduce the local smoothness and the asymptotic decay
rate of Lévy noise in the following cases.

Theorem 5.4. Let w be a Lévy noise with local and asymptotic indices αloc ∈ [0, 2]
and αasymp ∈ (0,∞]. All the following equalities are almost sure.
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• If w = wGauss is Gaussian, then, for every 0 < p ≤ ∞,

τp(wGauss) = −d
2

and ρp(wGauss) = −d
p
. (5.31)

• If w = wPoisson is compound Poisson, then, for every 0 < p ≤ ∞,

τp(wPoisson) =
d

p
− d and ρp(wPoisson) = − d

min(p, αasymp)
. (5.32)

• If w is non-Gaussian, αloc > 0, and under the assumption (5.29), then, for
every real 0 < p < 2, even integer p ≥ 2, or p =∞,

τp(w) =
d

max(p, αloc)
− d and ρp(w) = − d

min(p, αasymp)
. (5.33)

• If w is non-Gaussian, then, for every real 0 < p < 2, even integer p ≥ 2, or
p =∞,

d

max(p, αloc)
− d ≤ τp(w) ≤ d

p
− d and ρp(w) = − d

min(p, αasymp)
. (5.34)

Proof. We treat the case of the compound Poisson noise, the other being very
similar. We fix 0 < p <∞. The positive results of Theorem 5.2 imply that

τp(wPoisson) ≥ d/p− d and ρp(wPoisson) ≥ −d/min(p, αasymp).

The negative results imply the other inequalities, therefore we deduce (5.48).
If now p =∞, the results are deduced from p <∞ by taking p→∞ and ε > 0

in the embedding B
τ+d/p−ε
p (Rd; ρ + ε) ⊆ Bτ∞(Rd; ρ) valid for all p < ∞ and ε > 0

(Proposition 2.8). For Lévy noise that are non-Gaussian and non-Poisson, the same
argument works with p = 2k and k →∞.

Remarks.

• For Gaussian and Poisson noises, the local smoothness τp(w) and asymptotic
decay rate ρp(w) are fully characterized for every p > 0.
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• The local smoothness and the asymptotic decay rate are if p < 0 is real, p ≥ 2
is an even integer, or p = ∞ when αloc = 0 or when αloc > 0 and under the
condition (5.29).

• In the general case, the results are for p < 0 real, p ≥ 2 an even integer, or
p = ∞. Under this restriction, the asymptotic decay rate is characterized.
Moreover, the local smoothness is known for p ≥ αloc. It is in particular the
case for p = 2 and p =∞.

• What remains is to show that τp(w) = d/αloc− d when p < αloc, without the
assumption (5.29).

Sobolev and Hölder regularity. By specifying the value of p, one deduces the
Sobolev (p = 2) and the Hölder (p =∞) regularity of the Lévy noise.

Corollary 5.1. For any nontrivial Lévy noise, we have that

τ2(w) = −d/2, and

ρ2(w) = −d/min(αasymp, 2). (5.35)

Proof. We simply remark that all the local smoothness of Theorem 5.4 are equal
to −d/2 when p = 2 (since αloc ≤ 2). When w is non-Gaussian, the value ρ2(w)
is always −d/min(αasymp, 2). Moreover, min(αasymp, 2) = 2 for the Gaussian noise
and (5.35) is coherent with (5.47).

Remarks. It is remarkable that the local Sobolev regularity of the Lévy noises
is identical. The case p = 2 is not sufficient to distinguish between different noises
when considering the local regularity. If the variance of the noise is finite (αasymp ≥
2), we have that ρ2(w) = −d/2, independently of the Lévy noise. Otherwise,
the smaller αasymp, the bigger ρ2(w) (in absolute value). We need to compensate
the asymptotic decay due to the heavy-tailedness of the noise. The Pruitt index
β0 = min(αasymp, 2) is therefore the relevant quantity to measure the Sobolev decay
rate of a Lévy noise.

Corollary 5.2. Let wGauss and w be a Gaussian noise and a non-Gaussian Lévy
noise (ν 6= 0), respectively. Then, we have almost surely that

τ∞(wGauss) = −d/2 and τ∞(w) = −d.
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Moreover, for any nontrivial Lévy noise, we almost surely have that

ρ∞(w) = −d/αasymp. (5.36)

Remarks.

• The non-Gaussian noises have an identical Hölder regularity τ∞(w) = −d,
that is also the one of the Dirac implies δ. The case of Gaussian noise is dif-
ferent. With the same idea, the Brownian motion is the unique Lévy process
that has continuous sample paths, other Lévy processes being only càdlàg
[Ber98]. The interest of Corollary 5.2 is to quantify the gap of Hölder regu-
larity between the two types of noise. The fact that the Hölder regularities
are all negative is coherent with the idea that Lévy noises have no pointwise
interpretation and should be described by their effects on test functions.

• When all the moments of the noise are finite, we have that ρ∞(w) = 0. For
heavy-tailed noises (αasymp <∞), it is required to compensate with a weight
of order −d/αasymp.

• Conversely to the Sobolev regularity, it is the asymptotic index αasymp that
is relevant to quantify the Hölder decay rate of a Lévy noise. Comparing
(5.35) and (5.36), we have another justification for our choice of notation for
the asymptotic indices of the Lévy noise. The Pruitt index min(αasymp, 2)
is associated to the Sobolev rate of decay ρ2(w), while αasymp is inversely
proportional to the Hölder decay rate ρ∞(w).

Comparison with known results. Several authors have studied the Besov reg-
ularity of Lévy processes or Lévy white noises. For comparison purposes, we in-
terpret their results in terms of the functions τp(s) and ρp(s), with s the random
process of interest. When the study is local, the only information is on τp(s). In
the literature, most of the results are expressed with the index β0 = min(αasymp, 2).
Most of the authors work with Besov spaces Bτp,q, where q ∈ (0,∞] is an additional
parameter. In our case, we have only considered p = q. This is reasonable for our
purpose because the parameter q plays a secondary role, due to the embeddings
Bτ+ε
p,q (Rd; ρ) ⊆ Bτp,r(Rd; ρ), valid for any ε > 0 and 0 < p, q, r ≤ ∞. Finally, we

sometimes complete the results we refer to by using embeddings between Besov
spaces without specifying it.
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Lévy processes. In the past, the Besov regularity of Lévy processes has received
more attention than the one of Lévy noises. A Lévy process X is solution of
the stochastic differential equation DX = w with D the derivative and w a one-
dimensional Lévy noise.

Ciesielski et al. have studied the Gaussian and SαS cases locally in [CKR93].
Their results imply that

τp(XGauss) = 1/2, (5.37)

τp(Xα)

{
= 1/α if p < α

≥ 1/p if p ≥ α,
(5.38)

for 1 ≤ p ≤ ∞, with XGauss the Brownian motion and Xα the SαS process for
1 ≤ α < 2. In a series of papers [Sch97, Sch98, Sch00], summarized in [BSW14],
Schilling obtained the following results for Lévy processes:

1

max(p, αloc)
≤ τp(X) ≤ 1

p
, (5.39)

−1

p
− 1

min(αasymp, 2)
≤ ρp(X). (5.40)

This yields several comments.

• The regularity of a Lévy process and the underlying noise are linked by the
relation τp(X) = τp(w) + 1. With that respect, (5.37), (5.38), and (5.39) are
coherent with Theorem 5.4.

• Ciesielski et al. obtained an exact estimation for stable processes by exploiting
the self-similarity. On the contrary, the general results of Schilling mostly deal
with positive results that imply a lower bound on τp(X). The upper bound
in (5.39) is not sharp and exploits the discontinuity of the trajectories of non-
Gaussian Lévy processe; see [BSW14, Corollary 5.28]. The results (5.39) are
equivalent with our smoothness result (5.34). Under the assumption (5.29),
we improved the result by showing that the lower bound of (5.39) is sharp.

• Conversely to the smoothness, the decay rate ρp(X) of the Lévy process
and the one of ρp(w) of the underlying Lévy noise seem not to be related
by a constant (with respect to p). This needs to be confirmed by a precise
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estimation of τp(X) for which only a lower bound is known, together with a
precise estimation of τp(w) when p > 2 is not an even integer. Our conjecture
is that the lower bound (5.40) is sharp for any p > 0. If this is true, it means
that min(αasymp, 2) is the relevant quantity for the growth rate of the Lévy
process, contrary to the Lévy noise for which it is αasymp.

