
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023 781

A Neural-Network-Based Convex Regularizer for
Inverse Problems

Alexis Goujon , Sebastian Neumayer , Pakshal Bohra , Graduate Student Member, IEEE, Stanislas Ducotterd ,
and Michael Unser , Fellow, IEEE

Abstract—The emergence of deep-learning-based methods to
solve image-reconstruction problems has enabled a significant in-
crease in quality. Unfortunately, these new methods often lack relia-
bility and explainability, and there is a growing interest to address
these shortcomings while retaining the boost in performance. In
this work, we tackle this issue by revisiting regularizers that are the
sum of convex-ridge functions. The gradient of such regularizers is
parameterized by a neural network that has a single hidden layer
with increasing and learnable activation functions. This neural
network is trained within a few minutes as a multistep Gaussian
denoiser. The numerical experiments for denoising, CT, and MRI
reconstruction show improvements over methods that offer similar
reliability guarantees.

Index Terms—Inverse problems, learnable regularizer, plug-
and-play, gradient-step denoiser, stability, interpretability.

I. INTRODUCTION

IN NATURAL science, it is common to indirectly probe an
object of interest by collecting a series of linear measure-

ments [1]. After discretization, this can be formalized as

y = Hx+ n, (1)

where H ∈ Rm×d acts on the discrete representation x ∈ Rd of
the object and models the physics of the process. The vector n ∈
Rm accounts for additive noise in the measurements. Given the
measurement vector y ∈ Rm, the task is then to reconstruct x.
Many medical-imaging applications fit into this class of inverse
problems [2], including magnetic-resonance imaging (MRI) and
X-ray computed tomography (CT).

In addition to the presence of noise, which makes the recon-
struction challenging for ill-conditionedH, it is common to have
only a few measurements (m < d), resulting in underdetermined
problems. In either case, (1) is ill-posed, and solving it poses

Manuscript received 9 February 2023; revised 23 June 2023 and 9 August
2023; accepted 9 August 2023. Date of publication 17 August 2023; date of
current version 28 August 2023. This work was supported in part by the European
Research Council (ERC) through European Union’s Horizon 2020 (H2020),
under Grant 101020573 FunLearn and in part by the Swiss National Science
Foundation under Grant 200020 184646/1. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Singanallur
Venkatakrishnan. (Corresponding author: Alexis Goujon.)

The authors are with the Biomedical Imaging Group, École polytech-
nique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland (e-mail:
alexis.goujon@epfl.ch; sebastian.neumayer@epfl.ch; pakshal.bohra@epfl.ch;
stanislas.ducotterd@epfl.ch; michael.unser@epfl.ch).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCI.2023.3306100, provided by the authors.

Digital Object Identifier 10.1109/TCI.2023.3306100

serious challenges. To overcome this issue, a reconstruction x∗

is often computed as

x∗ ∈ arg min
x∈Rd

‖Hx− y‖22 +R(x), (2)

where R : Rd → R is a convex regularizer that incorporates
prior information about x to counteract the ill-posedness of (1).
Popular choices are the Tikhonov [3] or total-variation (TV) [4],
[5], [6] regularizers.

A. Deep-Learning Methods

Deep-learning-based methods have emerged in the past years
for the inversion of (1) in a variety of applications; see [7], [8]
for an overview. Such approaches offer a significantly improved
quality of reconstruction as compared to classical variational
models of the form (2). Unfortunately, most of them are not
well understood and lack stability guarantees [9], [10].

For end-to-end approaches, a pre-trained model outputs a
reconstruction directly from the measurements y or from a
low-quality reconstruction [11], [12], [13], [14], [15]. These
approaches are often much faster than iterative solvers that
compute (2). Their downside is that they offer no control of
the data-consistency term ‖Hx− y‖2. In addition, they are less
universal since a model is specifically trained perH and per noise
model. End-to-end learning can also lead to serious stability
issues [9].

A remedy for some of these issues is provided by the
convolutional-neural-network (CNN) variants of the plug-and-
play (PnP) framework [16], [17], [18], [19]. The inspiration for
these methods comes from the interpretation of the proximal
operator

proxR(y) = arg min
x∈Rd

1

2
‖y − x‖22 +R(x) (3)

used in many iterative algorithms for the computation of (2)
as a denoiser. The idea is to replace (3) with a more powerful
CNN-based denoiser D. However, D is usually not a proper
proximal operator, and the convergence of the PnP iterates is
not guaranteed. It was shown in [19] that, for an invertible
H, convergence can be ensured by constraining the Lipschitz
constant of the residual operator (Id−D), where Id is the
identity operator. For a noninvertibleH, this constraint, however,
does not suffice. Instead, one can constrain D to be an averaged
operator which, unfortunately, degrades the performance [20].
Hence, in practice, one usually only constrains (Id−D), even
if the framework is deployed for noninvertibleH [19], [21], [22].

2333-9403 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2198-0365
https://orcid.org/0000-0002-9041-7373
https://orcid.org/0000-0002-2611-3834
https://orcid.org/0009-0006-2047-5179
https://orcid.org/0000-0003-1248-2513
mailto:alexis.goujon@epfl.ch
mailto:sebastian.neumayer@epfl.ch
mailto:pakshal.bohra@epfl.ch
mailto:stanislas.ducotterd@epfl.ch
mailto:michael.unser@epfl.ch
https://doi.org/10.1109/TCI.2023.3306100

782 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

While this results in good performances, it leaves a gap between
theory and implementation. Following a different route, one
can also ensure convergence with relaxed algorithms [23], [24].
There, D is replaced with the relaxed version γD + (1− γ)Id,
γ ∈ (0, 1]. At each iteration, γ is decreased if some condition is
violated. Unfortunately, without particular constraints onD, the
evolution ofγ is unpredictable. Hence, the associated fixed-point
equation for the reconstruction is unknown a priori, which
reduces the reliability of the method.

Another data-driven approach arising from (2) is the learning
ofR instead ofproxR. Pioneering work in this direction includes
the fields of experts [25], [26], [27], whereR is parameterized by
an interpretable and shallow model, namely, a sum of nonlinear
one-dimensional functions composed with convolutional filters.
Some recent approaches rely on more sophisticated architectures
with much deeper CNNs, such as with the adversarial regular-
ization (AR) [28], [29], NETT [30], and the total-deep-variation
frameworks [31], or with regularizers for which a proximal
operator exists [24], [32], [33], [34]. There exists a variety
of strategies to learn R, including bilevel optimization [26],
unrolling [27], [31], gradient-step denoising [24], [32], and
adversarial training [28], [29]. When R is convex, a global
minimizer of (2) can be found under mild assumptions. As
the relaxation of the convexity constraint usually boosts the
performance [26], [35], it is consequently the most popular
approach. Unfortunately, one can then expect convergence only
to a critical point.

B. Quest for Reliability

In many sensitive applications such as medical imaging, there
is a growing interest to improve the reliability and interpretabil-
ity of the reconstruction methods. The available frameworks
used to learn a (pseudo) proximal operator or regularizer result
in a variety of neural architectures that differ in the importance
attributed to the following competing properties:
� good reconstruction quality;
� independence on H, noise model, and image domain;
� convergence guarantees and properties of the fixed points

of the reconstruction algorithm;
� interpretability, which can include the existence of an

explicit cost or a minimal understanding of what the regu-
larizer is promoting.

To foster the last two properties, one usually has to impose
structural constraints on the learnt regularizer/proximal operator.
For instance, within the PnP framework, there have been some
recent efforts to improve the expressivity of averaged denoisers,
either with strict Lipschitz constraints on the model, [20], [36] or
with regularization of its Lipchitz constant during training [33],
[37] which, in turn, improves the convergence properties of the
reconstruction algorithm. In the same vein, the authors of [38],
[39] proposed to learn a convex R parameterized by a deep
input convex neural network (ICNN) [40] and to train it within
an adversarial framework as in [28].

In the present work, we prioritize the reliability and inter-
pretability of the method. Thus, we revisit the family of learnable

convex-ridge regularizers [25], [26], [27], [35], [41]

R : x �→
∑
i

ψi(w
T
i x), (4)

where the profile functions ψi : R→ R are convex, and wi ∈
Rd are learnable weights. A popular way to learn R is to
solve a non-convex bilevel optimization task [42], [43] for a
given inverse problem. It was reported in [26] that these learnt
regularizers outperform the popular TV regularizer for image
reconstruction. As bilevel optimization is computationally quite
intensive, it was proposed in [35] to unroll the forward-backward
splitting (FBS) algorithm applied to (2) with a regularizer of
the form (4). Accordingly, R is optimized so that a predefined
number t of iterations of the FBS algorithm yields a good
reconstruction. Unfortunately, on a denoising task with learnable
profiles ψi, the proposed approach does not match the perfor-
mance of the bilevel optimization.

To deal with these shortcomings, we introduce an efficient
framework1 to learn some R of the form (4) with free-form
convex profiles. We train this R on a generic denoising task
and then plug it into (2). This yields a generic reconstruction
framework that is applicable to a variety of inverse problems.
The main contributions of the present work are as follows.
� Interpretable and Expressive Model: We use a one-hidden-

layer neural network (NN) with learnable increasing linear-
spline activation functions to parameterize ∇R. We prove
that this yields the maximal expressivity in the generic
setting (4).

� Embedding of the Constraints into the Forward Pass: The
structural constraints on ∇R are embedded into the for-
ward pass during the training. This includes an efficient
procedure to enforce the convexity of the profiles, and the
computation of a bound on the Lipschitz constant of ∇R,
which is required for our training procedure.

� Ultra-Fast Training: The regularizer R is learnt via the
training of a multi-gradient-step denoiser. Empirically, we
observe that a few gradient steps suffice to learn a best-
performingR. This leads to training within a few minutes.

� Best Reconstruction Quality in a Constrained Scenario:
We show that our framework outperforms recent deep-
learning-based approaches with comparable guarantees
and constraints in two popular medical-imaging modali-
ties (CT and MRI). This includes the PnP method with
averaged denoisers and a variational framework with a
learnable deep convex regularizer. This even holds for a
strong mismatch in the noise level used for the training
and the one found in the inverse problem.

