Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Scaling Limits
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises

J. Fageot, M. Unser

Journal of Theoretical Probability, vol. 32, no. 3, pp 1166-1189, September 2019.


Consider a random process s that is a solution of the stochastic differential equation L s = w with L a homogeneous operator and w a multidimensional Lévy white noise. In this paper, we study the asymptotic effect of zooming in or zooming out of the process s. More precisely, we give sufficient conditions on L and w such that aH s(·∕a) converges in law to a non-trivial self-similar process for some H, when a → 0 (coarse-scale behavior) or a → ∞ (fine-scale behavior). The parameter H depends on the homogeneity order of the operator L and the Blumenthal-Getoor and Pruitt indices associated with the Lévy white noise w. Finally, we apply our general results to several famous classes of random processes and random fields and illustrate our results on simulations of Lévy processes.

@ARTICLE(http://bigwww.epfl.ch/publications/fageot1903.html,
AUTHOR="Fageot, J. and Unser, M.",
TITLE="Scaling Limits of Solutions of Linear Stochastic Differential
	Equations Driven by {L}{\'{e}}vy White Noises",
JOURNAL="Journal of Theoretical Probability",
YEAR="2019",
volume="32",
number="3",
pages="1166--1189",
month="September",
note="")

© 2019 Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved