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École polytechnique fédérale de Lausanne—2024

Cover design by Annette Unser
Printing and binding by Repro-EPFL
Typeset with LATEX
Copyright © 2024 by Alexis Goujon
Available at http://bigwww.epfl.ch/



Abstract

The remarkable ability of deep learning (DL) models to approximate high-
dimensional functions from samples has sparked a revolution across numerous sci-
entific and industrial domains that cannot be overemphasized. In sensitive ap-
plications, the good performance of DL is unfortunately sometimes overshadowed
by unexpected behaviors, including hallucinations in medical image reconstruction.
Serious concerns have thus been raised regarding the extent to which one can trust
the output of DL models. Restoring trust is challenging since the same depth that
fuels the performance causes DL models to be black boxes. The parameters of the
model are indeed only remotely connected to the function they parameterize, and
enforcing constraints on the model to obtain guarantees on its output usually wipes
out the performance boost of DL. In this thesis, we pursue the goal of improving
the trustworthiness of several DL methods while maintaining performance. Our
approach tackles the problem via the design of expressive, stable and interpretable
spline-based parameterizations across various contexts.

The contributions of this thesis are divided into three parts. In the first part,
we concentrate on parameterizations for low-dimensional regression tasks. There,
depth is not necessarily beneficial and one can have it all—stability, expressivity
and interpretability—with linear combinations of well-chosen atoms. This is first
shown with the design of shortest-support multi-spline bases, and then with the
study of the stability of a local parameterization of continuous and piecewise-linear
functions (CPWL).

In the second part, we focus on deep parameterizations to cope with higher-
dimensional problems. We first study the composition operation within CPWL
neural networks (NN) and give some new insights into the role of the activation
function in the expressivity of the NN. We then propose to use Lipschitz-constrained
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learnable linear spline activations to build expressive and provably stable deep NN.
We characterize some universal properties of our framework, develop an efficient
procedure to train the activations under the constraint, and, lastly, show experimen-
tal improvements over competing frameworks with similar constraints on various
tasks, including plug-and-play image reconstruction with provably nonexpansive
denoisers.

In the third and final part, we refine the parameterization by focusing on image
reconstruction tasks. We propose a framework to learn convex regularizers, which
rely on our learnable Lipschitz-constrained spline activations. The parameteriza-
tion yields lightweight and transparent—in contrast to black boxes—models with
theoretical guarantees on the reconstruction. Our method exhibits state-of-the-art
performance for CT and MRI reconstruction among convex regularization meth-
ods. Lastly, we extend the framework to learn weakly-convex regularizers to boost
performance while maintaining most guarantees.

Keywords: deep learning, inverse problems, medical imaging, image recon-
struction, regularization, plug-and-play methods, sparsity, splines, continuous and
piecewise-linear functions, Lipschitz constant



Résumé

Les dernières avancées dans le domaine de l’apprentissage profond ont permis une
véritable révolution dans de nombreux domaines, des sciences fondamentales aux
nouvelles technologies. Malgré ces progrès remarquables, les algorithmes d’appren-
tissage profond présentent parfois des comportements très inattendus, menant à des
phénomènes d’hallucination en imagerie médicale par exemple. De ce fait, au-delà
des performances, la question de la confiance que l’on peut accorder aux prédictions
des algorithmes a pris une place fondamentale. Un facteur aggravant est que la pro-
fondeur des réseaux de neurones, nécessaire à l’obtention de bonnes performances,
rend la compréhension du fonctionnement de l’algorithme difficile. Dans cette thèse,
l’objectif est d’améliorer la fiabilité de plusieurs méthodes d’apprentissage profond
en minimisant l’impact négatif sur les performances. Pour ce faire, notre approche
s’appuie sur de nouvelles paramétrisations expressives, stables et interprétables.