II. ARCHITECTURE OF THE REGULARIZER

In this section, we introduce the notions required to define the
convex-ridge regularizer neural network (CRR-NN).

1All experiments can be reproduced with the code published at https://github.
com/axgoujon/convex_ridge_regularizers.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

https://github.com/axgoujon/convex_ridge_regularizers
https://github.com/axgoujon/convex_ridge_regularizers

GOUJON et al.: NEURAL-NETWORK-BASED CONVEX REGULARIZER FOR INVERSE PROBLEMS 783

A. General Setting

Our goal is to learn a regularizerR for the variational problem
(2) that performs well across a variety of ill-posed problems.
Similar to the PnP framework, we view the denoising task

x∗ = arg min
x∈Rd

1

2
‖x− y‖22 + λR(x) (5)

as the underlying base problem for training, where y is the
noisy image. Since we prioritize interpretability and reliability,
we choose the simple convex-ridge regularizer (4) and use its
convolutional form. More precisely, the regularity of an image
x is measured as

R : x �→
NC∑
i=1

∑
k∈Z2

ψi

(
(hi ∗ x)[k]

)
, (6)

where hi is the impulse response of a 2D convolutional filter,
(hi ∗ x)[k] is the value of the k-th pixel of the filtered image
hi ∗ x, and NC is the number of channels. In the sequel, we
mainly view the (finite-size) image x as the (finite-dimensional)
vector x ∈ Rd, and since (6) is a special case of (4), we
henceforth use the generic form (4) to simplify the notations.
We use the notation Rθ to express the dependence of R on
the aggregated set of learnable parameters θ, which will be
specified when necessary. From now on, we assume that the
convex profiles ψi have Lipschitz continuous derivatives, i.e.
ψi ∈ C1,1(R).

B. Gradient-Step Neural Network

Given the assumptions on Rθ, the denoised image in (5) can
be interpreted as the unique fixed point of TRθ,λ,α : Rd → Rd

defined by

TRθ,λ,α(x) = x− α((x− y) + λ∇Rθ(x)
)
. (7)

Iterations of the operator (7) implement a gradient descent with
stepsize α, which converges if α ∈ (0, 2/(1 + λLθ)), where
Lθ = Lip(∇Rθ) is the Lipschitz constant of ∇Rθ . In the
sequel, we always enforce this constraint on α. The gradient
of the generic convex-ridge expression (4) is given by

∇Rθ(x) = WTσ(Wx), (8)

where W = [w1 · · ·wp]
T ∈ Rp×d and σ is a pointwise acti-

vation function whose components (σi = ψ′i)
p
i=1 are Lipschitz

continuous and increasing. In our implementation, the activation
functions σi are shared within each channel of W. The resulting
gradient-step operator

TRθ,λ,α(x) = (1− α)x+ α
(
y − λWTσ(Wx)

)
(9)

corresponds to a one-hidden-layer convolutional NN with a bias
and a skip connection. We refer to it as a gradient-step NN. The
training of a gradient-step NN will give a CRR-NN.

III. CHARACTERIZATION OF GOOD PROFILE FUNCTIONS

In this section, we provide theoretical results to motivate our
choice of the profiles ψi or, equivalently, of their derivatives
σi = ψ′i. This will lead us to the implementation presented in
Section IV.

A. Existence of Minimizers and Stability of the Reconstruction

The convexity ofRθ is not sufficient to ensure that the solution
set in (2) is nonempty for a noninvertible forward matrixH. With
convex-ridge regularizers, this shortcoming can be addressed
under a mild condition on the functions ψi (Proposition 3.1).
The implications for our implementation are detailed in Sec-
tion IV-B.

Proposition 3.1: Let H ∈ Rm×d and ψi : R→ R, i =
1, . . . , p, be convex functions. If arg mint∈Rψi(t) �= ∅ for all
i = 1, . . . , p, then

∅ �= arg min
x∈Rd

1

2
‖Hx− y‖22 +

p∑
i=1

ψi

(
wT

i x
)
. (10)

Proof: Set Si = arg mint∈Rψi(t). Then, each ridge ψi(w
T
i ·)

partitions Rd into the three (possibly empty) convex polytopes
� Ωi

0 = {x ∈ Rd : wT
i x ∈ Si};

� Ωi
1 = {x ∈ Rd : wT

i x ≤ inf Si};
� Ωi

2 = {x ∈ Rd : wT
i x ≥ supSi}.

Based on these, we partition Rd into finitely many polytopes
of the form

⋂p
i=1 Ω

i
mi

, where mi ∈ {0, 1, 2}. The infimum of
the objective in (10) must be attained in at least one of these
polytopes, say, P =

⋂p
i=1 Ω

i
mi

.
Now, we pick a minimizing sequence (xk)k∈N ⊂ P . Let

M be the matrix whose rows are the rows of H and the wT
i

with mi �= 0. Due to the coercivity of ‖ · ‖22, we get that Hxk

remains bounded. As the ψi are convex, they are coercive on
the intervals (−∞, inf Si] and [supSi,+∞) and, hence, wT

i xk

also remains bounded. Therefore, the sequence (Mxk)k∈N is
bounded and we can drop to a convergent subsequence with
limit u ∈ ran(M). The associated set

Q = {x ∈ Rd : Mx = u} = {M†u}+ ker(M) (11)

is a closed polytope. It holds that

dist(xk, Q) = dist
(
M†Mxk + Pker(M)(xk), Q

)
≤ dist(M†Mxk,M

†u)→ 0 (12)

as k → +∞ and, thus, that dist(P,Q) = 0. The distance of the
closed polytopes P and Q is 0 if and only if P ∩Q �= ∅ [44,
Theorem 1]. Note that ψi(w

T
i ·) is constant on P if mi = 0.

Hence, any x ∈ P ∩Q is a minimizer of (10). �
The proof of Proposition 3.1 directly exploits the properties

of ridge functions. Whether it is possible to extend the result to
more complex or even generic convex regularizers is not known
to the authors. The assumption in Proposition 3.1 is rather weak
as neither the cost function nor the one-dimensional profiles ψi

need to be coercive. The existence of a solution for Problem (2)
is a key step towards the stability of the reconstruction map in
the measurement domain, which is given in Proposition 3.2.

Proposition 3.2: Let H ∈ Rm×d and ψi : R→ R, i =
1, . . . , p, be convex, continuously differentiable functions with
arg mint∈Rψi(t) �= ∅. For any y1,y2 ∈ Rm let

xq ∈ arg min
x∈Rd

1

2
‖Hx− yq‖22 +

p∑
i=1

ψi

(
wT

i x
)

(13)

with q = 1, 2 be the corresponding reconstructions. Then,

‖Hx1 −Hx2‖2 ≤ ‖y1 − y2‖2. (14)

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

784 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

Proof: Proposition 3.1 guarantees the existence of xq . Since
the objective in (10) is smooth, it holds that HT (Hxq − yq) +
∇R(xq) = 0. From this, we infer that

HTH(x1 − x2) + (∇R(x1)−∇R(x2)) = HT (y1 − y2).
(15)

Taking the inner product with (x1 − x2) on both sides gives

‖Hx1 −Hx2‖22 + (x1 − x2)
T (∇R(x1)−∇R(x2))

= (H(x1 − x2))
T (y1 − y2). (16)

To conclude, we use the fact that the gradient of a convex map
is monotone, i.e. (x1 − x2)

T (∇R(x1)−∇R(x2)) ≥ 0, and
apply the Cauchy-Schwarz inequality to estimate

(H(x1 − x2))
T (y1 − y2) ≤ ‖Hx1 −Hx2‖‖y1 − y2‖.

(17)
�

B. Expressivity of Profile Functions

The gradient-step NN TRθ,λ,α introduced in (9) is the key
component of our training procedure. Here, we investigate its
expressivity depending on the choice of the activation functions
σi used to parametrize ∇Rθ.

Let C0,1
↑ (R) be the set of scalar Lipschitz-continuous and

increasing functions on R, and let LSm↑ (R) be the subset of
increasing linear splines with at most m knots. We also define

E(Rd) =
{
WTσ(W·) : W ∈ Rp×d, σi ∈ C0,1

↑ (R)
}

(18)

and, further, for any Ω ⊂ Rd,

E(Ω) = {
f |Ω : f ∈ E(Rd)

}
. (19)

In the following, we set ‖f‖C(Ω) := supx∈Ω ‖f(x)‖ and
‖f‖C1(Ω) := supx∈Ω ‖f(x)‖+ supx∈Ω ‖Jf (x)‖.

The popular ReLU activation function is Lipschitz-
continuous and increasing. Unfortunately, it comes with limited
expressivity, as shown in Proposition 3.3.

