
nature methods Volume 21 | January 2024 | 7–8 | 7

https://doi.org/10.1038/s41592-023-02129-x

Correspondence

JDLL: a library to run deep learning models
on Java bioimage informatics platforms

T
he advancements in artificial intel-
ligence (AI) technology over the
past decade have been a break-
through in imaging for life sci-
ences, paving the way for novel

methods in image restoration1, reconstruc-
tion2 and segmentation3. However, the wide
adoption of deep learning (DL) techniques
by end users in bioimage analysis is hindered
by the complexity of their deployment.
These techniques stem from a variety of
rapidly evolving frameworks (for example,
TensorFlow 1 or 2, PyTorch) that come with
distinct and often conflicting setups, which
can discourage even proficient developers.
This has led to integration difficulties or even
absence in mainstream bioimage informatics
platforms such as ImageJ, Icy and Fiji, many of
which are primarily developed in Java.

We present JDLL (Java Deep Learning
Library), a Java library that provides a compre-
hensive toolkit and application programming
interface (API) for crafting advanced scientific
applications and image analysis pipelines with
DL capabilities. JDLL streamlines the installa-
tion, maintenance and execution of DL mod-
els across any major DL frameworks. JDLL is
based on two main components (Fig. 1). The
first, the DL-engine-installer, acts as a frame-
work manager. It facilitates the download
and integration of leading DL frameworks
such as Tensorflow 1 and 2, PyTorch (from
v1.4) and ONNX (from v1.3). It is capable of
functioning with both CPU and GPU across
a vast array of supported versions. Notably,
DL-engine-installer automatically identifies
the required engine and version from the
model specifications, handling downloads or
loads seamlessly for the end user. The second
component, DL-model-runner, offers a Java
API for performing inference on models built
on the aforementioned DL frameworks. It can
work around memory (CPU or GPU) limita-
tions when processing large images, thanks
to its tiling feature. Furthermore, it offers a
user-friendly API for model loading or down-
loading, presenting comprehensible details
about its training process and the underlying
DL framework.

 Check for updates

BMZ

Other models

Download
and manage

DL engines

Load models
trained on all

major engines

Download and
unpack models
from the BMZ

C
om

pa
tib

ili
ty

C
om

po
ne

nt
s

C
on

su
m
er
s

TensorFlow 1
TensorFlow 2

PyTorch ≥1.7

ONNX ≥1.3

Icy

deepImageJ

Source image Output image

DL modelDL engine

Future
consumers

ImgLib2

DL-engine-installer

JDLL

DL-model-runner

Preprocessing Postprocessing

Fig. 1 | The JDLL architecture. JDLL is a Java API that can manage and load models created with a wide
range of DL frameworks or engines (top). It can also download and deploy the models shared on the BMZ
repository following BMZ conventions. These models are unpacked with JDLL, along with the engines
required to run inference with the models, in a manner transparent to API consumers. JDLL provides to these
consumers (such as Icy and deepImageJ, bottom) a simple and unified API to run inference on images via a
custom ImgLib2 wrapper for their specific image data models. Because the API is generic and relies on an
ImgLib2 component, JDLL can be used by any Java software platform, fostering the reproducibility of DL
model deployment.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02129-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-02129-x&domain=pdf

nature methods Volume 21 | January 2024 | 7–8 | 8

Correspondence

The flexibility and adaptability of these
components are pivotal in facilitating the
effortless installation and utilization of the
full spectrum of DL models prevalent in the
life sciences. JDLL is streamlined, carrying
minimal dependencies — namely, ImgLib2
(ref. 4) and specific libraries for processing
JSON and YAML files, commonly used for DL
model specifications. It is built to be com-
patible with existing and potential future DL
frameworks, leveraging ImgLib2 to create a
framework-agnostic tensor implementation.
Consequently, applications built on JDLL will
not require engine-specific code. JDLL offers
a universal, singular implementation com-
patible with all engines across their various
versions. Its cutting-edge management of DL
engines empowers it to operate multiple mod-
els within a single program, even if they were
trained on normally incompatible DL engines.
For example, JDLL can effortlessly sequence a
style-transfer model operating on Tensorflow
2 with an instance segmentation model run-
ning on Tensorflow 1 within a single script.

The Bioimage Model Zoo (BMZ)5 represents
a collaborative endeavor aimed at streamlin-
ing the utilization and sharing of DL models
in life sciences, facilitating their download or
retrieval and running inference easily. It pro-
vides specifications for the models and the
engines they require to run, along with pre-
and postprocessing steps. Several community
partners in BMZ, such as Icy, ImageJ/Fiji (via
deepImageJ), ZeroCostDL4Mic and ImJoy6–9,
already target end-user applications. JDLL
aspires to serve as the common core compo-
nent for DL across the Java-based platforms
in this list, introducing distinctive features
to support this integration. The BMZ speci-
fications detail both pre- and postprocess-
ing steps, and for true reproducibility, it is
imperative that these steps yield consistent
outputs across all platforms. Whereas the
existing Java platforms rely on their own
custom implementations, these processing
steps are now addressed generically thanks
to the universal tensor capabilities provided
by JDLL and ImgLib2. As a result, platforms
incorporating JDLL can depend on a shared
code base for all processes tied to running a

DL model. This approach minimizes redun-
dant coding efforts and ensures pixel-by-pixel
reproducibility.