Lévy noise. Veraar studied the local Besov regularity of the Gaussian white
noise. As a corollary of [Ver10, Theorem 3.4], we deduce that τp(w) = −d/2. We
gave a new proof of this result with alternative technics based on wavelets, while
Veraar was considering Fourier series expansions. The localization of the Gaussian
white noise in weighted Sobolev spaces was studied by Kusuoka [Kus82].

Application of the Results to Specific Lévy Noises. The Gaussian and
Poisson cases have already been treated. Knowing their indices (cf. Section 2.1.3),
the SαS and Laplace cases are easily deduced from Corollary 5.4. Note that the
local smoothness is known for these two examples, because αloc = 0 for the Laplace
noise, while the Lévy exponent satisfies (5.29) for SαS.

Corollary 5.3. Let 0 < p < 2 be a real number or p ≥ 2 be an even integer.

• The SαS noise wα almost surely satisfies

τp(wα) =
d

max(p, α)
− d and ρp(wα) = − d

min(p, α)
.

• The Laplace noise wLaplace almost surely satisfies

τp(wLaplace) =
d

p
− d and ρp(wLaplace) = −d

p
.
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5.3 Smoothness of Periodic Generalized Lévy Pro-
cesses

In this section, we identify the local smoothness τp(s) of a large class of generalized
Lévy processes s. To do so, we work on the d-dimensional torus, and therefore
specify the considered processes as the periodized version of the generalized Lévy
processes of Section 6. However, we will not address here the question of the
asymptotic decay rate of s.

The section is mostly based on [FUW17b]. Since we are only interested in the
local smoothness, we simplify the study of the stochastic differential equation Ls =
w by introducing spaces of homogeneous (or 0-mean) periodic functions in Section
5.3.1. On such spaces, the study of the whitening operators is particularly pleasant.
It is exposed in Section 5.3.2. Finally, we collect the results in Section 5.3.3, where
the local smoothness of periodic generalized Lévy processes is quantified.

5.3.1 Homogeneous Periodic Function Spaces

We work with periodic generalized functions in S ′(Td). The set of homogeneous
smooth functions is

Ṡ (Td) :=
{
ϕ ∈ S (Td)

∣∣ c0(ϕ) = 〈ϕ, 1〉 = 0
}
.

Its topological dual Ṡ (Td) is the space

Ṡ ′(Td) :=
{
u ∈ S ′(Td)

∣∣ c0(u) = 〈u, 1〉 = 0
}
.

The space Ṡ (Td) inherits the structure of nuclear countably multi-Hilbert (or nu-
clear Fréchet) space of S (Td) (see Section 2.2.1). Thus, the space Ṡ ′(Td) is a
nuclear (DF)-space.

It is possible to specify periodic Besov spaces (homogeneous periodic Besov
spaces, respectively) in S ′(Td) (in Ṡ ′(Td), respectively) using wavelet methods,
as we did for weighted Besov spaces in Section 2.2.3. Here, we follow a different but
equivalent approach, based on Fourier transform, that is more adapted to the study
of operators in periodic function spaces. The equivalence between the wavelet-based
and the Fourier-based constructions is proven in [Tri08, Section 1.3.3].

The following definition of homogeneous periodic Besov spaces (Definition 5.1)
is taken from [Tri08, Definition 1.27]. The idea is to decompose a function f by
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grouping dyadic frequency bands using a partition of unity in the Fourier domain.
In what follows, we fix υ̂ ∈ S (Rd) such that

• υ̂(ω) = 0 if ‖ω‖ ≤ 1/2 or ‖ω‖ ≥ 2,

• υ̂(ω) > 0 if 1/2 < ‖ω‖ < 2,

•
∑
j≥0

υ̂(2−jω) = 1 if 1 ≤ ‖ω‖.

We say that υ̂ generates a hierarchical partition of unity outside the ball of radius
1/2 centered at the origin.

Definition 5.1. Suppose 0 < p ≤ ∞ and τ ∈ R. A generalized function f ∈
Ṡ ′(Td) with Fourier coefficients cn(f) is in Ḃτp (Td) if the quantity

‖f‖Ḃτp (Td) :=

 ∞∑
j=0

2jτp

∥∥∥∥∥∥
∑

n∈Zd\{0}

cn(f)υ̂(2−jn)e2πi〈n,·〉

∥∥∥∥∥∥
p

Lp(Td)


1/p

(5.41)

is finite, with the usual modification when p =∞.

The Besov spaces Ḃτp (Td) are Banach spaces for the norm (5.41) when p ≥ 1.
For p < 1, (5.41) is a quasi-norm and Besov spaces are quasi-Banach spaces. The
validity of the embeddings between homogeneous periodic Besov spaces is governed
by Proposition 5.9 [Tri08], which is the periodic version of Proposition 2.8.

Proposition 5.9. Let 0 < p0 ≤ p1 ≤ ∞ and τ0, τ1, ρ0, ρ1 ∈ R.

• We have the embedding Ḃτ0p0(Td) ⊆ Ḃτ1p1(Td) as soon as

τ0 − τ1 >
d

p0
− d

p1
. (5.42)

• We have the embedding Ḃτ1p1(Td) ⊆ Ḃτ0p0(Td) as soon as

τ0 < τ1. (5.43)
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If we fix the integrability rate p ∈ (0,∞], we define the local smoothness of
f ∈ Ṡ′(Td) as

τp(f) := sup
{
τ ∈ R

∣∣∣ f ∈ Ḃτp (Rd)
}
. (5.44)

Proposition 5.10. For every 0 < p0 ≤ p1 ≤ ∞, and every f ∈ Ṡ′(Td), we have

τp0(f)−
(
d

p0
− d

p1

)
≤ τp1(f) ≤ τp0(f). (5.45)

In particular, p 7→ τp(f) is a decreasing continuous function.

Proof. We prove the second inequality in (5.45), the first one being similar. Let
τ < τp1(f) and ε > 0. Then, f ∈ Ḃτp1(Td) ⊆ Ḃτ−εp0 (Td) according to (5.43).
Therefore, for every τ < τp1(f) and ε > 0, we have τp0(f) ≥ τ − ε. We deduce the
result with τ → τp1(f) and ε→ 0.

5.3.2 Operators on Homogeneous Periodic Functions

We shall consider the class of differential and pseudo-differential operators that
reduce the Besov regularity of a function by some (possibly fractional) order γ > 0.
Importantly, since we are interested in the regularity properties of the solutions of
the differential equation Ls = w, we focus on those operators that are continuous
bijections from Ḃτ+γ

p (Td) to Ḃτp (Td). For those operators, the smoothness of the
generalized Lévy process is easily deduced from that of the underlying Lévy noise.

We consider linear and shift-invariant operators L that continuously maps S (Rd)
to S ′(Rd). We assume that L has a continuous Fourier multiplier L̂. We have seen
in Section 2.2.2 that L specifies a continuous operator from S (Td) to itself (and by

extension from S ′(Td) to itself) if and only if the sequence (L̂(2πn))n∈Zd is slowly
growing.

By working on homogeneous function space, we can also consider operators for
which L̂(ω) has no limit when ω vanishes. Therefore, L specifies a continuous
operator from Ṡ (Td) to itself (and by extension from Ṡ ′(Td) to itself) if and only

if the sequence (L̂(2πn))n∈Zd\{0} is slowly growing. For instance, the integrator
D−1 with impulse response 1R+ does not specify a operator from S (T) to itself
(D−1ϕ ∈ S (T) if and only if ϕ has zero mean) However, it is a valid operator on
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Ṡ (T), and by extension on Ṡ ′(T), characterized by the relation

D−1{u} =
∑

n∈Z\{0}

(in)−1cn(u)en

for any u ∈ Ṡ ′(T), where en(x) = einx. This motivates the use of homogeneous
function spaces: we do not have to pay attention to the mean of the function,
which can always be considered as being equal to 0. This makes the operators
such as D−1 stable in Ṡ′(Td). The operator D−1 is actually a continuous bijection
from Ṡ (T) to Ṡ (T), which reduces the regularity of any function of one order
(τDs(p) = τs(p)− 1). The following definition generalizes this idea.

Definition 5.2. An operator L, continuous from Ṡ (Td) to itself, is said to be γ-
admissible for γ ∈ R if L : Ḃτ+γ

p (Td)→ Ḃτp (Td) is a continuous bijection and L−1

is continuous for every 0 < p ≤ ∞ and τ ∈ R.

In particular, a γ-admissible operator is a bijection from Ṡ (Td) to itself. This

imposes that L̂(2πn) 6= 0 for any n 6= 0, and that the sequence (L̂(2πn))n 6=0 and

(L̂(2πn)−1)n 6=0 are slowly increasing.
The fractional Laplacian (−∆)γ/2 of order γ > 0 is the canonical example of a

γ-admissible operator. Moreover, perturbations of the fractional Laplacian are also
γ-admissible. The next few results make this statement precise. The idea is the
following: An operator L is γ-admissible if and only if (−∆)γ/2L−1 and (−∆)−γ/2L
are automorphisms on Besov spaces.

Proposition 5.11. The fractional Laplacian (−∆)γ/2 is a γ-admissible operator.

Proof. This follows from the homogeneity of the Fourier multiplier of the fractional
Laplacian. Applying Theorem 3.3.4 of [ST87] to Definition 5.1 gives the result.

Theorem 5.5. Let L be an admissible operator with continuous Fourier multiplier
L̂. For γ > 0, we define mL,γ(ω) = ‖ω‖−γL̂(ω). Also, let ζ be any function in
S (Rd) satisfying

0 ≤ ζ(x) ≤ 1, ζ(x) =

{
0 if ‖x‖ ≤ 1/4 or ‖x‖ ≥ 4,

1 if 1/2 ≤ ‖x‖ ≤ 2.
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If the function m satisfies

sup
j∈N

(∥∥ζ(·)mL,γ(2j ·)
∥∥
W τ

2 (Rd)
+
∥∥ζ(·)mL,γ(2j ·)−1

∥∥
W τ

2 (Rd)

)
<∞

for all τ > 0, then L is γ-admissible.

Proof. This follows from a sufficient condition for Fourier multipliers on Besov
spaces [ST87, Theorem 3.6.3]. To summarize, if 0 < p <∞ and

τ > d

(
1

min (1, p)
− 1

2

)
,

then there exists C > 0 such that

∥∥∥∥∥∥
∑

n∈Zd\{0}

mL,γ(2πn)cn(f)e2iπ〈n,·〉

∥∥∥∥∥∥
Ḃτp (Td)

≤ C
(

sup
j∈N

∥∥∥ζ(·)mL,γ(2j ·)
∥∥∥
Wτ

2 (Rd)

)
‖f‖Ḃτp (Td)

holds for all functions m ∈ L∞(Rd) and all f ∈ Ḃτp (Td).

Examples. The following whitening operators are γ-admissible.

• The derivative D is 1-admissible.

• The differential operators DN + aN−1DN−1 + · · · + a0Id with non-vanishing
Fourier multipliers (except possibly at 0) are N -admissible.

• The fractional derivative Dγ is γ-admissible for any γ > 0.

• The fractional Laplacian (−∆)γ/2 is γ-admissible for any γ > 0.

• The Bessel operator Jγ = (Id−∆)γ/2 is γ-admissible for any γ > 0.

5.3.3 From Lévy Noises to Generalized Lévy Processes

The definition of generalized random processes, characteristic functionals, and the
corresponding results of Section 2.3 are still valid over the nuclear space Ṡ′(Td).
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Let Ψ be a Lévy exponent. We define the periodic Lévy noise w as the periodic
generalized random process with characteristic functional

P̂w(ϕ) = exp

(∫
Td

Ψ(ϕ(x))dx

)
for every ϕ ∈ Ṡ (Td). If L is a γ-admissible operator for some γ ≥ 0, then the

functional ϕ 7→ P̂w(L−1ϕ) is a valid characteristic functional over Ṡ(Td), because
L−1 is an automorphism on Ṡ(Td). Thus, the generalized Lévy process s = L−1w

with characteristic functional P̂s(ϕ) = P̂w(L−1ϕ) is well-defined. We call s a
periodic generalized Lévy process.

For Ψ a Lévy exponent, we have two notions of Lévy noise: one over Rd and
the other on Td, that we denote by w and wper, respectively. In particular, τp(w)
is characterized in Section 5.1, while τp(wper) is defined by (5.44). One important
difference between the periodic and the global settings is that τp(fper) is effectively
well-defined for any periodic function fper. In the global setting, we have charac-
terized τp(f) in a unique fashion, but we did not prove its existence in general, as
commented at the end of Section 5.1. In particular, the following result holds for
the periodic setting.

Proposition 5.12. If fper satisfies τp(fper) = d/p+τ0 for every even integer p ≥ 2,
then τp(fper) = d/p+ τ0 for every real p ≥ 2.

Proof. We fix 2k < p < 2(k + 1) with k ≥ 1 an integer. According to Proposition
5.10, we have that

τp(f) ≥ τ2k(f)−
(
d

2k
− d

p

)
=
d

p
+ τ0. (5.46)

If now τ > d/p+ τ0, then

τ −
(
d

p
− d

2(k + 1)

)
>

d

2(k + 1)
+ τ0 = τ2(k+1)(f),

implying that f /∈ Ḃτ−(d/p−d/2(k+1)
2(k+1) (Td). According to the embedding (5.42), this

implies that f /∈ Ḃτ+ε
p (Td) for every ε > 0. In particular, τp(f) ≤ τ + ε. By taking

ε → 0 and τ → d/p + τ0, we deduce that τp(f) ≤ d/p + τ0, which, together with
(5.46), gives the result.
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The proofs for the Besov regularity of the Lévy noise in the global setting can
be adapted to the periodic setting, and we obtain that τp(w) = τp(wper). Based on
this principle, we deduce the smoothness of periodic generalized Lévy processes.

Corollary 5.4. We consider a periodic generalized Lévy process s = L−1w, where
w is a Lévy white noise with local index αloc ∈ [0, 2] and L is a γ-admissible operator
with γ ≥ 0.

• If w = wGauss is Gaussian, then, for every 0 < p ≤ ∞, we have almost surely

τp(s) = γ − d

2
. (5.47)

• If w = wPoisson is compound Poisson, then, conditionally to wPoisson 6= 0, for
every 0 < p ≤ ∞, we have almost surely

τp(s) = γ +
d

p
− d. (5.48)

• If w is non-Gaussian and non-Poisson with αloc > 0 and its Lévy exponent
satisfies (5.29), then, for every 0 < p ≤ ∞, we have almost surely

τp(s) = γ +
d

max(p, αloc)
− d. (5.49)

• If w is non-Gaussian and non-Poisson, then, for every 0 < p ≤ ∞, we have
almost surely

γ +
d

max(p, αloc)
− d ≤ τp(s) ≤ γ +

d

p
− d. (5.50)

Proof. For compound Poisson noise, w is zero with probability e−λ (that corre-
sponds to a number of jump N = 0 over Td. In that case, of course, τp(w) = ∞.
We condition to the event N 6= 0 to avoid this case. The case of the Lévy noise (L is
the identity and γ = 0) is treated by adapting the proof of Theorem 5.4 to the peri-
odic setting (which is possible using the wavelet-domain characterization of periodic
Besov spaces; see [FUW17c] for the case of SαS noise). With Proposition 5.12, we
extend the result to any p > 0 for sparse and composed Lévy noise. Finally, the
result is extended to s because L is γ-admissible, implying that τp(Lf) = τp(f)− γ
for any f .
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In the periodic framework, we have identified the local regularity of many gen-
eralized Lévy process whitened by a γ-admissible operator. As for the Lévy noises,
what remains is to show that the lower bound of (5.50) is sharp, even when αloc > 0
but the Lévy exponent does not satisfies (5.29).