Proposition 3.3: Let Ω ⊂ Rd be compact with a nonempty
interior. Then, the set{

WT ReLU(W · −b) : W ∈ Rp×d,b ∈ Rp
}

(20)

is not dense with respect to ‖ · ‖C(Ω) in E(Ω).
Proof: Since Ω has a nonempty interior, there exists v ∈ Rd

with ‖v‖2 = 1, a ∈ R, and δ > 0 such that for lv : R→ Rd

with lv(t) = tv, it holds that lv((a− δ, a+ δ)) ⊂ Ω. Now, we
prove the statement by contradiction. If the set (20) is dense in
E(Ω), then the set{

(Wv)T ReLU(Wv · −b) : W ∈ Rp×d,b ∈ Rp
}

=

{
p∑

i=1

wiReLU(wi · −bi) : wi, bi ∈ R

}
(21)

is dense in E((a− δ, a+ δ)). Note that all functions f in (20)
can be rewritten in the form

f(x) =

p1∑
i=1

ReLU(wix− bi) +
p2∑
i=1

(−ReLU(−w̃ix− b̃i)),
(22)

where wi, w̃i ∈ R+, bi, b̃i ∈ R, and p1 + p2 = p. Every sum-
mand in this decomposition is an increasing function. For the

continuous and increasing function

g : t �→ ReLU(t− a+ δ/2)− ReLU(t− a− δ/2), (23)

the density implies that there exists f of the form (22) satis-
fying ‖g − f‖C((a−δ,a+δ)) ≤ δ/16. The fact that g(a+ δ/2) =
g(a+ δ) implies that (f(a+ δ)− f(a+ δ/2)) ≤ δ/8. In addi-
tion, it holds that

f(a+ δ)− f(a+ δ/2)

≥
p1∑
i=1

ReLU
(
wi(a+ δ)− bi

)− ReLU
(
wi(a+ δ/2)− bi

)

≥
∑

{i:bi≤wi(a+δ/2)}
wi(a+ δ − a− δ/2)

=
∑

{i:bi≤wi(a+δ/2)}
wiδ/2. (24)

Hence, we conclude that
∑
{i:bi≤wi(a+δ/2)} wi ≤ 1/4. Simi-

larly, we can show that
∑
{i:b̃i≥w̃i(δ/2−a)} w̃i ≤ 1/4. Using these

two estimates, we get that

7

8
δ = g(a+ δ/2)− g(a− δ/2)− 1

8
δ

≤ f(a+ δ/2)− f(a− δ/2)

≤
∑

{i:bi≤wi(a+δ/2)}
δwi +

∑
{i:b̃i≥w̃i(δ/2−a)}

δw̃i ≤ δ

2
, (25)

which yields a contradiction. Hence, the set (20) cannot be dense
in E(Ω). �

Remark 3.4: Any increasing linear spline s with one knot
is fully defined by the knot position t0 and the slope on its
two linear regions (s− and s+). This can be expressed as s =
uT ReLU(u(t− t0)) with u = (

√
s+,−√s−). Hence, among

one-knot spline activation functions, the ReLU already achieves
the maximal representational power for CRR-NNs. We infer that
increasing PReLU and Leaky-ReLU induce the same limitations
as the ReLU when plugged into CRR-NNs.

In contrast, with Proposition 3.5, the set E(Ω) can be approx-
imated using increasing linear-spline activation functions.

Proposition 3.5: Let Ω ⊂ Rd be compact and m ≥ 2. Then,
the set {

WTσ(W·) : W ∈ Rp×d, σi ∈ LSm↑ (R)
}

(26)

is dense with respect to ‖ · ‖C(Ω) in E(Ω).
Proof: First, we consider the case d = 1. By rescaling and

shifting, we can assume thatS ⊂ [0, 1]without loss of generality.
Let f ∈ C0,1

↑ ([0, 1]), and ϕn be the linear-spline interpolator of
f at locations 0, 1/2n, . . . , (1− 1/2n), 1. Since f is increasing
and ϕn is piecewise linear, ϕn is also increasing. Further, we
get that

‖f − ϕn‖C([0,1]) ≤ max
k∈{1,...,2n}

f(k/2n)− f((k − 1)/2n).

(27)
Continuous functions on compact sets are uniformly continuous,
which directly implies that ‖f − ϕn‖C([0,1]) → 0. Now, we
represent ϕn as a linear combination of increasing linear splines

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

GOUJON et al.: NEURAL-NETWORK-BASED CONVEX REGULARIZER FOR INVERSE PROBLEMS 785

with 2 knots

ϕn(x) = f(0) +
2n∑
k=1

ak,ng
(
2n · −(k − 1)

)
, (28)

where ak,n = (f(k/2n)− f((k − 1)/2n)) and g is given by

g(x) =

⎧⎪⎨
⎪⎩
0, x ≤ 0

x, 0 < x ≤ 1

1, otherwise.

(29)

Finally, (28) can be recast asϕn(x) = wT
nσn(xwn), where each

σn,i is an increasing linear spline with 2 knots and w ∈ R2n .
This concludes the proof for d = 1.

Now, we extend this result to any d ∈ N+. Let Φ : Rd → Rd

be given by x �→WTσ(Wx) with components σi ∈ C0↑ (R).

Let Si = {wT
i x : x ∈ Ω}, where wi ∈ Rd is the ith row of W.

Using the result for d = 1, eachσi can be approximated inC(Si)
by a sequence of functions (uT

n,iϕn(un,i·))n∈N , where ϕn has
componentsϕn,i ∈ LS2↑(R) andun,i are vectors with a size that
does not dependend on i. Further, the un,i can be chosen such
that the jth component is only nonzero for a single i. Let Un be
the matrix whose columns are un,i. Then, we directly have that

lim
n→∞ max

x∈{y∈Rd:yi∈Si}

∥∥UT
nϕn(Unx)− σ(x)

∥∥
2
= 0. (30)

Hence, the sequence of functions ((UnW)Tϕn(UnW·))n∈N

converges to Φ in C(Ω). This concludes the proof. �
In the end, Propositions 3.3 and 3.5 imply that using linear-

spline activation functions instead of the ReLU for theσi enables
us to approximate more convex regularizers Rθ.

Corollary 3.6: Let Ω ⊂ Rd be convex and compact with a
nonempty interior. Then, the regularizers of the form (4) with
Jacobians of the form (26) are dense in{

p∑
i=1

ψi(w
T
i x) : ψi ∈ C1,1(R) convex,wi ∈ Rd

}
(31)

with respect to ‖ · ‖C1(Ω). The density does not hold if we only
consider regularizers with Jacobians of the form (20).

Proof: LetR be in (31). Consequently, its Jacobian is inE(Ω).
Due to Proposition 3.3, the regularizers with Jacobians of the
form (20) cannot be dense with respect to‖ · ‖C1(Ω). Meanwhile,
by Proposition 3.5, we can choose x0 ∈ Ω and corresponding
regularizers Rn of the form (4) with JRn

∈ (26), ‖JRn
−

JR‖C(Ω) → 0 as n→∞, and Rn(x0) = R(x0). Now, the
mean-value theorem readily implies that ‖Rn −R‖C1(Ω) → 0
as n→∞. �

Motivated by these results, we propose to parameterize the
σi with learnable linear-spline activation functions. This results
in profiles ψi that are splines of degree 2, being piecewise
polynomials of degree 2 with continuous derivatives.

IV. IMPLEMENTATION

A. Training a Multi-Gradient-Step Denoiser

Let {xm}Mm=1 be a set of clean images and let {ym}Mm=1 =
{xm + nm}Mm=1 be their noisy versions, where nm is the noise
realisation. Given a loss function L, the natural procedure to

learn the parameters of Rθ based on (5) is to solve

θ∗t , λ
∗
t ∈ arg min

θ,λ

M∑
m=1

L(T t
Rθ,λ,α

(ym),xm
)

(32)

for the limiting case t =∞ and an admissible stepsize α. Here,
T t

Rθ,λ,α
denotes the t-fold composition of the gradient-step NN

given in (9). In principle, one can optimize the training problem
(32) with t =∞. This forms a bilevel optimization problem
that can be handled with implicit differentiation techniques [26],
[45], [46], [47]. However, it turns out that it is unnecessary to
fully compute the fixed-point T∞Rθ,λ,α

(ym) to learn Rθ in our
constrained setting. Instead, we approximate T∞Rθ,λ,α

(ym) in
a finite number of steps. This specifies the t-step denoiser NN
T t

Rθ,λ,α
, which is trained such that

T t
Rθ,λ,α

(ym) � xm (33)

for m = 1, . . . ,M . This corresponds to a partial minimization
of (5) with initial guess ym or, equivalently, as the unfolding
of the gradient-descent algorithm for t iterations with shared
parameters across iterations [48], [49]. For small t, this yields a
fast-to-evaluate denoiser. Since it is not necessarily a proximal
operator, its interpretability is, however, limited.

Once the gradient-step NN is trained, we can plug the corre-
spondingRθ into (5), and fully solve the optimization problem.
This yields an interpretable proximal denoiser. In practice, turn-
ing a t-step denoiser into a proximal one requires the adjustment
of λ and the addition of a scaling parameter, as described in Sec-
tion IV-D. Our numerical experiments in Section VI-A indicate
that the number of steps t used for training the multi-gradient-
step denoiser has little influence on the test performances of both
the t-step and proximal denoisers. Hence, training the model
within a few minutes is possible. Note that our method bears
some resemblance with the variational networks (VN) proposed
in [35], but there are some fundamental differences. While
the model used in [35] also involves a sum of convex ridges
with learnable profiles, these are parameterized by radial-basis
functions and only the last step of the gradient descent is included
in the forward pass. The authors of [35] observed that an increase
in t deters the denoising performances, which is not the case for
our architecture. More differences are outlined in Section IV-B.

B. Implementation of the Constraints

Our learning of the t-step denoiser is constrained as follows.
i) The activation functions σi must be increasing (convexity

constraint on ψi).
ii) The activation functions σi must take the value 0 some-

where (existence constraint).
iii) The stepsize in (9) should satisfy α ∈ (0, 2/(1 + λLθ))

(convergent gradient-descent).
Since the methods to enforce these constraints can have a

major impact on the final performance, they must be designed
carefully.

a) Monotonic Splines: Here, we address Constraints (i) and
(ii) simultaneously. Similar to [20], [50], we use learnable
linear splines σci : R→ R with (M + 1) uniform knots νm =
(m−M/2)Δ, m = 0, . . . ,M , where Δ is the spacing of the
knots. For simplicity, we assume that M is even. The learnable

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

786 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

parameter ci = (cim)Mm=0 ∈ RM+1 defines the valueσci(νm) =
cim of σci at the knots. To fully characterize σci , we extend it
by the constant value ci0 on (−∞, ν0] and ciM on [νM ,+∞).
This choice results in a linear extension for the corresponding
indefinite integrals that appear for the regularizer Rθ in (5).
Further details on the implementation of learnable linear splines
can be found in [50].