Les contributions de cette thèse sont divisées en trois parties. Dans la première
partie, et en guise de première étape, nous nous concentrons sur des problèmes de
régression avec un nombre faible de variables. Dans ce cas, une paramétrisation
profonde n’est pas nécessairement bénéfique et il est possible d’obtenir la stabilité,
l’expressivité et l’interprétabilité avec des combinaisons linéaires de fonctions de
bases bien choisies. Ceci est d’abord démontré par la conception de bases multi-
splines à support minimal, puis par l’étude de la stabilité d’une paramétrisation
locale de fonctions continues et linéaires par morceaux.

Dans la deuxième partie, nous considérons des paramétrisations plus profondes
pour faire face à des problèmes de plus grande dimensionnalité. Nous étudions
d’abord l’opération de composition dans les réseaux de neurones (RN) d’un point
de vue géométrique, ce qui aboutit à une meilleure compréhension du rôle des mo-
dules non linéaires dans l’expressivité des RN. Nous proposons ensuite d’utiliser
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des fonctions d’activations modulables avec contrôle de leur constante de Lipschitz
pour construire des RN expressifs et stables, donc théoriquement plus fiables. Nous
caractérisons certaines propriétés universelles de notre paramétrisation et dévelop-
pons une procédure efficace pour apprendre les fonctions d’activation contraintes.
Enfin, nous illustrons les avantages pratiques de notre méthode dans le cas de la
reconstruction d’image avec des garanties théoriques de stabilité.

Dans la troisième et dernière partie, nous affinons la paramétrisation pour nous
focaliser exclusivement sur des problèmes de reconstruction d’images. Nous pro-
posons une méthode pour apprendre des fonctions de régularisation convexes, qui
s’appuient sur notre module de fonctions d’activations modulables avec contraintes
sur leur constante de Lipschitz. Notre choix de paramétrisation permet de ne recou-
rir qu’à un nombre faible de paramètres, et mène à un algorithme de reconstruction
interprétable avec des garanties théoriques sur la reconstruction. Notre méthode
améliore la qualité de reconstruction par rapport aux autres méthodes de régula-
risation convexe sur diverses modalités d’imagerie médicale. Enfin, nous étendons
notre méthode à l’apprentissage de fonctions de régularisation faiblement convexes,
ce qui permet d’améliorer les performances tout en conservant la plupart des ga-
ranties de fiabilité.
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Chapter 1

Introduction

The following introduction presents a very high-level overview of the context of the
thesis. Detailed and more technical introductions can be found at the beginning of
each chapter.

1.1 The Deep-Learning Revolution

The recent advances in artificial intelligence have been fueled in many fields by the
deep-learning (DL) revolution. While several fundamental components of DL have
existed for some time, it was not until the mid-2010s that DL emerged as a cross-
domain paradigm, paving the way for breakthroughs in both scientific research and
industrial applications. In science, DL has now become a pivotal computational
tool with remarkable applications in biology [1], earth science [2], astrophysics [3],
chemistry [4], material science [5], economics [6] and in many other branches of
science. The impact of DL also goes beyond scientific advancements, catalyzing the
development of disruptive technologies in transportation [7] with for instance self-
driving cars [8] and drones [9], in healthcare [10] with for instance medical imaging
[11], and in text processing with natural language processing (NLP)[12] systems
like ChatGPT, among others. These achievements may just be the beginning, with
the potential for even more groundbreaking developments in the future.
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2 Introduction