Chapter 6

Local Compressibility of
Generalized Lévy Processes

In Chapter 1, we have argued that non-Gaussian generalized Lévy processes are
good candidates for the stochastic modeling of sparse signals. In this section, we
define and evaluate the local compressibility of generalized Lévy processes. The
compressibility of a function is measured by the decay rate of the error of its best
N -term approximation. Our results are based on the estimations of the Besov
regularity of the Lévy white noises and generalized Lévy processes presented in
Chapter 5. We show, in particular, that non-Gaussian generalized Lévy processes
are more compressible in a wavelet basis than their Gaussian counterpart in the
sense that the error of their best N -term approximation decays faster. We quantify
the compressibility in terms of the local (or Blumenthal-Getoor) index αloc of the
Lévy noise and of the order γ of the whitening operator. This section is mostly
based on our work from [FUW17b], with important extensions taking advantage of
the results of [AFU].
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6.1 N-Term Approximation and Besov Regularity

In this section, we highlight the link between the Besov regularity and the decay
rate of the approximation error of a (deterministic) generalized function. The
application of these results to random processes will be done in Section 6.2. We
here focus on homogeneous periodic function spaces, in order to study the local
properties of functions. We are mostly interested in the approximation error in
the space L̇2(Td) of homogeneous square-integrable functions in Td, but we shall
consider the approximation error in a general homogeneous periodic Besov space.

Following Triebel [Tri08], we briefly introduce the Daubechies wavelets in the
d-dimensional torus. We also give a wavelet-based characterization of homogeneous
Besov spaces. Periodizing the compactly supported Daubechies wavelets [Dau92]
results in the orthonormal basis of L2(Td). With the exception of the Haar wavelet,
the support of classical Daubechies wavelets is larger than Td = [0, 1]d. Conse-
quently, the coarsest scale is scaled by 2L, where the parameter L ∈ N ensures that
the support is included in Td. For the rest of this chapter, we set L (as a function
of the Daubechies wavelet order) to be the smallest integer that guarantees this
condition on the support. The wavelet translates are still indexed by k, and the
set of translations at scale j is given by

Pdj =
{
k ∈ Zd

∣∣ 0 ≤ ki < 2j+L, i = 1, . . . , d
}
.

Using the notation of Section 2.2.3, we set I :=
{

(j,G,k)
∣∣ j ∈ N, G ∈ Gj ,k ∈ Pdj

}
.

The Daubechies wavelet basis is denoted by (ψper
j,G,k)(j,G,k)∈I , where

ψper
j,G,k = 2jd/2ψper

0,G,0(2j · −k).

The wavelet decomposition of f ∈ L2(Td) is f =
∑
j,G,k〈f, ψ

per
j,G,k〉ψ

per
j,G,k, with

〈·, ·〉 the canonical scalar product on L2(Td). More details on the periodization of
wavelet bases can be found in [Tri08, Section 1.3].

The following characterization of the periodic Besov spaces can be found in
[ST87, Theorem 1.36]. It is the periodic version of Proposition 2.9.

Proposition 6.1. Let τ, τ0 ∈ R and 0 < p ≤ ∞. We set

r0 > max (|τ0| , (d(1/p− 1))+ − τ) .
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Then, the periodic generalized function f ∈ Ḃτ02 (Td) = Ẇ τ0
2 (Td) is in Ḃτp (Td) if

and only if ∑
j≥0

2j(τp−d+dp/2)
∑
G∈Gj

∑
k∈Pdj

∣∣∣〈f, ψper
J,G,k〉

∣∣∣ <∞.
with (ψper

j,G,k) a Daubechies wavelet basis of L2(Td) with a regularity of at least r0,
with the usual modification for p =∞.

N-term Approximation. We fix a generalized function f ∈ Ṡ ′(Td) and a
Daubechies wavelet basis with enough regularity such that the duality products
between f and the wavelets are well-defined. An N -term approximation to f is a
finite sum of the form ∑

(j,G,k)∈J

cj,G,kψ
per
j,G,k,

with cj,G,k ∈ R and J a finite subset of I of size N . If moreover f ∈ Ḃτp (Td) for
0 < p ≤ ∞ and τ ∈ R, we denote by ΣN,p,τ (f) the best N -term approximation of f

in Ḃτp (Td), defined as the N -term approximation that minimizes the approximation

error in Ḃτp (Td). We also set

σN,p,τ (f) = ‖f − ΣN,p,τ (f)‖Ḃτp (Td) ,

which is the approximation error of f in Ḃτp (Td). When p = 2 and τ = 0, i.e.,

Ḃτp (Td) = L̇2(Td), we simply write ΣN,2,0(f) = ΣN (f) and σN,2,0(f) = σN (f).

Control of the approximation error. The speed of decay of the Fourier series
coefficients of a function is well-known to be tightly related to its smoothness. This
is also valid in wavelet bases [Mal99]. As a consequence, it is possible to relate the
decay rate of the approximation error of functions in L2(Td), and more generally in
Bτp (Td), to their inclusion in periodic Besov spaces. This topic has been investigated
extensively in (deterministic) approximation theory [CDH00, Dev98, GH04]. We
give now some insight for the case of the approximation error in L̇2(Td).

• If we know that f ∈ L̇2(Td) is in the Sobolev space Ẇ τ
2 (Td) for some τ > 0,

this implies that the approximation error σN (f) is dominated by N−τ/d. The
higher τ , the faster the decay of the upper bound. When f is infinitely smooth,
we deduce that the approximation error vanishes faster than any polynomial.
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• The previous result focuses on the integrality rate p = 2. It can be improved
if we have additional information on the Besov localization for other integra-
bility rates p < 2. The Besov regularity is indeed characterized by weighted
`p-norms on the wavelet coefficients Correspondingly, the minimization of `p-
norms for p < 2 induces sparser approximations. This is true in particular
for p = 1 [?, UFG16]. The limit case is when p→ 0, with strong connections
to the notion of sparsity in the theory of compressed sensing [FR13]. The
quantitative study of this fact is specified in Theorem 6.1 thereafter.

• It moreover appears that the complete characterization of the Besov localiza-
tion of f fully determines the decay rate of its approximation error. Basically,
the approximation error of a non-smooth function cannot have a fast rate of
decay. This phenomenon can be captured sharply once one knows the Besov
smoothness τp(f) of f for integrability rate p ∈ (0, 2]. The simplest case p = 2
is usually not sufficient to obtain sharp results. Again, this is quantified in
Theorem 6.1, in which we consider the decay of the approximation error in a
general Besov space Ḃτ0p0(Td) and not only L̇2(Td).

Theorem 6.1. We fix 0 < p0 <∞ and τ ∈ R. Assume that p and τ are such that

0 < p < p0 and ∆τ := τ − τ0 =
d

p
− d

p0
.

i) If f ∈ Ḃτp (Td), then there is a constant C > 0 such that

σN,p0,τ0(f) ≤ CN−∆τ/d ‖f‖Ḃτp (Td) .

ii) If there are constants C, ε > 0 such that

σN,p0,τ0(f) ≤ CN−∆τ/d−ε,

then f ∈ Ḃτp (Td).

Proof. We define the Besov sequence spaces bτp as the sequences λ such that

‖λ‖bτp :=

 ∑
(j,G,k)∈I

2j(τp−d) |λj,G,k|p
1/p

<∞.
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This proof uses Corollary 6.2 of [GH04], which characterizes N -term approximation
spaces as Besov spaces. In particular,

bτ0+∆τ
p = A∆τ/d

p (bτ0p0), (6.1)

where A
∆τ/d
p (bτ0p0) is an approximation space with error measured in bτ0p0 . Essentially,

A
∆τ/d
p (bτ0p0) is the collection of sequences f for which the sequence of error terms

N∆τ/dσN,p0,τ0(f)

is in `p with respect to a Haar-type measure on N.
This characterization along with standard embedding properties of approxima-

tion spaces [DL93, Chapter 7] allow us to derive our result. In particular, (6.1)
together with the aforementioned embedding implies that

bτ0+∆τ
p ⊂ A∆τ/d

∞ (bτ0p0).

Similarly, we have that
A∆τ/d+ε
∞ (bτ0p0) ⊂ bτ0+∆τ

p .

The fact that the continuous-domain Besov spaces are isomorphic to Besov sequence
spaces [ST87, Theorem 1.36] completes the proof.