LetD ∈ RM×(M+1) be the one-dimensional finite-difference
matrix with (Dci)m = cim+1 − cim for m = 0, . . . , (M − 1).
As σci is piecewise-linear, it holds that

σci is increasing⇔ Dci ≥ 0. (34)

In order to optimize over {σc : Dc ≥ 0}, we reparameterize the
linear splines as σP ↑(ci), where

P ↑ = CD†ReLU(D ·) (35)

is a nonlinear projection operator onto the feasible set. There,D†

denotes the Moore-Penrose inverse of D and C = (IdM+1 −
1M+1e

T
M/2+1) shifts the output such that the (M/2 + 1)th

element is zero. In effect, this projection simply preserves the
nonnegative finite differences between entries in ci and sets the
negative ones to zero. As the associated profiles ψi are convex
and satisfy ψ′i(0) = σi(0) = 0, Proposition 3.1 guarantees the
existence of a solution for Problem (2).

The proposed parameterization σP ↑(ci) of the splines has the
advantage to use unconstrained trainable parameters ci. The gra-
dient of the objective in (32) with respect to ci directly takes into
account the constraint viaP ↑. This approach differs significantly
from the more standard projected gradient descent—as done
in [35] to learn convex profiles—where theci would be projected
onto {ci : Dci ≥ 0} after each gradient step. While the latter
routine is efficient for convex problems, we found it to perform
poorly for the non-convex problem (32). For an efficient forward
and backward pass with auto-differentiation,P ↑ is implemented
with the cumsum function instead of an explicit construction of
the matrix D†, and the computational overhead is very small.

b) Sparsity-Promoting Regularization: The use of learnable
activation functions can lead to overfitting and can weaken the
generalizability to arbitrary operators H. Hence, the training
procedure ought to promote simple linear splines. Here, it
is natural to promote the better-performing splines with the
fewest knots. This is achieved by penalizing the second-order
total variation ‖LP ↑(ci)‖1 of each spline σP ↑(ci), where L ∈
R(M−1)×(M+1) is the second-order finite-difference matrix. The
final training loss then reads

M∑
m=1

L(T t
Rθ,λ,α

(ym),xm
)
+ η

p∑
i=1

‖LP ↑(ci)‖1, (36)

where η ∈ R+ allows one to tune the strength of the regulariza-
tion. We refer to [51] for more theoretical insights into second-
order total-variation regularization and to [50] for experimental
evidence of its relevance for machine learning.

c) Convergent Gradient Steps: Constraint (iii) guarantees that
the t-fold composition of the gradient-step NN T t

Rθ,λ,α
com-

putes the actual minimizer of (5) for t→∞. Therefore, it should
be enforced in any sensible training method. In addition, it brings
stability to the training. To fully exploit the model capacity,

even for small t, we need a precise upper-bound for Lip(∇Rθ).
The estimate that we provide in Proposition 4.1 is sharper than
the classical bound derived from the sub-multiplicativity of
the Lipschitz constant for compositional models. It is easily
computable as well.

Proposition 4.1: Let Lθ denote the Lipschitz constant of
∇Rθ(x) = WTσ(Wx) with W ∈ Rp×d and σi ∈ C0,1↑ (R).
With the notationΣ∞ = diag(‖σ′1‖∞, . . . , ‖σ′p‖∞) it holds that

Lθ ≤ ‖WTΣ∞W‖ = ‖
√

Σ∞W‖2, (37)

which is tighter than the naive bound

Lθ ≤ Lσ‖W‖2. (38)

Proof: The bound (38) is a standard result for compositional
models. Next, we note that the Hessian of Rθ reads

HRθ
(x) = WTΣ(Wx)W, (39)

where Σ(z) = diag(σ′1(z1), . . . , σ
′
p(zp)). Further, it holds that

Lθ ≤ supx∈Rd ‖HRθ
(x)‖. Since the functions σi are increas-

ing, we have for every x ∈ Rp that Σ∞ −Σ(Wx) � 0 and,
consequently,

WT
(
Σ∞ −Σ(Wx)

)
W � 0. (40)

Using the Courant-Fischer theorem, we now infer that the
largest eigenvalue of WTΣ∞W is greater than that of
WTΣ(Wx)W. �

The bounds (37) and (38)are in agreement when the acti-
vation functions are identical, which is typically not the case
in our framework. For the 14 NNs trained in Section VI, we
found that the improved bound (37) was on average 3.2 times
smaller than (38). As (37) depends on the parameters of the
model, it is critical to embed the computation into the forward
pass. Otherwise, the training gets unstable. This is done by
first estimating the normalized eigenvector u corresponding to
the largest eigenvalue of WTΣ∞W via the power-iteration
method in a non-differentiable way, for instance under the
torch.no_grad() context-manager. Then, we directly plug
the estimate Lθ � ‖WTΣ∞Wu‖ in our model and hence em-
bed it in the forward pass. This approach is inspired by the
spectral-normalization technique proposed in [52], which is a
popular and efficient way to enforce Lipschitz constraints on
fully connected linear layers. Note that a similar simplification
is also proposed and studied in the context of deep equilibrium
models [53]. In practice, the estimate u is stored so that it can
be used as a warm start for the next computation of Lθ.

C. From Gradients to Potentials

To recover the regularizer R from its gradient ∇R, one has
to determine the profiles ψi, which satisfy ψ′i = σP ↑(ci). Hence,
each ψi is a piecewise polynomial of degree 2 with continuous
derivatives, i.e. a spline of degree two. These can be expressed
as a weighted sum of shifts of the rescaled causal B-spline of
degree 2 [54], more precisely as

ψi =
∑
k∈Z

dikβ
2
+

(· − k
Δ

)
. (41)

To determine the coefficients (dik)k∈Z, we use the fact that
(β2

+)
′(k) = (δ1,k − δ2,k), where δ is the Kronecker delta,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

GOUJON et al.: NEURAL-NETWORK-BASED CONVEX REGULARIZER FOR INVERSE PROBLEMS 787

Algorithm 1: FISTA [58] to solve (42).

Input: x0 ∈ Rd, y ∈ Rm, λ ≥ 0, μ > 0
Set k = 0, z0 = x0, α = 1/(μλLip(∇R) + ‖H‖2),
t0 = 1

while tolerance not reached do
xk+1 = (zk − α(HT (Hzk − y) + λ∇R(μzk)))+
tk+1 = (1 +

√
4t2k + 1)/2

zk+1 = xk+1 +
tk−1
tk+1

(xk+1 − xk)

k ← k + 1
end while
Output: xk

see [54] for details. Hence, we obtain that dik − dik−1 =
(P ↑(ci))k, which defines (dik)k∈Z up to a constant. This con-
stant can be set arbitrarily as it does not affect ∇R. Due to the
finite support of β2

+, one can efficiently evaluate ψi and then R.

D. Boosting the Universality of the Regularizer

The learntRθ depends on the training task (denoising) and on
the noise level. To solve a generic inverse problem, in addition
to the regularization strength λ, we propose to incorporate a
tunable scaling parameter μ ∈ R+ and to compute

arg min
x∈Rd

1

2
‖Hx− y‖22 + λ/μRθ(μx). (42)

While the scaling parameter is irrelevant for homogeneous reg-
ularizers such as the Tikhonov and TV, it is known to boost
the performance within the PnP framework when applied to the
input of the denoiser [55]. During the training of t-step denoisers,
we also learn a scaling parameter μ by letting the gradient step
NN (7) become

TRθ,λ,μ,α(x) = x− α((x− y) + λ∇Rθ(μx)
)
, (43)

with now α < 2/(1 + λμLip(∇Rθ)).

E. Reconstruction Algorithm

The objective in (42) is smooth with Lipschitz-continuous
gradients. Hence, a reconstruction can be computed through
gradient-based methods. We found the fast iterative shrinkage-
thresholding algorithm (FISTA, Algorithm 1) to be well-suited
to the problem while it also allows us to enforce the positivity
of the reconstruction. Other efficient algorithms for CRR-NNs
include the adaptive gradient descent (AdGD) [56] and its prox-
imal extension [57]; both benefit from a stepsize based on an
estimate of the local Lipschitz constant of ∇R instead of a more
conservative global one.

V. CONNECTIONS TO DEEP-LEARNING APPROACHES

Our proposed CRR-NNs have a single nonlinear layer, which
is rather unusual in an the era of deep learning. To further explore
their theoretical properties, we briefly discuss two successful
deep-learning methods, namely, the PnP and the explicit design

TABLE I
PROPERTIES OF DIFFERENT REGULARIZATION FRAMEWORKS

of convex regularizers, and state their most stable and inter-
pretable versions. This will clarify the notions of strict con-
vergence, interpretability, and universality. All the established
comparisons are synthesized in Table I.

A. Plug-and-Play and Averaged Denoisers

a) Convergent Plug-and-Play: The training procedure pro-
posed for CRR-NNs leads to a convex regularizer Rθ , whose
proximal operator (5) is a good denoiser. Conversely, the prox-
imal operator can be replaced by a powerful denoiser D in
proximal algorithms, which is referred to as PnP. In the PnP-FBS
algorithm derived from (2) [58], [59], the reconstruction is
carried out iteratively via

xk+1 = D
(
xk − αHT (Hxk − y)

)
, (44)

where α is the stepsize and D : Rd → Rd is a generic denoiser.
A standard set of sufficient conditions2 to guarantee convergence
of the iterations (44) is that

i) D is averaged, namely D = βN + (1− β)Id where
β ∈ (0, 1) and N : Rn → Rn is a nonexpansive map-
ping;

ii) α ∈ [0, 2/‖H‖2);
iii) the update operator in (44) has a fixed point.
In general, Condition (i) is not sufficient to ensure that D is

the proximal operator of some convex regularizer R. Hence, its
interpretability is still limited. Further, Condition (ii) implies that
x �→ (x− αHT (Hx− y)) is averaged. Hence, as averagedness
is preserved through composition, the iterates are updated by the
application of an averaged operator (see [22] for details). With
Condition (iii), the convergence of the iterations (44) follows
from Opial’s convergence theorem. Beyond convergence, it is
known that averaged denoisers with β ≤ 1/2 yield a stable
reconstruction map in the measurement domain [60], in the same
sense as given in Proposition 3.2 for CRR-NNs.