1.1.1 The Roots of Deep Learning

DL is a versatile framework to craft predictive models for a wide variety of tasks,
including classification, to predict discrete class labels, and regression, to predict
real-valued quantities. The success of DL stems from its ability to build, from
training data, a prediction map, referred to as the input-to-output map, that yields
remarkably accurate predictions on new data, even for problems with high dimen-
sional inputs. This is achieved through the utilization of deep neural networks
(DNNs) as parameterization tools. More precisely, a DNN architecture turns a set
of parameters—finite-dimensional vectors that can be handled by a computer—
into an input-to-output map that can be used for prediction. Broadly speaking,
parameterizations allow one to optimize over a space of input-to-output maps via
the optimization of a finite number of parameters. The specificity of DNNs lies
in the depth of parametrization: DNNs produce input-to-output maps made of
the composition of multiple simple modules, including linear layers and activation
functions. In this way, the input is sequentially processed to produce the output.
The optimization of the DNN parameters relies on gradient-based algorithms that
aim at maximizing the predictive performance of the model on the training data.
The training of a DNN often requires significantly many training samples and com-
putation steps. For these reasons, many advancements in DL have been catalyzed
by the ever-increasing availability of data and computational resources. Over the
years, the design and training of DNNs have significantly improved, and there now
exists a set of well-established guidelines and tricks. However, certain aspects still
demand expertise and application-specific knowledge.

In this thesis, we mainly focus on the applications of DL for image reconstruc-
tion.

1.1.2 Deep Learning for Image Reconstruction

Image Reconstruction, Inverse Problems and Challenges

Image reconstruction (IR), also referred to as image recovery, denotes the process
of forming an image from observations—also called measurements—that may be
corrupted, incomplete and not directly interpretable by a human.

When the observations form an image, the task boils down to image restoration
[13]. In this case, the goal is to enhance the degraded image that was affected by
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various issues, including noise (denoising), blur (deblurring), low resolution (super-
resolution), missing parts (inpainting), or grayscale representation requiring col-
orization, see Figure 1.1 for some examples of image degradation. The applications
of image restoration are wide-ranging, finding significant utility in diverse fields.
For instance, it plays a crucial role in biological imaging, including electron, fluo-
rescence, and deconvolution microscopy [14, 15].

Blurry image

High-quality image

Noisy image Low-resolution image

Figure 1.1: Examples of degraded images.

Image reconstruction also encompasses tasks that involve less direct measure-
ments, with many applications in medical imaging, including computed tomogra-
phy (CT) scan, magnetic resonance imaging (MRI), and ultrasound imaging as the
most prominent ones [16]. In these cases, one can retrieve the interior structure
of a human body from external, indirect measurements. The challenge here is to
mathematically invert the measurement process. For example, in CT, the mea-
surements, which form a so-called sinogram, are a set of line integral (tomographic
projections) obtained from the propagation of X-rays within the slice of interest,
with different incident angles [17], see Figure 1.2 for an illustration.

Mathematically, image reconstruction is often formalized as an inverse problem.
The term “inverse problem” refers to the recovery of a ground truth signal from
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500 projection angles, 400 detectors
Sinogram (= measurements)

Consistent solution
(discretization 256 x 256)

Consistent solutions
(discretization 256 x 256)

Full-view CT

50 projection angles, 400 detectors
Sinogram (= measurements)

Sparse-view CT

Figure 1.2: CT image reconstruction of a synthetic 2D slice in a noiseless scenario.
The reconstructions are computed to be fully consistent with the corresponding
sinograms. Left: with sufficiently many projections, the problem is well-posed and
there exists a unique consistent solution. Right: with sparse-view measurements,
infinitely many reconstructions are consistent with the measurements. (Color con-
vention: high attenuation areas are represented in black and areas transparent to
X-ray are represented in white.)

measurements, and thus it encompasses problems beyond imaging. Note that many
imaging problems yield linear inverse problems since the measurement operator is
(well modeled by) a linear operator [18]. Image reconstruction often leads to ill-
posed inverse problems, for instance when the number of measurements is not
sufficient to exactly recover the ground truth. This occurs in applications in which
there are strong motivations to collect only a few measurements, either to limit
the acquisition time or to reduce some risk, e.g. in X-ray to limit tissue damage.
A direct inversion of the measurement process for ill-posed problems is delicate
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since different signals may lead to the observed measurements. This is illustrated
with sparse-view CT in Figure 1.2. Even when well-posed, many inverse problems
are ill-conditioned, in which case a direct inversion of the measurement process
amplifies some components of the noise contained in the measurements and yields
low-quality images. Overcoming these difficulties necessitates the application of
advanced algorithms to reconstruct consistent and high-quality images.

