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JDLL: a library to run deep learning models 
on Java bioimage informatics platforms

T
he advancements in artificial intel-
ligence (AI) technology over the 
past decade have been a break-
through in imaging for life sci-
ences, paving the way for novel 

methods in image restoration1, reconstruc-
tion2 and segmentation3. However, the wide 
adoption of deep learning (DL) techniques 
by end users in bioimage analysis is hindered 
by the complexity of their deployment. 
These techniques stem from a variety of 
rapidly evolving frameworks (for example, 
TensorFlow 1 or 2, PyTorch) that come with 
distinct and often conflicting setups, which 
can discourage even proficient developers. 
This has led to integration difficulties or even 
absence in mainstream bioimage informatics 
platforms such as ImageJ, Icy and Fiji, many of 
which are primarily developed in Java.

We present JDLL ( Java Deep Learning 
Library), a Java library that provides a compre-
hensive toolkit and application programming 
interface (API) for crafting advanced scientific 
applications and image analysis pipelines with 
DL capabilities. JDLL streamlines the installa-
tion, maintenance and execution of DL mod-
els across any major DL frameworks. JDLL is 
based on two main components (Fig. 1). The 
first, the DL-engine-installer, acts as a frame-
work manager. It facilitates the download 
and integration of leading DL frameworks 
such as Tensorflow 1 and 2, PyTorch (from 
v1.4) and ONNX (from v1.3). It is capable of 
functioning with both CPU and GPU across 
a vast array of supported versions. Notably, 
DL-engine-installer automatically identifies 
the required engine and version from the 
model specifications, handling downloads or 
loads seamlessly for the end user. The second 
component, DL-model-runner, offers a Java 
API for performing inference on models built 
on the aforementioned DL frameworks. It can 
work around memory (CPU or GPU) limita-
tions when processing large images, thanks 
to its tiling feature. Furthermore, it offers a 
user-friendly API for model loading or down-
loading, presenting comprehensible details 
about its training process and the underlying 
DL framework.
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Fig. 1 | The JDLL architecture. JDLL is a Java API that can manage and load models created with a wide 
range of DL frameworks or engines (top). It can also download and deploy the models shared on the BMZ 
repository following BMZ conventions. These models are unpacked with JDLL, along with the engines 
required to run inference with the models, in a manner transparent to API consumers. JDLL provides to these 
consumers (such as Icy and deepImageJ, bottom) a simple and unified API to run inference on images via a 
custom ImgLib2 wrapper for their specific image data models. Because the API is generic and relies on an 
ImgLib2 component, JDLL can be used by any Java software platform, fostering the reproducibility of DL 
model deployment.
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The flexibility and adaptability of these 
components are pivotal in facilitating the 
effortless installation and utilization of the 
full spectrum of DL models prevalent in the 
life sciences. JDLL is streamlined, carrying 
minimal dependencies — namely, ImgLib2 
(ref. 4) and specific libraries for processing 
JSON and YAML files, commonly used for DL 
model specifications. It is built to be com-
patible with existing and potential future DL 
frameworks, leveraging ImgLib2 to create a 
framework-agnostic tensor implementation. 
Consequently, applications built on JDLL will 
not require engine-specific code. JDLL offers 
a universal, singular implementation com-
patible with all engines across their various 
versions. Its cutting-edge management of DL 
engines empowers it to operate multiple mod-
els within a single program, even if they were 
trained on normally incompatible DL engines. 
For example, JDLL can effortlessly sequence a 
style-transfer model operating on Tensorflow 
2 with an instance segmentation model run-
ning on Tensorflow 1 within a single script.

The Bioimage Model Zoo (BMZ)5 represents 
a collaborative endeavor aimed at streamlin-
ing the utilization and sharing of DL models 
in life sciences, facilitating their download or 
retrieval and running inference easily. It pro-
vides specifications for the models and the 
engines they require to run, along with pre- 
and postprocessing steps. Several community 
partners in BMZ, such as Icy, ImageJ/Fiji (via 
deepImageJ), ZeroCostDL4Mic and ImJoy6–9, 
already target end-user applications. JDLL 
aspires to serve as the common core compo-
nent for DL across the Java-based platforms 
in this list, introducing distinctive features 
to support this integration. The BMZ speci-
fications detail both pre- and postprocess-
ing steps, and for true reproducibility, it is 
imperative that these steps yield consistent 
outputs across all platforms. Whereas the 
existing Java platforms rely on their own 
custom implementations, these processing 
steps are now addressed generically thanks 
to the universal tensor capabilities provided 
by JDLL and ImgLib2. As a result, platforms 
incorporating JDLL can depend on a shared 
code base for all processes tied to running a 

DL model. This approach minimizes redun-
dant coding efforts and ensures pixel-by-pixel 
reproducibility.

JDLL serves as a foundational library 
designed to support a growing community 
of developers in creating scientific tools 
for end users (such as bioimage analysts or 
biologists). Furthermore, its efficient and 
streamlined API reduces the complexities of 
executing a DL model to just a handful of code 
lines. This makes it compatible for use in analy-
sis scripts (such as those in MATLAB, Fiji or Icy) 
or through connectors that integrate it with 
visual programming languages (we can fore-
see KNIME and Icy Protocols). This positions 
JDLL as an asset for the biological community. 
Thanks to its generality and versatility, JDLL 
offers the means to imbue scientific Java image 
analysis platforms with DL capabilities. Given 
the popularity of these platforms within the 
biological research community, JDLL stands 
poised to bolster the widespread adoption of 
DL in life sciences.

Code availability
The source code, documentation, tutorials and 
examples implementing JDLL can be found at 
https://github.com/bioimage-io/JDLL. JDLL is 
made available under the open-source Apache 
software license.
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