The nonexpansiveness of D is also commonly assumed for
proving the convergence of other PnP schemes. This includes,
for instance, gradient-based PnP [47]. There, the gradient∇R of
the regularizer used in reconstruction algorithms is replaced with
a learned monotone operator F = I−D. The operator D can
be interpreted as a denoiser and is assumed to be nonexpansive
to prove convergence.

b) Constraint vs Performance: As discussed in [17], [33], the
performance of the denoiser D is in direct competition with its
averagedness. A simple illustration of this issue is provided in

2Here, H can be noninvertible; otherwise, weaker conditions exist [19].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

788 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

Fig. 1. Distance between the two noisy images (x1 + ε1) and (x2 + ε2) can
be smaller than that between their clean versions x1 and x2. This limits the
performance of a nonexpansive denoiser D since ‖D(x1 + ε1)−D(x2 +
ε2)‖ ≤ ‖x1 + ε1 − (x2 + ε2)‖ < ‖x1 − x2‖ in the scenario depicted.

Fig. 1. Unsurprisingly, Condition (i) is not met by any learnt
state-of-the-art denoiser, and it is usually also relaxed in the PnP
literature.

For instance, it is common to use non-1-Lipschitz learning
modules, such as batch normalization [19], or to only constrain
the residual (Id−D) to be nonexpansive, which enables one
to train a nonexpansive NN in a residual way [19], [22], [61],
with the caveat that Lip(D) can be as large as 2. Another recent
approach consists of penalizing during training either the norm
of the Jacobian of D at a finite set of locations [33], [37] or
of another local estimate of the Lipschitz constant [47], [62].
Interestingly, even slightly relaxed frameworks usually yield
significant improvements in the reconstruction quality. However,
they do not provide convergence guarantees for ill-posed inverse
problems, which is problematic for sensitive applications such
as biomedical imaging.

c) Averaged Deep NNs: To leverage the success of deep
learning, N is typically chosen as a deep CNN of the form3

N = CK ◦ σ ◦ · · · ◦C2 ◦ σ ◦C1, (45)

where Ck are learnable convolutional layers and σ is the ac-
tivation function [19], [20], [52]. To meet Condition (i), N
must be nonexpansive, which one usually achieves by constrain-
ing Ck and σ to be nonexpansive. This is predicated on the
sub-multiplicativity of the Lipschitz constant with respect to
composition; as in Lip(f ◦ g) ≤ Lip(f)Lip(g). Unfortunately,
this bound is not sharp and may grossly overestimate Lip(f ◦ g).
For deep models, this overestimation aggravates since the bound
is used sequentially. Therefore, for averaged NNs, the benefit of
depth is unclear because the gain of expressivity brought by
the many layers is reduced by a potentially very pessimistic
Lipschitz-constant estimate. Put differently, these CNNs can
easily learn the zero function while they struggle to generate
mappings with a Lipschitz constant close to one. For the same
reason, the learning process is also prone to vanishing gradients
in this constrained setting. Under Lipschitz constraints, the
zero-gradient region of the popular ReLU activation function
causes provable limitations [63], [64], [65]. Some of these can
be resolved by the use of PReLU activation functions instead.

In this work, CRR-NNs are compared against two variants of
PnP.
� PnP-DnCNN corresponds to the popular implementation

given in [19]. The denoiser is a DnCNN with 1-Lipschitz

3The benefit of standard skip connections combined with the preservation of
the nonexpansiveness of the NN is unclear.

linear layers (the constraints are therefore enforced on the
residual map only) and unconstrained batch-normalization
modules. Hence this method has no convergence and sta-
bility guarantees, especially for ill-posed inverse problems.

� PnP-βCNN corresponds to PnP equipped with a provably
averaged denoiser. This method comes with similar guar-
antees as CRR-NNs but less interpretability. It is included
to convey the message that the standard way of enforcing
Lipschitz constraints affects expressivity as reported for in-
stance in [66], and even makes it hard to improve upon TV.
With that in mind, CRR-NNs provide a way to overcome
this limitation.

d) Construction of Averaged Denoisers from CRR-NNs: The
training of CRR-NNs offers two ways to build averaged denois-
ers. Since proximal operators are half-averaged, we directly get
that the proximal denoiser (5) is an averaged operator. For the
t-step denoiser, the following holds.

Proposition 5.1: The t-step denoiser (33) is averaged for α ∈
[0, 2/(2 + λLθ)] with Lθ = Lip(∇Rθ).

Proof: The t-step denoiser is built from the gradient-step
operator TRθ,λ,α. Here, we use the more explicit notation

T (x,y) = x− α((x− y) + λ∇Rθ(x)). (46)

This makes explicit the dependence on y and, for simplicity,
the dependence on Rθ , λ, and α are omitted. It is known
that T is averaged with respect to x for α ∈ (0, 2/(1 + λLθ)).
This ensures convergence of gradient descent, but it does not
characterize the denoiser itself. The t-step denoiser depends
on the initial value x0 = y and is determined by the recur-
rence relation xk+1 = T (xk,y). For the map Lk : y �→ xk, it
holds that Lk+1 = U ◦Lk + αId, where U = Id− α(Id+
λ∇Rθ). The Jacobian of U reads JU = I− α(I+ λHRθ

) and
satisfies that ((1− α)− αλLθ)I � JU � (1− α)I. From this,
we infer that

Lip(U) ≤ max
(
αλLθ − (1− α), 1− α). (47)

Since α ≤ 2/(2 + λLθ), we then get that Lip(U) ≤ (1− α).
Hence, Lip(U ◦Lk) ≤ (1− α)Lip(Lk). Since L0 = Id is av-
eraged, the same holds by induction for all the t-step denoisers
Lt. �

Note that for α ∈ (2/(2 + λLθ), 2/(1 + λLθ)), the 1-step
denoiser is also averaged but, for 1 < t < +∞, it remains an
open question. The structure of t-step and proximal denoisers
differs radically from averaged CNNs as in (45). For instance,
the t-step denoiser uses the noisy input y in each layer. Re-
markably, these skip connections preserve the averagedness of
the mapping. While constrained deep CNNs struggle to learn
mappings that are not too contractive, both proximal and t-step
denoisers can easily reproduce the identity by choosingRθ = 0.
This seems key to account for the fact that the proposed denoisers
outperform averaged deep NNs, while they can be trained two
orders of magnitude faster, see Section VI.

B. Deep Convex Regularizers

Another approach to leverage deep-learning-based priors with
stability and convergence guarantees consists of learning a deep
convex regularizer R. These priors are typically parameterized

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

GOUJON et al.: NEURAL-NETWORK-BASED CONVEX REGULARIZER FOR INVERSE PROBLEMS 789

with an ICNN, which is a NN with increasing and convex
activation functions along with positive weights for some linear
layers [40]. There exist various strategies to train the ICNN.

The adversarial convex regularizer (ACR) framework [38],
[39] relies on the adversarial training proposed in [28]. The
regularizer is learnt by minimizing its value on clean images
and maximizing its value on unregularized reconstructions. This
allows for learning non-smooth R and also avoids bilevel opti-
mization. A key difference with CRR-NNs and PnP methods is
that ACR is modality-depend (it is not universal). In addition,
with R being non-smooth, it is challenging to exactly minimize
the cost function, but the authors of [38], [39] did not find any
practical issues in that matter using gradient-based solvers. To
boost the performance of R, they also added a sparsifying filter
bank to the ICNN, namely, a convex term of the form ‖Ux‖1,
where the linear operator U is made of convolutions learnt
conjointly with the ICNN.

In [32], the regularizer is trained so that its gradient step is
a good blind Gaussian denoiser. There, the authors use ELU
activations in the ICNN4 to obtain a smooth R.

The aforementioned ICNN-based frameworks [32], [38], [39]
have major differences with CRR-NNs: (i) they typically require
orders of magnitude more parameters; (ii) the computation of
∇R, used to solve inverse problems, requires one to back-
propagate through the deep CNN which is time-consuming;
(iii) the role of each parameter is not interpretable because of
the depth of the model (see Section VI-D). As we shall see,
CRR-NNs are much faster to train and tend to perform better
(see Section VI).

VI. EXPERIMENTS

A. Training of CRR-NNs

The CRR-NNs are trained on a Gaussian-denoising task
with noise levels σ ∈ {5/255, 25/255}. The same procedure as
in [19], [67] is used to form 238,400 patches of size (40× 40)
from 400 images of the BSD500 dataset [68]. For validation,
the same 12 images as in [19], [67] are used. The weights W
inRθ are parameterized as the composition of two zero-padded
convolutions with kernels of size (7× 7) and with 8 and 32
output channels, respectively. This composition of two linear
components, although not more expressive theoretically, facili-
tates the patch-based training of CRR-NNs. For inference, the
convolutional layer can then be transformed back to a single
convolution. Similar to [26], the kernels of the convolutions
are constrained to have zero mean. Lastly, the linear splines
have M + 1 = 21 equally distant knots with Δ = 0.01, and the
sparsifying regularization parameter is η = 2× 10−3(255σ).
We initially set ci = 0.

The CRR-NNs are trained for 10 epochs with t ∈
{1, 2, 5, 10, 20, 30, 50} gradient steps. For this purpose, the �1
loss is used forL along with the Adam optimizer with its default
parameters (β1, β2) = (0.9, 0.999), and the batch size is set to
128. The learning rates are decayed with rate 0.75 at each epoch

4The authors also explore non-convex regularization but they offer no guar-
antees on computing the global minimum.

TABLE II
CONVEX MODELS AND AVERAGED DENOISERS TESTED ON BSD68

and initially set to 0.05 for the parameters λ and μ, to 1× 10−3

for W, and to 5× 10−5 for ci.
Recall that for a given t, the training yields two denoisers.
� t-Step Denoiser: This corresponds to T t

Rθ,λ,α
and is the

denoiser optimized during training. It is natural to compare
it to properly constrained PnP methods based on averaged
deep denoisers as in [20], [36], which in general also do
not correspond to minimizing an energy.