All reconstruction algorithms presented and discussed in the remainder of the
introduction are visually represented in Figure 1.3.

Classical Reconstruction Methods with Variational Regularization

The issues of ill-posedness and ill-conditioning in inverse problems can be mitigated
with regularization methods, which allow for reconstructing images that combine
two desirable properties.

• Data consistency. The reconstruction is expected to be consistent with the
measurements, in the sense that simulated measurements with the reconstruc-
tion should be sufficiently close1 to the observed ones. Data consistency can
be quantified by various metrics, for instance, the Euclidian distance between
the observed and simulated measurements.

• High image quality. For ill-posed and ill-conditioned inverse problems, data
consistency is not sufficient since many images with good data consistency
contain aliasing artifacts and noise, see Figure 1.2 for an illustration. The idea
is thus to pick the most realistic image among the sufficiently consistent ones.
In classical regularization methods, a regularity metric is thus introduced to
quantify the intrinsic likelihood of any image, regardless of the measurements.

Regularization is implemented by reformulating the inverse problem as an op-
timization task so that the reconstruction is defined as the image that maximizes
a joint measure of data consistency and regularity. The main challenge here is to
design an effective regularity metric that penalizes undesirable images. One pop-
ular instance is the Tikhonov regularization, which promotes some smoothness in
the reconstruction [19]. Another instance, more effective for IR tasks and especially
in medical imaging, is the family of sparsity-promoting regularizers [20, 21], which
includes the popular total-variation (TV) one [22]. Such regularizers favor images

1
Exact data consistency is not necessarily desirable when the measurements are noisy.
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w/ forward model

Consistency

Interpretable
(e.g. sparsity prior)

Regularization

∞

Classical

w/ forward model

Consistency

Denoiser
(e.g. pretrained CNN)

Regularization

Plug and Play

∞

w/ forward model

Consistency

Learnable
(e.g. black-box CNN)

Regularization

niteration = O(10)

Unrolling with sharing

w/ forward model

Consistency

Learnable
(e.g. black-box CNN)

Regularization

w/ forward model

Consistency

Learnable
(e.g. black-box CNN)

Regularization

Unrolling without sharing

niteration = O(10)

Black-box CNN

Consistency?
Regularization?

Direct Inversion

Figure 1.3: Overview of the reconstruction methods discussed in the introduction.
All methods take the measurements as input and output a reconstruction. The
methods that require end-to-end training are represented within a red box, the
iterative methods feature a feedback loop, the 1 symbol refers to methods that
compute a fixed point, the modules with a red-background header typically incor-
porate data-driven components and hence should be carefully analyzed to assess
the trustworthiness of the method.

with few nonzero components in a well-chosen transformed representation, e.g. a
wavelet or a finite difference one. Classical regularization methods are popular be-
cause they offer a number of desirable properties. They are interpretable since it
is clear what properties they promote, for instance, TV regularization promotes
piecewise constant images. They usually come with a set of convergent iterative
algorithms to efficiently compute the reconstruction [23, 24, 25, 26, 27, 28]. They
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offer some guarantees on the recovery of the ground truth under some conditions, on
the consistency of the reconstruction, and on the stability of the measurement-to-
reconstruction map, see for instance [29, 30, 31]. However, classical regularizers also
have limitations. They tend to be too simplistic to fully capture the complexity of
image distributions and therefore remain simplistic to address missing observations
and fill the gaps. The performance limitations do not alter the trust in the method
since regularization-related artifacts are usually straightforward to identify, and
trained practitioners will not interpret them as a feature of the original signal. For
example, reconstructions with Tikhonov regularization often have blurred edges,
and TV regularization is known to promote piecewise constant images, making it
prone to introducing staircase artifacts.