Compressibility of a function. The compressibility of a (generalized) function
quantifies the speed of convergence of its approximation error in a wavelet basis.

Definition 6.1. For a generalized function f ∈ Ḃτ0p0(Td), we define its (p0, τ0)-
compressibility as

κp0,τ0(f) := sup

{
κ ≥ 0

∣∣∣∣ sup
N∈N

(N + 1)
κ ‖f − ΣN,p0,τ0(f)‖Ḃτ0p0 (Td) <∞

}
∈ [0,∞].

(6.2)

The quantity (6.2) is well-defined for f ∈ Ḃτ0p0(Td). If the approximation error
has a faster-than-algebraic decay, then κp0,τ0(f) = ∞. The value of κp0,τ0(f)
quantifies the local compressibility of f in a wavelet basis: the higher the κp0,τ0(f),
the more compressible the function f . In particular, we say that f is strictly more
compressible than g in Ḃτ0p0(Td) if κp0,τ0(f) > κp0,τ0(g).

The (p0, τ0)-compressibility of f ∈ Ḃτp0(Td) is fully determined by the inclusion

of f in the Besov spaces Ḃ
d/p−d/p0+τ0
p (Td), where p describes (0, p0).
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Proposition 6.2. Let f ∈ Ḃτp0(Td), with 0 < p0 <∞ and τ ∈ R. We set

pp0,τ0(f) := inf
{
p ≤ p0

∣∣∣ f ∈ Ḃd/p−d/p0+τ0
p (Td)

}
= inf {p ≤ p0 | d/p− d/p0 + τ0 < τp(f)}
∈ [0, p0].

Then, we have

κp0,τ0(f) =
1

pp0,τ0(f)
− 1

p0
. (6.3)

Proof. First, f ∈ Ḃ
d/p0−d/p0+τ0
p0 (Td) = Ḃτ0p0(Td); hence pp0,τ0(f) is well-defined.

We set τ = d/p − d/p0 − τ0. If p > pp0,τ0(f), then f ∈ Bτp (Td). Applying the

first part of Theorem 6.1, we deduce that σN,p0,τ0(f) ≤ CN−(1/p−1/p0)‖f‖Ḃτp (Td),

and therefore that κp0,τ0 ≥ 1/p − 1/p0. By taking p → pp0,τ0(f), we deduce that
κp0,τ0 ≥ 1/pp0,τ0(f)− 1/p0.

If now p < pp0,τ0(f), then f /∈ Bτp (Td). From the second part of Theorem 6.1,

we know that, for every ε > 0, the quantity σN,p0,τ0(f)N1/p−1/p0+ε is not bounded.
This implies that κp0,τ0 ≤ 1/p−1/p0−ε. With ε→ 0 and p→ pp0,τ0(f), we deduce
that κp0,τ0 ≤ 1/pp0,τ0(f)− 1/p0. Finally, we have shown (6.3).

Proposition 6.2 implies that the compressibility of f can easily be read using
the graphical representation of τp(f) in the (1/p, τ)-diagram.
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6.2 The Compressibility of Generalized Lévy Pro-
cesses

From what precedes, we know:

• The Besov localization of periodic generalized Lévy processes (Section 5.3.3);

• The characterization of the compressibility of a (deterministic) function via
its Besov localization (Section 6.1).

We are therefore ready to deduce the compressibility of the generalized Lévy pro-
cesses.

Theorem 6.2. Let s = L−1w be a generalized Lévy process in Ṡ′(Td), with L a
γ-admissible operator, γ ≥ 0, and w a periodic Lévy noise. We fix 0 < p0 <∞ and
τ ∈ R.

• Assume that w = wGauss so that s = sGauss is Gaussian. If

γ > τ0 +
d

2
,

then, almost surely, sGauss ∈ Ḃτ0p0(Td) and

κp0,τ0(sGauss) =
γ − τ0
d
− 1

2
.

• Assume that w is non-Gaussian with local index αloc = 0, or αloc > 0 and
the Lévy exponent of w satisfies (5.29). If

γ > τ0 + d− d

max(p0, αloc)
, (6.4)

then, almost surely, s ∈ Ḃτ0p0(Td) and

κp0,τ0(s) =
γ − τ0
d

+
1

αloc
− 1.
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• Assume that w is non-Gaussian with local index αloc ∈ [0, 2]. If

γ > τ0 + d− d

max(p0, αloc)
,

then, almost surely, s ∈ Ḃτ0p0(Td) and

κp0,τ0(s) ≥ γ − τ0
d

+
1

αloc
− 1.

Proof. The proofs for the Gaussian and non-Gaussian cases are very similar. We
shall therefore only develop the non-Gaussian case, with αloc = 0 or αloc > 0
and the Lévy exponent satisfies (5.29). In particular, τp(s) = γ + d

max(p,αloc) − d
(Corollary 5.4). Condition (6.4) ensures that the process s is almost surely in
Ḃτ0p0(Td) according to Corollary 5.4. We identify κp0,τ0(s) thanks to (6.3). Let us
first remark that pp0,τ0(s) ≤ αloc. This is straightforward when αloc ≥ p0. If now
αloc < p0, we fix p ∈ (αloc, p0) and we easily check that

d

p
− d

p0
< τp(s) = γ − τ0 +

d

p
− d.

This condition is equivalent to 0 < γ− τ0 + d
p0
−d = γ− τ0 + d

max(αloc,p0) −d, which

is precisely (6.4).

Once we know that pp0,τ0(s) ≤ αloc, we can restrict to p ≤ αloc and therefore
have

pp0,τ0(s) = inf {p ≤ αloc | d/p− d/p0 + τ0 < γ + d/αloc − d} .

Finally, this means that

d

pp0,τ0
− d

p0
= γ − τ0 +

d

αloc
− d,

and, according to (6.3), that κp0,τ0(s) = 1/pp0,τ0(s)−1/p0 = (γ−τ0)/d+1/αloc−1
as expected.

In the general case, we only have a lower bound on τp(s), inducing a lower bound
on the local compressibility κp0,τ0(s).
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Corollary 6.1. Let s = L−1w be a periodic generalized Lévy process. We assume
that s ∈ Ḃτ0p0(Td) with 0 < p0 <∞ and τ0 ∈ R. Then, we have

κp0,τ0(s) =
τ0(s)− τ0

d
, (6.5)

where

τ0(s) := lim
p→0

τp(s) ∈ [γ − d/2,∞].

Proof. First of all, the limit of τp(f) exists for every f ∈ Ṡ′(Td) when p → 0,
because the function p 7→ τp(f) is decreasing (Proposition 5.10). With Corollary
5.4, we see that τ0(s) = γ−d/2 if w is Gaussian, and τ0(s) = γ+d/αloc−d otherwise,
where αloc is the local index of w. Finally, it suffices to compare κp0,τ0(s) with the
values of (τ0(s)− τ0)/d in each of the different cases to deduce (6.5).

Remark: Corollary 6.1 connects the local compressibility with the weighted
`p-quasi-norms of the wavelet coefficients when p → 0. This reinforces the in-
terpretation that the sparsity of a function—here a generalized Lévy process—is
intimately linked with the “`0-norm” of its wavelet coefficients.

The following result is a direct consequence of Theorem 6.2.

Corollary 6.2. We consider that sGauss, sPoisson, and s are periodic generalized
Gaussian, Poisson, and Lévy noises, respectively. Moreover, the three processes are
assumed to be whitened by the same γ-admissible operator, for some γ ≥ 0. We
assume that

γ > τ0 + d− d/max(p0, αloc), (6.6)

with αloc the local index of s, 0 < p0 <∞, and τ0 ∈ R. Then, we have that

γ

d
− 1

2
= κp0,τ0(sGauss) ≤ κp0,τ0(s) ≤ κp0,τ0(sPoisson) =∞. (6.7)

Moreover,

κp0,τ0(s) = κp0,τ0(sGauss)⇐⇒ αloc = 2, and

κp0,τ0(s) = κp0,τ0(sPoisson)⇐⇒ αloc = 0.
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Proof. Condition (6.6) ensures that the three processes sGauss, sPoisson, and s are
in Ḃτ0p0(Td). Then, (6.7) is a direct consequence of Theorem 6.2, exploiting the fact
that αloc ∈ [0, 2]. The extreme cases are easily deduced.