� Proximal Denoiser: The learnt regularizer Rθ is plugged
into (42) with H = I, and the solution is computed using
Algorithm 1 with small tolerance (1× 10−6 for the relative
change of norm between consecutive iterates). The param-
eters λ and μ are tuned on the validation dataset with the
coarse-to-fine method given in Appendix A. This impor-
tant step enables us to compensate for the gap between
(i) gradient-step training and full minimization, and (ii)
training and testing noise levels, if different.

B. Denoising: Comparison With Other Methods

Although not the final goal, image denoising yields valuable
insights into the training of CRR-NNs. It also enables us to
compare CRR-NNs to the related methods given in Table II on
the standard BSD68 test set.

Now, we briefly give the implementation details of the various
frameworks. CRR-NN-ReLU models are trained in the same
way as CRR-NNs, but with ReLU activation functions (with
learnable biases) instead of linear splines. To emulate [32],
we train a DnICNN with the same architecture (ELU activa-
tions, 6 layers, and 128 channels per layer, 745344 parame-
ters) as a gradient step denoiser for 200 epochs, separately for
σ ∈ {5/255, 25/255}, and refer to it as GS-DnICNN. An av-
eraged deep CNN denoiser βCNNσ = βN + (1− β)Id, with
β = 0.5, is trained on the same denoising task as the CRR-NNs
with σ ∈ {5/255, 25/255}. Here, N is chosen as a CNN with 9
layers, 64 channels, and PReLU activation functions, resulting in
260225 learnable parameters. The model is trained for 20 epochs
with a batch size of 4 and a learning rate of 4 · 10−5. To guarantee
thatN is nonexpansive, the linear layers are spectral-normalized
after each gradient step with the real-SN method [19], and the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

790 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

Fig. 2. Test denoising performance of CRR-NNs for noise level σ = 5/255
and σ = 25/255 versus the number of gradient steps used for training, the
denoiser type (t-step vs proximal), and the noise level used for training.

activations are constrained to be 1-Lipschitz. This CNN outper-
forms the averaged CNNs in [20]. Hence, it serves as a baseline
for averaged deep CNNs. The other reported frameworks do
not provide public implementations. Therefore, the numbers are
taken from the corresponding papers. Lastly, the TV denoising
is performed with the algorithm proposed in [69]. The results
for all models are presented in Table II and Fig. 2.
� t-Step/Averaged Denoisers: The CRR-NN-ReLU models

perform poorly and confirms that ReLU is not well-suited
to our setting. This limitation of ReLU was also observed
experimentally in [20] in the context of 1-Lipschitz denois-
ers. Our models improve over the gradient-step denoisers
parameterized with ICNNs, even though the latter has many
more parameters. The CRR-NN implementation improves
over the special instance VN1,t of variational-network
denoisers proposed in [35], which also partially minimizes
a convex cost. With a convex model similar to CRR-NNs
(see Section IV for a discussion), it is shown that an
increase in t decreases the performance (reported as VN1,t

24

in [35, Fig. 5]). The model VN1,t cannot compete with the
proximal denoiser trained with bilevel optimization in [26].
By contrast, for σ = 25/255 we obtain an improvement
over VN1,t of 0.2 dB for t = 1, and more than 0.6 dB as t
increases. Note that, in [35], the layers of the t-step VN1,t

denoiser are not guaranteed to be averaged. Our models
also outperform the averaged βCNNσ (+0.5 dB for σ = 5,
+0.4 dB for σ = 25/255), and the two averaged denoisers
DISTA and DADMM [36] (+0.4/+0.3 dB for σ = 5/255).
In their simplest form, the latter are built with fixed lin-
ear layers (patch-based wavelet transforms) and learnable
soft-thresholding activation functions.

� Proximal Denoisers: Our models yield slight improve-
ments over the higher-order Markov random field (MRF)
model in the pioneering work [26] (28.04 dB vs 28.11 dB
for σ = 25/255). With a similar architecture—but with

fixed smoothed absolute value ψi—the latter approach
involves a computationally intensive bilevel optimization
with second-order solvers. Here, we show that a few
gradient steps for training already suffice to be competitive.
This leads to ultrafast training and bridges the gap between
higher-order MRF models and VN denoisers. Lastly, we re-
mark that our proximal denoisers are robust to a mismatch
in the training and testing noise levels.

C. Biomedical Image Reconstruction

The six CRR-NNs trained on denoising with t ∈ {1, 10, 50}
and σ ∈ {5/255, 25/255} are now used to solve the following
two ill-posed inverse problems.

a) MRI: The ground-truth images for our MRI experiments
are proton-density weighted knee MR images from the fastMRI
dataset [70] with fat suppression (PDFS) and without fat suppre-
sion (PD). They are generated from the fully-sampled k-space
data. For each of the two categories (PDFS and PD), we create
validation and test sets consisting of 10 and 50 images, respec-
tively, where every image is normalized to have a maximum
value of one. To gauge the performance of CRR-NNs in various
regimes, we experiment with single-coil and multi-coil setups
with several acceleration factors. In the single-coil setup, we
simulate the measurements by masking the Fourier transform
of the ground-truth image. In the multi-coil case, we consider
15 coils, and the measurements are simulated by subsampling
the Fourier transforms of the multiplication of the ground-truth
images with 15 complex-valued sensitivity maps (these were
estimated from the raw k-space data using the ESPIRiT algo-
rithm [71] available in the BART toolbox [72]). For both cases,
the subsampling in the Fourier domain is performed with a
Cartesian mask that is specified by two parameters: the accelera-
tion Macc ∈ {2, 4, 8} and the center fraction Mcf = 0.32/Macc.
A fraction of Mcf columns in the center of the k-space (low
frequencies) is kept, while columns in the other region of the
k-space are uniformly sampled so that the expected proportion
of selected columns is 1/Macc. In addition, Gaussian noise with
standard deviation σn = 2× 10−3 is added to the real and imag-
inary parts of the measurements. The PSNR and SSIM values
for each method are computed on the (320× 320) centered ROI.

b) CT: To provide a fair comparison with the ACR method,
we now target the CT experiment proposed in [38]. The data
consist of human abdominal CT scans for 10 patients provided
by Mayo Clinic for the low-dose CT Grand Challenge [73]. The
validation set consists of 6 images taken uniformly from the
first patient of the training set from [38]. We use the same test
set as [38], more precisely, 128 slices with size (512× 512)
that correspond to one patient. The projections of the data are
simulated using a parallel-beam acquisition geometry with 200
angles and 400 detectors. Lastly, Gaussian noise with standard
deviation σn ∈ {0.5, 1, 2} is added to the measurements.

c) Reconstruction Frameworks: A reconstruction with
isotropic TV regularization is computed with FISTA [58], in
which proxR is computed as in [74] to enforce positivity. We
also consider reconstructions obtained with the PnP method with
(i) provably averaged denoisers βCNNσ (σ = 5, 25); and (ii)

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

GOUJON et al.: NEURAL-NETWORK-BASED CONVEX REGULARIZER FOR INVERSE PROBLEMS 791

Fig. 3. Reconstructed images for the 4-fold accelerated multi-coil MRI experiment. The reported metrics are PSNR and SSIM. The last row shows the squared
differences between the reconstructions and the ground-truth image.

the popular pertained DnCNNs [19] (σ = 5, 15, 40). The latter
are residual denoisers with 1-Lipschitz convolutional layers
and batch normalization modules, which yield a non-averaged
denoiser with no convergence guarantees for ill-posed problems.
To adapt the strength of the denoisers, in addition to the training
noise level, we use relaxed denoisers Dγ = γD + (1− γ)Id
for all denoisers D, where γ ∈ (0, 1] is tuned along with the
stepsize α given in (44). We only report the performance of
the best-performing setting. The ACR framework [38], [39]
yields a convex regularizer for (2) that is specifically designed
to the described CT problem. To be consistent with [38], [39],
we apply 400 iterations of gradient descent, even though the
objective is nonsmooth, and tune the stepsize and λ. The results
are consistent with those reported in [38], [39].

To assess the dependence of CRR-NNs on the image domain,
we also train models for Gaussian denoising of CT and MRI
images (t = 10, σ ∈ {5/255, 25/255}). The training procedure
is the same as for BSD image denoising, but a larger kernel size
of 11 was required to saturate the performance. The learnt filters
and activations are included in the Supplementary Material.

The hyperparameters for all these methods are tuned to
maximize the average PSNR over the validation set with the
coarse-to-fine method given in Appendix A.

d) Results and Discussion: For each modality, a reconstruction
example is given for each framework in Figs. 3 and 4, and
additional illustrations are given in the Supplementary Material.
The PSNR and SSIM values for the test set given in Tables
III, V, and VII attest that CRR-NNs consistently outperform
the other frameworks with comparable guarantees. It can be
seen from Tables IV, VI, and VIII that the improvements hold
for all setups explored to trained CRR-NNs. The training of
CRR-NNs on the target image domain allows for an additional
small performance boost. The performances of CRR-NNs are
close to the ones of PnP-DnCNN, which has however no guar-
antees and little interpretability. PnP-DnCNN typically yields

TABLE III
SINGLE-COIL MRI

TABLE IV
CRR-NN: SINGLE-COIL MRI VERSUS TRAINING SETUP

TABLE V
MULTI-COIL MRI

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

792 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

Fig. 4. Reconstructed images for the CT experiment with σn = 0.5. The reported metrics are PSNR and SSIM. The last row shows the squared differences
between the reconstructions and the ground-truth image.

TABLE VI
CRR-NN: MULTI-COIL MRI VERSUS TRAINING SETUP

TABLE VII
CT

TABLE VIII
CRR-NN: CT VERSUS TRAINING SETUP

Fig. 5. Impulse response of the filters and activation functions of the CRR-NN
trained with σ = 5. The crosses indicate the knots of the splines. For the 8
missing filters, the associated activation functions were numerically identically
zero.

artifact-free reconstructions but is more prone to over-smoothing
(Fig. 3) or even to exaggeration of some details in rare cases (see
Figures in the Supplementary Material). Lastly, observe that the
properly constrained PnP-βCNN is not always competitive with
TV. This confirms the difficulty of training provably 1-Lipchitz
CNN, which is also reported for MRI image reconstruction
in [66]. Convergence curves for CRR-NNs can be found in the
Supplementary Material.