JDLL serves as a foundational library
designed to support a growing community
of developers in creating scientific tools
for end users (such as bioimage analysts or
biologists). Furthermore, its efficient and
streamlined API reduces the complexities of
executing a DL model to just a handful of code
lines. This makes it compatible for use in analy-
sis scripts (such as those in MATLAB, Fiji or Icy)
or through connectors that integrate it with
visual programming languages (we can fore-
see KNIME and Icy Protocols). This positions
JDLL as an asset for the biological community.
Thanks to its generality and versatility, JDLL
offers the means to imbue scientific Java image
analysis platforms with DL capabilities. Given
the popularity of these platforms within the
biological research community, JDLL stands
poised to bolster the widespread adoption of
DL in life sciences.

Code availability
The source code, documentation, tutorials and
examples implementing JDLL can be found at
https://github.com/bioimage-io/JDLL. JDLL is
made available under the open-source Apache
software license.

Carlos García López de Haro1,
Stéphane Dallongeville   1,2,
Thomas Musset1,2,
Estibaliz Gómez-de-Mariscal   3,
Daniel Sage   4, Wei Ouyang   5,
Arrate Muñoz-Barrutia   6,
Jean-Yves Tinevez   7 &
Jean-Christophe Olivo-Marin   1,2
1Bioimage Analysis Unit, Institut Pasteur,
Université Paris Cité, Paris, France. 2CNRS
UMR 3691, Institut Pasteur, Paris, France.
3Instituto Gulbenkian de Ciência, Lisbon,
Portugal. 4Biomedical Imaging Group and
Center for Imaging, Ecole Polytechnique
de Lausanne (EPFL), Lausanne, Switzerland.
5Science for Life Laboratory, KTH Royal
Institute of Technology, Stockholm, Sweden.
6Biomedical Sciences and Engineering
Laboratory, Universidad Carlos III de Madrid,

Leganés, Spain. 7Image Analysis Hub, Institut
Pasteur, Université Paris Cité, Paris, France.

 e-mail: jean-yves.tinevez@pasteur.fr;
jean-christophe.olivo-marin@pasteur.fr

Published online: 8 January 2024

References
1. Weigert, M. et al. Nat. Methods 15, 1090–1097 (2018).
2. Belthangady, C. & Royer, L. A. Nat. Methods 16, 1215–1225

(2019).
3. Moen, E. et al. Nat. Methods 16, 1233–1246 (2019).
4. Pietzsch, T., Preibisch, S., Tomancak, P. & Saalfeld, S.

Bioinformatics 28, 3009–3011 (2012).
5. Ouyang, W. et al. Preprint at bioRxiv https://doi.

org/10.1101/2022.06.07.495102 (2022).
6. de Chaumont, F. et al. Nat. Methods 9, 690–696 (2012).
7. Gómez-de-Mariscal, E. et al. Nat. Methods 18, 1192–1195 (2021).
8. von Chamier, L. et al. Nat. Commun. 12, 2276 (2021).
9. Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. &

Zimmer, C. Nat. Methods 16, 1199–1200 (2019).

Acknowledgements
This work has been partially supported by the Agence
Nationale de la Recherche through the LabEx IBEID (ANR-
10-LABX-62-IBEID), the Institut Carnot Pasteur Microbes
& Santé (ANR 16 CARN 0023-01), the programs PIA
INCEPTION (ANR-16-CONV-0005) and France-BioImaging
(ANR-10-INBS-04); by DIM ELICIT Région Ile-de-France;
by the European Commission through the H20
20-FET-OPEN-2018–2019-2020-01 grant no. 862840 (“FREE@
POC”) (J.-C.O.-M.); by additional internal funding from the
Bioimage Analysis unit and the Institut Pasteur (J.-C.O.-M.
and J.-Y.T.); by the Ministerio de Ciencia, Innovación y
Universidades, Agencia Estatal de Investigación, under grant
PID2019-109820RB-I00, MCIN / AEI / 10.13039/501100011033/,
co-financed by European Regional Development Fund (ERDF),
“A way of making Europe,” and the European Commission
through the Horizon Europe program (AI4LIFE project, grant
agreement 101057970-AI4LIFE) (A.M.-B.); and by Fundação
Calouste Gulbenkian and EMBO Postdoctoral Fellowship
(EMBO ALTF 174-2022) (E.G.M.). Funded by the European
Union. Views and opinions expressed are however those of
the authors only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting
authority can be held responsible for them.

Author contributions
Code concept and design were done by C.G.L.d.H., J.-Y.T., S.D.
and J.-C.O.-M., with contributions from E.G.d.M., D.S., W.O. and
A.M.-B. JDLL coding development and implementation was
done by C.G.L.d.H., J.-Y.T., T.M. and S.D.; manuscript organizing
and writing by C.G.L.d.H., J.-Y.T., A.M.-B. and J.-C.O.-M. with all
authors contributing comments and revisions; funding and
project administration by J.-Y.T. and J.-C.O.-M.

Competing interests
The authors declare no competing interests.

Additional information
Peer review information Nature Methods thanks David Barry
and Edward Evans, III for their contribution to the peer review
of this work.

http://www.nature.com/naturemethods
https://github.com/bioimage-io/JDLL
http://orcid.org/0000-0002-2204-7083
http://orcid.org/0000-0003-2082-3277
http://orcid.org/0000-0002-1150-1623
http://orcid.org/0000-0002-0291-926X
http://orcid.org/0000-0002-1573-1661
http://orcid.org/0000-0002-0998-4718
http://orcid.org/0000-0001-6796-0696
mailto:jean-yves.tinevez@pasteur.fr
mailto:jean-christophe.olivo-marin@pasteur.fr
https://doi.org/10.1101/2022.06.07.495102
https://doi.org/10.1101/2022.06.07.495102

	JDLL: a library to run deep learning models on Java bioimage informatics platforms
	Acknowledgements
	Fig. 1 The JDLL architecture.