Remarks.

• With Theorem 6.2, we see that the local compressibility is determined by the
local index and the order γ of the whitening operator. For a fixed γ, the
local compressibility of the generalized Lévy process s increases when αloc

decreases. Moreover, the compressibility also increases when γ increases: for
a fixed Lévy noise, the more we smooth the process, the more compressible
it becomes.

• Corollary 6.2 highlights the extreme cases. The Gaussian Lévy noise is the less
compressible. This is in line with the empirical observations stated in Chap-
ter 1. Simply stated, sparse processes are more compressible than Gaussian
ones. Our characterization gives a new mathematical justification for the
terminology of sparse processes introduced in [UT14].

However, we point out that there exists non-Gaussian Lévy noises that induce
the same local compressibility as the Gaussian ones. This corresponds to the
case αloc = 2. It is typically the case of any generalized Lévy process whose
Lévy noise has a Gaussian part. It is also possible to construct Lévy noises
without Gaussian part with a local index of αloc = 2.

• The other extreme case is reached by compound Poisson processes. Here, the
order γ of the operator is not relevant provided that γ > τ +d−d/p0 and the
local compressibility is always infinite. This means that the approximation
error has a faster-than-algebraic decay. Generalized Laplace processes are
other examples of highly compressible random processes.

• As soon as 0 < αloc < 2, we are strictly located between the Gaussian and
Poisson cases. The generalized Lévy process is then strictly sparser than its
Gaussian counterpart and has an approximation error that decays polynomi-
ally. This is the case with non-Gaussian SαS processes.

• In our initial work [FUW17b], we only obtained a lower bound on the com-
pressibility of non-Gaussian and non-Poisson generalized Lévy processes. These
earlier bounds provided in [FUW17b] are proved to be sharp in this chapter
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Table 6.1: Compressibility of Gaussian and sparse processes.

White noise w Parameter Ψ(ξ) αloc κ(s)

Gaussian σ2 > 0 −σ2ξ2/2 2 γ − d
2

Cauchy [ST94] — − |ξ| 1 γ
SαS [ST94] α ∈ (0, 2) − |ξ|α α γ + d/α− d
Compound Poisson [UT11] λ > 0, P λ(P̂ (ξ)− 1) 0 ∞
Laplace [KKP01] — − log(1 + ξ2) 0 ∞

when αloc = 0 or when the Lévy exponent behaves asymptotically as a power
law. This is possible thanks to the sharp estimation of τp(w) for a Lévy noise
w developed in Chapter 5.

We summarize the results in Table 6.1 for different classes of Lévy noises. We
express the compressibility for p0 = 2 and τ0 = 0. We assume that γ is big
enough such that s is in L̇2(Td) almost surely. In that case, we denote its local
compressibility by κ := κ2,0.
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Chapter 7

Conclusion: Local versus
Asymptotic

This thesis is dedicated to the mathematical study of the innovation model, spec-
ified by the stochastic differential equation Ls = w, with L a possibly fractional
differential operator and w a Lévy white noise. Our contributions were organized
in four chapters.

• In Chapter 3, we gave general conditions for the existence of generalized Lévy
processes. This was achieved in three steps. We started with the character-
ization of Lévy noises that are in the space S ′(Rd) of tempered generalized
functions. Then, we maximally extended the domain of definition of Lévy
noises to non-smooth and non-rapidly decaying test functions. Finally, we
applied these results to the construction of generalized Lévy processes.

• We obtained two limit theorems in Chapter 4. First, we have shown that any
generalized Lévy process is the limit in law of generalized Poisson processes.
The latter are particularly pleasant, since they can be described as random
L-splines. Second, we gave general conditions on generalized Lévy processes
such that they become self-similar at fine or coarse scales.

• In Chapter 5, we studied the Besov regularity of the Lévy noise in order to

187



188 Conclusion: Local versus Asymptotic

identify its local smoothness and its asymptotic decay rate. We then applied
the local results to generalized Lévy processes.

• Finally, in Chapter 6, we used our smoothness results in order to quantify the
local compressibility of generalized Lévy processes.

The principle underlying all of our research is the analyse of the local and
asymptotic properties of generalized Lévy processes. When the Lévy noise is SαS,
the two behaviors are intrinsically connected. We now propose to revisit our results
for this particular case, and then recap the changes observed in the general case.

Local and asymptotic behaviors of generalized SαS processes. We con-
sider the model Lγs = wα with Lγ a γ-homogeneous differential operator and wα
a SαS stable noise. The model is Gaussian when α = 2, and has infinite variance
otherwise. The characteristic functional of wα is

P̂wα(ϕ) = exp(−‖ϕ‖αα).

We assume that the generalized SαS process is well-defined, in accordance with the
construction of Section 3.3. We obtained the following results, where parameter α
plays a crucial role.

• Tempered Lévy noise: For mathematical purposes, it is reasonable to ask for
a noise model in S ′(Rd). The SαS noise has finite pth moments (for every
p > 0 when α = 2 and for 0 < p < α when α < 2). From Theorem 3.1, it is
therefore in S ′(Rd) for every 0 < α ≤ 2.

• Domain of definition: The extension of the domain of the noise allows one
to define the broadest possible class of generalized SαS processes in S ′(Rd).
The Rajput-Rosinski exponent (see (3.11)) of the SαS noise is proportional
to ξ 7→ |ξ|α. This implies that the domain of definition of the SαS noise is
Lα(Rd) (Proposition 3.19).

• Fine and coarse scales behaviors: If Lγ admits a left-inverse with adequate
stability and homogeneity properties, one can construct a self-similar process
s solution of Lγs = wα. The self-similarity exponent is then H = γ+ d/α− d
and, for any a > 0, we have that

s
(L)
= aHs(·/a). (7.1)
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We zoom in the process when a > 1 and zoom out of it when a < 1. With
(7.1), we see that the local (a → ∞) and asymptotic (a → 0) behaviors of s
are identical. This property is not conserved for non-stable noises.

• Besov Regularity: When fixing the integrability rate p ∈ (0,∞], there exists a
limit smoothness τs(wα) and a limit asymptotic decay rate ρp(wα) such that
wα is in Bτp (Rd; ρ) when τ and ρ are strictly smaller that these limits, and wα
is not in Bτp (Rd; ρ) when one of them is strictly bigger that its corresponding
limit. This is also valid for other tempered Lévy noises. The local smoothness
and the asymptotic decay rate of wα are given by

τp(wGauss) = −d
2

and ρp(wGauss) = −d
p

when α = 2, in which case w2 = wGauss is therefore Gaussian, and by

τp(wα) =
d

max(p, α)
− d and ρp(wα) = − d

min(p, α)

when α < 2 (see Theorem 5.4 and Corollary 5.3). The local smoothness and
the asymptotic decay rate are therefore both characterized by α.

• Compressibility: Consider a periodic generalized SαS process sγ,α whitened
by a γ-admissible operator (Definition 5.2). Its local compressibility in L2(Td)
is given by (Theorem 6.2)

κ(sγ,α) =
γ

d
+

1

α
− 1.

The local and asymptotic indices. We have seen that the parameter α is
central for the quantification of the self-similarity exponent, the local regularity,
the asymptotic decay rate, together with the local compressibility of a generalized
SαS process. For non-stable noise, this parameter is not well-defined anymore. We
recall that the characteristic functional of a Lévy noise has the general form

P̂w(ϕ) = exp

(∫
Rd

Ψ(ϕ(x))dx

)
,
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with Ψ its Lévy exponent. Then, Ψ admits a Lévy-Khintchine representation (2.1)
and is characterized by its Lévy triplet (µ, σ2, ν), with ν the Lévy measure, as

Ψ(ξ) = iµξ − σ2ξ2

2
+

∫
R

(eiξt − 1− iξt1|t|≤1)ν(dt).

The relevant quantities that extend the parameter α for non-stable infinitely
divisible laws are as follows. The local behavior of a generalized Lévy process is
captured by the local index

αloc = inf

{
p > 0

∣∣∣∣∣
∫
|t|≤1

|t|p ν(dt) <∞

}
= inf

{
p > 0

∣∣∣∣∣ lim sup
|ξ|→∞

|Ψ(ξ)|
|ξ|p

<∞

}
.