D. Under the Hood of the Learnt Regularizers

The filters and activation functions for learnt CRR-NNs with
σ ∈ {5/255, 25/255} and t = 5 are shown in Figs. 5 and 6.

1) Filters: The impulse responses of the filters vary in orien-
tation and frequency response. This indicates that the CRR-NN
decouples the frequency components of patches. The learnt
kernels typically come in groups that are reminiscent of 2D

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

GOUJON et al.: NEURAL-NETWORK-BASED CONVEX REGULARIZER FOR INVERSE PROBLEMS 793

Fig. 6. Impulse response of the filters and activation functions of the CRR-NN
trained with σ = 25/255.

steerable filters [75], [76]. Interestingly, their support is wider
when the denoising task is carried out for σ = 25/255 than for
σ = 5/255.

2) Activation Functions: The linear splines converge to sim-
ple functions throughout the training. The regularization (36)
leads to even simpler ones without a compromise in perfor-
mance. Most of them end up with 3 linear regions, with their
shape being reminiscent of the clipping function Clip(x) =
sign(x)min(|x|, 1). The learnt regularizer is closely related to
�1-norm based regularization as many of the learnt convex pro-
files ψi resemble some smoothed version of the absolute-value
function.

3) Pruning CRR-NNs: Since the NN has a simple architec-
ture, it can be efficiently pruned before inference by removal of
the filters associated with almost-vanishing activation functions.
This yields models with typically between 3000 and 5000 pa-
rameters and offers a clear advantage over deep models, which
can usually not be pruned efficiently.

4) A Signal-Processing Interpretation: Given that the
gradient-step operator x �→ (x− αWTσ(Wx)) of the learnt
regularizer is expected to remove some noise from x, the 1-
hidden-layer CNN WTσ(W·) is expected to extract noise. The
response of x to the learnt filters forms the high-dimensional
representation Wx of x. The clipping function preserves the
small responses to the filters, while it cuts the large ones. Hence,
the estimated noise WTσ(Wx) is reconstructed by essentially
removing the components of x that exhibit a significant correla-
tion with the kernels of the filters. All in all, the learning of the
activation functions leads closely to wavelet- or framelet-like
denoising. Indeed, the proximal operator of x �→ ‖DWT(x)‖1
is given by

prox‖DWT(·)‖1(x) = IDWT(soft(DWT(x)))

= x− IDWT(clip(DWT(x))), (48)

where soft(·) is the soft-thresholding function, DWT and IDWT
are the orthogonal discrete wavelet transform and its inverse,
respectively. The equivalent formulation with the clipping func-
tion follows from IDWT(DWT(x)) = x and soft(x) = (x−

Fig. 7. Solutions of the one-dimensional problem (49) for increasing values
of μ. The plotted functions are supported in [25, 175] and minimize the learnt
regularizer given a unit sum of their values.

clip(x)). The soft-thresholding function is used for direct de-
noising while the clipping function is tailored to residual de-
noising. Note that the given analogy is, however, limited since
the learnt filters are not orthonormal (WTW �= I).

5) Role of the Scaling Factor: To clarify the role of the
scaling factor μ introduced in (42), we investigate a toy problem
on the space of one-dimensional signals. Since these can be
interpreted as images varying along a single direction, a signal
regularizer R1 can be obtained from Rθ by replacing the 2D
convolutional filters with 1D convolutional filters whose kernels
are the ones of Rθ summed along a direction. Next, we seek a
compactly supported signal with fixed mass that has minimum
regularization cost, as in

ĉ = arg min
c∈Rd

R1(μc) s.t.

{
1T c = 1,

ck = 0, ∀k �∈ [k1, k2].
(49)

The solutions for various values of μ are shown in Fig. 7. Small
values ofμpromote smooth functions in a way reminiscent of the
Tikhonov regularizer applied to finite differences. Large values
of μ promote functions with constant portions and, conjointly,
allows for sharp jumps, which is reminiscent of the TV reg-
ularizer. This reasoning is in agreement with the shape of the
activation functions shown in Figs. 5 and 6. Indeed, an increase
in μ allows one to enlarge the region where the regularizer has
constant gradients, while a decrease of μ allows one to enlarge
the region where the regularizer has linear gradients.

VII. CONCLUSION

We have proposed a framework to learn universal convex-
ridge regularizers with adaptive profiles. When applied to inverse
problems, it is competitive with those recent deep-learning
approaches that also prioritize the reliability of the method.
Not only CRR-NNs are faster to train, but they also offer
improvements in image quality. The findings raise the question
of whether shallow models such as CRR-NNs, despite their
small number of parameters, already offer optimal performance
among methods that rely either on a learnable convex regularizer
or on the PnP framework with a provably averaged denoiser. In
the future, CRR-NNs could be fine-tuned on specific modalities
via the use of H for training. This could further improve the
reconstruction quality, as observed when shifting from PnP to
deep unrolled algorithms while maintaining the guarantees.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

794 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

APPENDIX

A. Hyperparameter Tuning

The parameters λ and μ used in (42) can be tuned with a
coarse-to-fine approach. Given the performance on the 3× 3
grid {(γλ)

−1λ, λ, γλλ} × {(γμ)−1μ, μ, γμμ}, we identify the
best values λ∗ and μ∗ on this subset and move on to the next
iteration as follows:
� if λ∗ = λ, we refine the search grid by reducingγμ to (γμ)ζ ,
ζ < 1;

� otherwise, λ is updated to λ∗.
A similar update is performed for the scaling parameter. The

search is terminated when both γλ and γμ are smaller than
a threshold, typically, 1.01. In practice, we initialized γλ =
γμ = 4 and set ζ = 0.5. The method usually requires between
50 and 100 evaluations on tuples (λ, μ) on the validation set
before it terminates. The proposed approach is predicated on the
observation that the optimization landscape in the (λ, μ) domain
is typically well-behaved. The same principles apply to tune a
single hyperparameter, as found in the TV and the PnP-βCNN
methods. Let us remark that the performances were found to
change only slowly with the scaling parameter μ for the MRI
and CT experiments. Hence, in practice, it is enough to tune μ
very coarsely.

ACKNOWLEDGMENT

The authors are thankful to Dimitris Perdios for helpful
discussions.

REFERENCES

[1] A. Ribes and F. Schmitt, “Linear inverse problems in imaging,” IEEE
Signal Process. Mag., vol. 25, no. 4, pp. 84–99, Jul. 2008.

[2] M. T. McCann and M. Unser, “Biomedical image reconstruction: From
the foundations to deep neural networks,” Found. Trends Signal Process.,
vol. 13, no. 3, pp. 283–359, 2019.

[3] A. N. Tikhonov, “Solution of incorrectly formulated problems and the
regularization method,” Sov. Math., vol. 4, pp. 1035–1038, 1963.

[4] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1/4,
pp. 259–268, 1992.

[5] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[6] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[7] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, “Solving inverse
problems using data-driven models,” Acta Numerica, vol. 28, pp. 1–174,
2019.

[8] G. Ongie, A. Jalal, C. A. Metzle, R. G. Baraniuk, A. G. Dimakis, and
R. Willett, “Deep learning techniques for inverse problems in imag-
ing,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 39–56, May
2020.

[9] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen, “On in-
stabilities of deep learning in image reconstruction and the potential
costs of AI,” Proc. Nat. Acad. Sci., vol. 117, no. 48, pp. 30088–300 95,
2020.

[10] N. M. Gottschling, V. Antun, B. Adcock, and A. C. Hansen, “The trou-
blesome Kernel: Why deep learning for inverse problems is typically
unstable,” 2020, arXiv:2001.01258.

[11] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional
neural network for inverse problems in imaging,” IEEE Trans. Image
Process., vol. 26, no. 9, pp. 4509–4522, Sep. 2017.

[12] H. Chen et al., “Low-dose CT via convolutional neural network,” Biomed.
Opt. Exp., vol. 8, no. 2, pp. 679–694, 2017.

[13] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image
reconstruction by domain-transform manifold learning,” Nature, vol. 555,
no. 7697, pp. 487–492, 2018.

[14] C. M. Hyun, H. P. Kim, S. M. Lee, S. Lee, and J. K. Seo, “Deep learning
for undersampled MRI reconstruction,” Phys. Med. Biol., vol. 63, no. 13,
2018, Art. no. 135007.

[15] P. Hagemann and S. Neumayer, “Stabilizing invertible neural net-
works using mixture models,” Inverse Problems, vol. 37, no. 8, 2021,
Art. no. 0 85002.

[16] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play
priors for model based reconstruction,” in Proc. IEEE Glob. Conf. Signal
Inf. Process., 2013, pp. 945–948.

[17] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for
image restoration: Fixed-point convergence and applications,” IEEE Trans.
Comput. Imag., vol. 3, no. 1, pp. 84–98, Mar. 2017.

[18] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could:
Regularization by denoising (RED),” SIAM J. Imag. Sci., vol. 10, no. 4,
pp. 1804–1844, 2017.

[19] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, “Plug-and-play
methods provably converge with properly trained denoisers,” in Proc. 36th
Int. Conf. Mach. Learn., 2019, pp. 5546–5557.

[20] P. Bohra, D. Perdios, A. Goujon, S. Emery, and M. Unser, “Learning
Lipschitz-controlled activation functions in neural networks for plug-and-
play image reconstruction methods,” in Proc. Workshop Deep Learn.
Inverse Problems, 2021, pp. 1–9.

[21] M. Hasannasab, J. Hertrich, S. Neumayer, G. Plonka, S. Setzer, and G.
Steidl, “Parseval proximal neural networks,” J. Fourier Anal., vol. 26,
2020, Art. no. 59.

[22] J. Hertrich, S. Neumayer, and G. Steidl, “Convolutional proximal neural
networks and plug-and-play algorithms,” Linear Algebra Appl., vol. 631,
pp. 203–234, 2021.

[23] H. Gupta, K. H. Jin, H. Q. Nguyen, M. T. McCann, and M. Unser, “CNN-
based projected gradient descent for consistent CT image reconstruction,”
IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1440–1453, Jun. 2018.

[24] S. Hurault, A. Leclaire, and N. Papadakis, “Gradient step denoiser for
convergent plug-and-play,” in Proc. Int. Conf. Learn. Representations,
2022, pp. 1–30.

[25] S. Roth and M. J. Black, “Fields of experts,” Int. J. Comput. Vis., vol. 82,
no. 2, pp. 205–229, 2009.

[26] Y. Chen, R. Ranftl, and T. Pock, “Insights into analysis operator learning:
From patch-based sparse models to higher order MRFs,” IEEE Trans.
Image Process., vol. 23, no. 3, pp. 1060–1072, Mar. 2014.

[27] A. Effland, E. Kobler, K. Kunisch, and T. Pock, “Variational networks: An
optimal control approach to early stopping variational methods for image
restoration,” J. Math. Imag. Vis., vol. 62, no. 3, pp. 396–416, 2020.

[28] S. Lunz, O. Öktem, and C.-B. Schönlieb, “Adversarial regularizers in
inverse problems,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 1–10.

[29] M. Duff, N. D. F. Campbell, and M. J. Ehrhardt, “Regularising
inverse problems with generative machine learning models,” 2021,
arXiv:2107.11191.

[30] H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, “NETT: Solving inverse
problems with deep neural networks,” Inverse Problems, vol. 36, no. 6,
2020, Art. no. 65005.

[31] E. Kobler, A. Effland, K. Kunisch, and T. Pock, “Total deep variation for
linear inverse problems,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 7549–7558.

[32] R. Cohen, Y. Blau, D. Freedman, and E. Rivlin, “It has potential: Gradient-
driven denoisers for convergent solutions to inverse problems,” in Proc.
Adv. Neural Inf. Process. Syst., 2021, pp. 18152–18164.

[33] S. Hurault, A. Leclaire, and N. Papadakis, “Proximal denoiser for conver-
gent plug-and-play optimization with nonconvex regularization,” in Proc.
39th Int. Conf. Mach. Learn., 2022, pp. 9483–9505.

[34] R. Fermanian, M. Le Pendu, and C. Guillemot, “PnP-ReG: Learned
regularizing gradient for plug-and-play gradient descent,” SIAM J. Imag.
Sci., vol. 16, no. 2, pp. 585–613, 2023, 10.1137/22M1490843.

[35] E. Kobler, T. Klatzer, K. Hammernik, and T. Pock, “Variational networks:
Connecting variational methods and deep learning,” in Proc. 39th German
Conf. Pattern Recognit., 2017, pp. 281–293.

[36] P. Nair and K. N. Chaudhury, “On the construction of averaged deep
denoisers for image regularization,” 2022, arXiv:2207.07321.

[37] J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux, “Learning maximally
monotone operators for image recovery,” SIAM J. Imag. Sci., vol. 14, no. 3,
pp. 1206–1237, 2021.

[38] S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem, and C.-
B. Schönlieb, “Learned convex regularizers for inverse problems,” 2021,
arXiv:2008.02839.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

GOUJON et al.: NEURAL-NETWORK-BASED CONVEX REGULARIZER FOR INVERSE PROBLEMS 795

[39] S. Mukherjee, C.-B. Schönlieb, and M. Burger, “Learning convex regular-
izers satisfying the variational source condition for inverse problems,” in
Proc. NeurIPS Workshop Deep Learn. Inverse Problems, 2021, pp. 1–5.

[40] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,” in Proc.
34th Int. Conf. Mach. Learn., 2017, pp. 146–155.

[41] H. Q. Nguyen, E. Bostan, and M. Unser, “Learning convex regularizers for
optimal Bayesian denoising,” IEEE Trans. Signal Process., vol. 66, no. 4,
pp. 1093–1105, Feb. 2018.

[42] G. Peyré and J. M. Fadili, “Learning analysis sparsity priors,” in Proc.
SampTA’11, 2011, pp. 1–4.

[43] Y. Chen, T. Pock, and H. Bischof, “Learning �1-based analysis and
synthesis sparsity priors using bi-level optimization,” in Proc. 26th Neural
Inf. Process. Syst. Conf., 2012, pp. 1–5.

[44] L. B. Willner, “On the distance between polytopes,” Quart. Appl. Math.,
vol. 26, no. 2, pp. 207–212, 1968.

[45] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Proc.
Adv. Neural Inf. Process. Syst., 2019, pp. 1–12.

[46] D. Gilton, G. Ongie, and R. Willett, “Deep equilibrium architectures
for inverse problems in imaging,” IEEE Trans. Comput. Imag., vol. 7,
pp. 1123–1133, 2021.

[47] A. Pramanik, M. B. Zimmerman, and M. Jacob, “Memory-efficient model-
based deep learning with convergence and robustness guarantees,” IEEE
Trans. Comput. Imag., vol. 9, pp. 260–275, 2023.

[48] A. Pramanik, H. K. Aggarwal, and M. Jacob, “Deep generalization of
structured low-rank algorithms (Deep-SLR),” IEEE Trans. Med. Imag.,
vol. 39, no. 12, pp. 4186–4197, Dec. 2020.

[49] H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based deep
learning architecture for inverse problems,” IEEE Trans. Med. Imag.,
vol. 38, no. 2, pp. 394–405, Feb. 2019.

[50] P. Bohra, J. Campos, H. Gupta, S. Aziznejad, and M. Unser, “Learning
activation functions in deep (spline) neural networks,” IEEE Open J. Signal
Process., vol. 1, pp. 295–309, 2020.

[51] M. Unser, “A representer theorem for deep neural networks,” J. Mach.
Learn. Res., vol. 20, no. 110, pp. 1–30, 2019.

[52] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” in Proc. Int. Conf. Learn.
Representations, 2018, pp. 1–26.

[53] S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin, “JFB:
Jacobian-free backpropagation for implicit networks,” in Proc. AAAI Conf.
Artif. Intell., 2022, pp. 6648–6656.

[54] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE
Signal Process. Mag., vol. 16, no. 6, pp. 22–38, Nov. 1999.

[55] X. Xu, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov, “Boosting the
performance of plug-and-play priors via denoiser scaling,” in Proc. 54th
Asilomar Conf. Signals, Syst., Comput., 2020, pp. 1305–1312.

[56] Y. Malitsky and K. Mishchenko, “Adaptive gradient descent without
descent,” in Proc. 37th Int. Conf. Mach. Learn., 2020, pp. 6702–6712.
[Online]. Available: https://proceedings.mlr.press/v119/malitsky20a.html

[57] P. Latafat, A. Themelis, L. Stella, and P. Patrinos, “Adaptive proximal
algorithms for convex optimization under local Lipschitz continuity of the
gradient,” 2023, arXiv:2301.04431.

[58] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[59] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal
forward-backward splitting,” Multiscale Model. Simul., vol. 4, no. 4,
pp. 1168–1200, 2005.

[60] S. Ducotterd, A. Goujon, P. Bohra, D. Perdios, S. Neumayer, and M. Unser,
“Improving Lipschitz-constrained neural networks by learning activation
functions,” 2022, arXiv:2210.16222.

[61] J. Liu, S. Asif, B. Wohlberg, and U. Kamilov, “Recovery analysis for
plug-and-play priors using the restricted eigenvalue condition,” in Proc.
Adv. Neural Inf. Process. Syst., 2021, pp. 5921–5933.

[62] A. Pramanik and M. Jacob, “Improved model based deep learning using
monotone operator learning (MOL),” in Proc. IEEE 19th Int. Symp.
Biomed. Imag., 2022, pp. 1–4.

[63] T. Huster, C.-Y. J. Chiang, and R. Chadha, “Limitations of the Lip-
schitz constant as a defense against adversarial examples,” in Proc.
Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2018,
pp. 16–29.

[64] C. Anil, J. Lucas, and R. Grosse, “Sorting out Lipschitz function approx-
imation,” in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 291–301.

[65] S. Neumayer, A. Goujon, P. Bohra, and M. Unser, “Approximation of
Lipschitz functions using deep spline neural networks,” SIAM J. Math.
Data Sci., vol. 5, no. 2, pp. 306–322, 2023.

[66] J. R. Chand and M. Jacob, “Multi-scale energy (MuSE) plug and play
framework for inverse problems,” 2023, arXiv:2305.04775.

[67] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image de-
noising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155,
Jul. 2017.

[68] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and
hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 5, pp. 898–916, May 2011.

[69] A. Chambolle, “An algorithm for total variation minimization and appli-
cations,” J. Math. Imag. Vis., vol. 20, no. 1, pp. 89–97, 2004.

[70] F. Knoll et al., “fastMRI: A publicly available raw k-space and DICOM
dataset of knee images for accelerated MR image reconstruction using
machine learning,” Radiol.: Artif. Intell., vol. 2, no. 1, 2020, Art. no.
e190007.

[71] M. Uecker et al., “ESPIRiT—An eigenvalue approach to autocalibrating
parallel MRI: Where SENSE meets GRAPPA,” Magn. Reson. Med.,
vol. 71, no. 3, pp. 990–1001, Mar. 2014.

[72] M. Uecker et al., “Software toolbox and programming library for com-
pressed sensing and parallel imaging,” in Proc. ISMRM Workshop Data
Sampling Image Reconstruction, 2013, p. 1.

[73] C. McCollough, “TU-FG-207A-04: Overview of the low dose CT grand
challenge,” Med. Phys., vol. 43, pp. 3759–3760, 2016.

[74] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained
total variation image denoising and deblurring problems,” IEEE Trans.
Image Process., vol. 18, no. 11, pp. 2419–2434, Nov. 2009.

[75] W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 9, pp. 891–906,
Sep. 1991.

[76] M. Unser and N. Chenouard, “A unifying parametric framework for
2D steerable wavelet transforms,” SIAM J. Imag. Sci., vol. 6, no. 1,
pp. 102–135, 2013.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 04,2023 at 08:29:54 UTC from IEEE Xplore. Restrictions apply.

https://proceedings.mlr.press/v119/malitsky20a.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