The corresponding quantities for the asymptotic behaviors differ, depending if we
consider the Lévy exponent or the Lévy measure. We define the asymptotic index
as

αasymp = sup

{
p > 0

∣∣∣∣∣
∫
|t|>1

|t|p ν(dt) <∞

}
.

Then, we have min(αasymp, 2) = sup

{
p > 0

∣∣∣∣∣ lim sup
|ξ|→0

|Ψ(ξ)|
|ξ|p <∞

}
. Depending on

the asymptotic question of interest, the relevant quantity is αasymp or min(αasymp, 2).
Note that, for SαS, one has

α = αloc = αasymp = min(αasymp, 2).

Local versus asymptotic. The indices αloc and αasymp are not related. It is
indeed possible to construct a Lévy noise with any possible pair (αloc, αasymp) ∈
[0, 2]× (0,∞]. Local and asymptotic indices have first been introduced for the local
and asymptotic study of Lévy processes, by Blumenthal and Getoor [BG61] and
Pruitt [Pru81], respectively. The role of the indices for the local and asymptotic
behaviors of Lévy and Lévy-type processes is well-known [Sat13, BSW14]. This
thesis confirmed that fact by investigating new directions of research.

• Tempered Lévy noise: Theorem 3.1 can be reformulated as follow:

w ∈ S ′(Rd) a.s.⇐⇒ αasymp > 0.
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We recover that fact that the temperedness of a Lévy noise is an asymptotic
property.

• Domain of definition: Roughly speaking, the Lévy exponent Ψ behaves like

− |ξ|αloc at infinity, and like− |ξ|min(αasymp,2)
around 0 and the Rajput-Rosinski

exponent Θ inherits this property. The criteria for the domain of definition
exposed in Section 3.2.4 can be summarized by the informal relation

LΘ(Rd) ≈ Lαloc,min(αasymp,2)(Rd).

This equality is in particular true when Θ behaves like a power law both at the
origin and asymptotically. We recall that the functions in Lαloc,min(αasymp,2)(Rd)
are locally in Lαloc

and asymptotically in Lmin(αasymp,2) (see Section 3.2.3).
The duality local/asymptotic can be read on the domain of definition.

• Fine and coarse scales behaviors: When the noise is not stable, the generalized
Lévy process is not self-similar anymore. Therefore, a rescaling of the process
impacts its probability law.

Under some reasonable conditions (existence of a stable and homogeneous
left-inverse and conditions on the Lévy exponent), a generalized Lévy process
admits self-similar limits at coarse and fine scales. We assume that we are in
the conditions of Theorems 4.3 and 4.4 respectively. In particular, Ψ(ξ) be-

haves like −A |ξ|αloc at infinity, and like −B |ξ|min(αasymp,2)
around 0 for some

constant A,B > 0. Then, at coarse scales, the rescaled processes aH∞s(·/a)
converges in law to a H∞-self-similar process as a→ 0 with

H∞ = γ +
d

min(αasymp, 2)
− d. (7.2)

At fine scales, aH∞s(·/a) converges in law to a Hloc-self-similar process as
a→∞ with

Hloc = γ +
d

αloc
− d. (7.3)

The asymptotic and local self-similarity exponents are characterized by the
truncated asymptotic and local index, respectively.
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• Besov Regularity: The integrability rate 0 < p ≤ ∞ being fixed, the local
smoothness τp(w) and the asymptotic decay rate ρp(w) of a non-Gaussian
Lévy noise w are given by (see Theorem 5.4)

τp(w) =
d

max(p, αloc)
− d and ρp(w) = − d

min(p, αasymp)
.

We have shown that this is valid for αloc = 0, or under minor assumptions
of the Lévy exponent when αloc > 0. However, in future works, we hope to
remove these assumptions. Contrarily to the SαS case, the local and asymp-
totic behaviors are dissociated. The parameter αloc characterizes the local
smoothness, while αasymp determines the asymptotic decay rate.

Three integrability rate are especially interesting: p = ∞ (Hölder), p = 2
(Sobolev), and p = 0 (as the limit of p → 0). If wGauss is Gaussian and w is
a non-Gaussian Lévy noise, then we have:

τ∞(w) = −d < −d
2

= τ∞(wGauss) and ρ∞(w) = − d

αasymp
≤ 0 = ρ∞(wGauss);

τ2(w) = −d
2

= τ∞(wGauss) and ρ2(w) = − d

min(αasymp, 2)
≤ −d

2
= ρ2(wGauss);

τ0(w) =
d

αloc
− d ≥ −d

2
= τ0(wGauss) and ρ0(w) = −∞ = ρ0(wGauss).

• Compressibility: We have studied the local compressibility of a generalized
Lévy process s via its wavelet coefficients

〈s,Ψj,G,k〉, j ≥ 0, G ∈ Gj , ‖k‖∞ < 2j .

The crucial point for the local study is to restrict the range of the shifts k
(or, equivalently, to work on the d-dimensional torus). If s = L−1

γ w with Lγ
a γ-admissible operator, the local compressibility of s in L2(Td) is then given
by (Theorem 6.2)

κ(s) =
γ

d
+

1

αloc
− 1.

Our proof covers all the cases for which we have an exact estimation of the lo-
cal smoothness. Again, the local compressibility is captured by the local index
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αloc. When αloc increases, the local compressibility of the process decreases.
The local compressibility therefore implies the following local hierarchy, from
non-sparse to sparse:

Gauss� non-Gaussian SαS� Laplace = Poisson.

The asymptotic counterpart of our result can be described as follows. We
only consider the wavelet coefficients for the scale j = 0; that is,

〈s,Ψ0,G,k〉, G ∈ G0,k ∈ Zd. (7.4)

An adequate notion of asymptotic compressibility could emerge by considering
the Besov localization of the sequence (7.4). This calls for further investiga-
tions. The asymptotic compressibility has strong connections with the study
of the compressibility of i.i.d. random sequences that has been investigated
by several authors [Cev09, AUM11, SP12, GCD12]. From these works, it
appears that the tail properties of the common law of the sequence deter-
mines the compressibility. In particular, heavy-tailed random sequences are
more compressible, which corresponds to αasymp < ∞ for infinitely divisible
laws. The parameter αasymp again seems to be relevant to order the asymp-
totic compressibility. This induces the following asymptotic hierarchy, from
non-sparse to sparse:

Gaussian� Laplace = Poisson (with finite moments)� non-Gaussian SαS.

In both cases, the Gaussian law is the least sparse. Non-Gaussian innovation
models are therefore sparse, in the sense that they are sparser than Gaussian,
both locally and asymptotically. However, what makes an innovation model
sparse differs whether it is observed from a local (characterized by αloc) or an
asymptotic (captured by αasymp) point of view.
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[Ber98] J. Bertoin. Lévy processes, volume 121. Cambridge university press,
1998.

[BFKU13] E. Bostan, J. Fageot, U.S. Kamilov, and M. Unser. MAP estima-
tors for self-similar sparse stochastic models. In Proceedings of the
Tenth International Workshop on Sampling Theory and Applications
(SampTA13), Bremen, Germany, pages 197–199, 2013.

[BG61] R.M. Blumenthal and R.K. Getoor. Sample functions of stochastic
processes with stationary independent increments. Journal of Mathe-
matics and Mechanics, 10:493–516, 1961.

[BH10] P.J. Brockwell and J. Hannig. CARMA (p, q) generalized random pro-
cesses. Journal of Statistical Planning and Inference, 140(12):3613–
3618, 2010.

[BKNU13] E. Bostan, U.S. Kamilov, M. Nilchian, and M. Unser. Sparse stochastic
processes and discretization of linear inverse problems. IEEE Transac-
tions on Image Processing, 22(7):2699–2710, 2013.

[BL09] P.J. Brockwell and A. Lindner. Existence and uniqueness of stationary
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Lévy white noises. arXiv preprint arXiv:1610.06711, 2016.

[FUU17] J. Fageot, V. Uhlmann, and M. Unser. Gaussian and sparse pro-
cesses are limits of generalized Poisson processes. arXiv preprint
arXiv:1702.05003, 2017.

[FUW17a] J. Fageot, M. Unser, and J.P. Ward. Beyond Wiener’s lemma: Nuclear
convolution algebras and the inversion of digital filters. arXiv preprint
arXiv:1711.03999, 2017.



BIBLIOGRAPHY 201

[FUW17b] J. Fageot, M. Unser, and J.P. Ward. The n-term approximation of
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[Itô84] K. Itô. Foundations of Stochastic Differential Equations in Infinite
Dimensional Spaces, volume 47. SIAM, 1984.

[Kab08] M. Kabanava. Tempered Radon measures. Revista Matemática Com-
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[Mar06] T. Marquardt. Fractional Lévy processes with an application to long
memory moving average processes. Bernoulli, 12(6):1099–1126, 2006.

[MD10] D. Mumford and A. Desolneux. Pattern Theory: the Stochastic Anal-
ysis of Real-World Signals. A.K. Peters, Ltd., Natick, MA, 2010.

[Min59] R.A. Minlos. Generalized random processes and their extension in
measure. Trudy Moskovskogo Matematicheskogo Obshchestva, 8:497–
518, 1959.

[MN68] B.B. Mandelbrot and J.W. Van Ness. Fractional Brownian motions,
fractional noises and applications. SIAM Review, 10(4):422–437, 1968.

[MN90] W.R. Madych and S.A. Nelson. Polyharmonic cardinal splines. Journal
of Approximation Theory, 60(2):141–156, 1990.

[MP13] M. Matsui and Z. Pawlas. Fractional absolute moments of heavy tailed
distributions. arXiv preprint arXiv:1301.4804, 2013.

[MR08] F. Mainardi and S. Rogosin. The origin of infinitely divisible distribu-
tions: from de Finetti’s problem to Lévy-Khintchine formula. arXiv
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[Sch66] L. Schwartz. Théorie des distributions. Hermann, 1966.

[Sch73a] I.J. Schoenberg. Cardinal Spline Interpolation. Philadelphia, PA:
SIAM, 1973.

[Sch73b] L. Schwartz. Radon measures on arbitrary topological spaces and cylin-
drical measures, volume 239. Oxford University Press London, 1973.

[Sch97] R.L. Schilling. On Feller processes with sample paths in Besov spaces.
Mathematische Annalen, 309(4):663–675, 1997.
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in Mathematics. Birkhäuser Verlag, Basel, 2006.



208 BIBLIOGRAPHY

[Tri08] H. Triebel. Function spaces and wavelets on domains, volume 7 of
EMS Tracts in Mathematics. European Mathematical Society (EMS),
Zürich, 2008.

[TU10] P. D. Tafti and M. Unser. Fractional Brownian vector fields. Multiscale
Modeling & Simulation, 8(5):1645–1670, 2010.

[UB00] M. Unser and T. Blu. Fractional splines and wavelets. SIAM Review,
42(1):43–67, 2000.

[UB05] M. Unser and T. Blu. Cardinal exponential splines: Part I—Theory
and filtering algorithms. IEEE Transactions on Signal Processing,
53(4):1425–1438, 2005.

[UB07] M. Unser and T. Blu. Self-similarity: Part I—Splines and operators.
IEEE Transactions on Signal Processing, 55(4):1352–1363, 2007.

[UFG16] M. Unser, J. Fageot, and H. Gupta. Representer theorems for sparsity-
promoting `1 regularization. IEEE Transactions on Information The-
ory, 62(9):5167–5180, September 2016.

[UFU16] V. Uhlmann, J. Fageot, and M. Unser. Hermite snakes with control of
tangents. IEEE Transactions on Image Processing, 25(6):2803–2816,
2016.

[UFW17] M. Unser, J. Fageot, and J.P. Ward. Splines are universal solutions
of linear inverse problems with generalized tv regularization. SIAM
Review, 59(4):769–793, 2017.

[Uhl17] V. Uhlmann. Landmark Active Contours for Bioimage Analysis: A
Tale of Points and Curves. EPFL thesis no. 7951 (2017), 263 p., Swiss
Federal Institute of Technology Lausanne (EPFL), December 1, 2017.

[Uns99] M. Unser. Splines: A perfect fit for signal and image processing. IEEE
Signal Processing Magazine, 16(6):22–38, 1999.

[Uns15] M. Unser. Sampling and (sparse) stochastic processes: A tale of splines
and innovation. In Proceedings of the Eleventh International Workshop
on Sampling Theory and Applications (SampTA’15), pages 221–225,
Washington DC, USA, May 25-29, 2015.



BIBLIOGRAPHY 209

[UT11] M. Unser and P. D. Tafti. Stochastic models for sparse and piecewise-
smooth signals. IEEE Transactions on Signal Processing, 59(3):989–
1006, 2011.

[UT14] M. Unser and P. D. Tafti. An Introduction to Sparse Stochastic Pro-
cesses. Cambridge University Press, 2014.

[UTAK14] M. Unser, P. D. Tafti, A. Amini, and H. Kirshner. A unified formula-
tion of Gaussian versus sparse stochastic processes—Part II: Discrete-
domain theory. Information Theory IEEE Transactions, 60(5):3036–
3051, 2014.

[UTS14] M. Unser, P. D. Tafti, and Q. Sun. A unified formulation of Gaussian
versus sparse stochastic processes—Part I: Continuous-domain theory.
Information Theory IEEE Transactions, 60(3):1945–1962, 2014.

[UW67] K. Urbanik and W.A. Woyczynski. A random integral and Orlicz
spaces. Bulletin de l’académie polonaise des sciences - Série des sci-
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In École d’Été de Probabilités de Saint Flour XIV-1984, pages 265–439.
Springer, 1986.


	Abstract
	Résumé
	Remerciements
	Notation
	From Sparse Signals to Sparse Processes
	The Innovation Model
	Sparse Stochastic Processes
	What is sparsity?
	Innovation Model and Sparsity

	Contributions
	Construction
	Convergence Theorems
	Regularity
	Compressibility


	When Probability Meets Generalized Functions
	Probability Theory in Finite Dimension
	Real Random Variables and Vectors
	Infinitely Divisible Random Variables and their Indices
	Examples of Infinitely Divisible Laws

	Elements of Functional Analysis
	The Spaces D'(Rd), S'(Rd), and S'(Td)
	Linear Operators
	Weighted Besov Spaces

	Generalized Random Processes and Fields
	Definition and Main Concepts
	The Characteristic Functional
	Stochastic Functional Analysis


	Construction of Generalized Lévy Processes
	Lévy White Noise
	Construction: From D'(Rd) to S'(Rd)
	Independence, Invariance, and Examples of Lévy noises

	The Domain of Definition of Lévy Noise
	Lévy Noises As Independently Scattered Random Measures
	Extension of the Domain of Definition
	The spaces Lp0,p(Rd)
	Practical Determination of the Domain

	Generalized Lévy Processes
	Existence Criterion
	Specific Classes of Generalized Lévy Processes


	Limit Theorems for Generalized Lévy Processes
	The Lévy-Fernique Theorem
	Generalized Poisson Processes Generate Generalized Lévy Processes
	Generalized Poisson Processes are L-Splines
	The Convergence Theorem
	Examples and Simulations

	Scaling Limits of Generalized Lévy Processes
	Self-Similar Generalized Lévy Processes
	Generalized Lévy Processes at Coarse and Fine Scales
	Examples and Simulations


	Regularity of Generalized Lévy Processes
	Smoothness and Decay Rate in S'(Rd)
	Besov Regularity of the Lévy Noise
	Gaussian Noise
	Compound Poisson Noise
	Non-Gaussian Lévy Noise
	Smoothness and Decay Rate of Lévy Noise

	Smoothness of Periodic Generalized Lévy Processes
	Homogeneous Periodic Function Spaces
	Operators on Homogeneous Periodic Functions
	From Lévy Noises to Generalized Lévy Processes


	Local Compressibility of Generalized Lévy Processes
	N-Term Approximation and Besov Regularity
	The Compressibility of Generalized Lévy Processes

	Conclusion: Local versus Asymptotic
	Bibliography