DL-Based Image Reconstruction – the First Generation

The breakthroughs of DL in computer vision have brought about a paradigm shift
in image reconstruction. The rapid growth in publications solving image recon-
struction tasks with DL methods depicted in Figure 1.4 showcases its popularity,
making it challenging to stay up-to-date with the latest advancements.
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Figure 1.4: Number of published papers related to image reconstruction and deep
learning per year. The numbers correspond to the search “topic=deep learning
and image and (restoration or reconstruction)” performed on July 27th 2023 in
Clarivate Web-of-Science(WoS). Note that many recent frameworks rely on deep
learning without explicitly mentioning it.
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The success of DL-based image reconstruction relies on the utilization of con-
volutional neural networks (CNNs) combined with abundant training data to build
implicit data-driven regularization. CNNs are DNNs in which the linear layers are
convolutions. CNNs are highly efficient in processing images and have now become
a fundamental tool for image reconstruction.

On a high level, DL-based reconstruction methods leverage the data seen dur-
ing training to tackle ill-posedness and ill-conditioning. The first generation of DL
methods proposed in medical image reconstruction would perform a direct inversion
of the measurement process [32, 33, 34, 35]. This is achieved by training a DNN to
directly reconstruct the image from the measurements or a low-quality reconstruc-
tion in an end-to-end manner. Other end-to-end learning methods include algorithm
unrolling [36], which are discussed in more detail in Section 1.3. One challenge with
end-to-end methods is that they require abundant data with high-quality target re-
constructions. One way to do so, for example in CT, is to use high-quality images
reconstructed from full-view projections and standard dose measurements. Then,
the model is only given access to subsampled measurements, to simulate sparse-view
or limited-angle projections, or to the measurements degraded by synthetic noise, to
simulate low-dose CT. End-to-end learning has demonstrated remarkable improve-
ments in image quality and reconstruction speed compared to classical methods.
In particular, it made it possible to reconstruct images from fewer measurements
(sparse-view CT) or more noisy ones (low-dose CT) [34].

Compared to classical methods, such DL-based methods have, however, some
important limitations, including a lack of interpretability, a lack of theoretical guar-
antees, e.g. no control of the data consistency, and some erratic behavior (lack of
stability). These shortcomings are analyzed in detail in Section 1.2, and reveal that
the performance of DL methods comes at the cost of reduced trustworthiness. The
recent efforts to restore trustworthiness are then described in Section 1.3.

1.2 Beyond Performance, What about Trustwor-
thiness?

The tremendous success of DL comes with serious reserves when it comes to sen-
sitive applications. It is indeed often unclear to what extent the output of a DNN
should be trusted. For applications with critical safety concerns, such as in medi-
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cal imaging, DL-based algorithms must provide strong evidence that they can be
trusted before being deployed.

In this section, we discuss why DNNs are hard to trust by design and then
discuss the implications for IR. Restoring trust is a very active topic that will be
discussed in Section 1.3 and further explored in this thesis for IR applications.

1.2.1 Black-box Nature of Deep Neural Networks

Parameterization

DNNs offer an efficient parametrization to perform local computations. This in-
cludes the computation of the output given an input, with the forward pass, and
of derivatives of the output with respect to the parameters or the input, with the
back-propagation algorithm [37, 38]. Unfortunately, on a global scale, the input-
to-output map generated by a DNN is very challenging to inspect. This is first
caused by the overwhelming number of parameters, which can easily reach mil-
lions, if not billions in the most recent DNNs. Second, even if one could inspect
the parameters, their connection to the input-to-output map is highly nontrivial
due to the successive compositions performed within the DNN, which makes it not
human interpretable, and what the internal DNN’s modules are doing usually re-
mains a mystery. Even the composition of one-dimensional functions is already
not intuitive, as illustrated in Figure 1.5. Classic functional analysis tools, such
as the Fourier transform, fail to provide any useful insight with such nonlinear
parametrizations. Ultimately, the role of each parameter is not known, to the point
that some parameters may not even play a role in the input-to-output map. For
example, in NNs equipped with the rectified linear unit (ReLU), during the training
stage, neurons can “die” because they consistently output 0, leaving a whole subset
of parameters definitively useless [39]. And this is not even easy to diagnose.

Training

One reason why a trained DNN is hard to trust is that the dependence of its
parameters on the optimization algorithm and the training data is poorly under-
stood. The learning of the parameters involves highly non-convex optimization
tasks, which can lead to numerous NP-hard problems that are impractical to solve
exactly [40, 41, 42]. Consequently, training a DNN necessitates the use of various
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Figure 1.5: Effect of a small shift on the composition of two one-dimensional func-
tions. While the composition operation yields great expressivity to DNNs, it is not
intuitive, even in 1D and makes the internal functioning of DNNs hard to under-
stand.

empirical techniques and heuristics with few theoretical justifications, resulting in
a lack of guarantees for the trained DNN and limited trustworthiness. It should be
noted, however, that current training methods are typically efficient for a DNN to
fit training data with the remarkable property that it generalizes well to new data
[43, 44]. Experimental validation may help to build trust, but it requires to have
at hand a realistic and high-quality dataset, which may not always be available.

Controlling the Black Box, or Not?

The opaque parameterization and training of DNNs make it nonobvious to impose
certain constraints on its output or on the input-to-output map, which is often a
minimal requirement to build trust. Many of the pioneering works that brought
DL into various fields of science would typically omit some physical constraints or
only approximately enforce them [45, 46, 47].

For example, in mechanics and physics, DNNs can be used to emulate the dy-
namics of systems from training data. Such data-driven models are unfortunately
not guaranteed to output solutions consistent with the laws of physics, e.g. they
may violate conservation laws or some known properties of the system (incompress-
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ibility of a flow, rigidity of a body...) or the equations governing the dynamics of
the system. Similarly, in IR, end-to-end reconstruction methods do not guarantee
any consistency of the reconstruction with the measurements, which is a huge loss
compared to classical methods with convex regularization for instance. Enforcing
hard constraints in DL is often nontrivial and therefore often omitted, although
it is becoming an active topic of research in many fields, and will be further dis-
cussed in Section 1.3. One difficulty pertains to the lack of understanding of the
input-to-output map, which makes some global properties of the mapping inacces-
sible in practice. To give a concrete example, it is known that the computation
of the Lipschitz constant of a DNN, which measures the maximum rate of change
of the output with respect to a change in the input, leads to NP-hard problems
not tractable in practice [48]. This is an actual problem because the control of
the Lipschitz constant of a DNN is necessary for many applications, and can for
instance provide robustness guarantees for classifiers or stability guarantees for IR
iterative methods (see Section 1.3 for more details).

The black-box nature of DNNs is not only a theoretical problem; DNNs some-
times exhibit very unexpected behaviors in practice.

1.2.2 Instabilities of Deep Neural Networks

Adversarial Attacks and Other Instabilities

One way to assess whether DNNs are robust predictors is to test their performance
under adversarial attacks. An adversarial example is a carefully crafted input that
is close to a legitimate one but for which the model outputs a completely different
prediction [49, 50, 51]. There exists a large variety of algorithms to design such
attacks, and they manage to fool many DL pipelines [52]. Most of the early works
provide white-box attacks in the sense that the attacker needs to access the DNN’s
architecture and its parameters to fool it, for example with gradient-based opti-
mization [50, 51]. With image classifiers, it was found that small perturbations,
not even visible to the human eye, could drastically change the class predicted,
see Figure 1.6 for such an example. Even more puzzling, the DNN can show ar-
bitrarily high confidence while mistaking. This unexpected phenomenon reveals
that the good performance of a DNN locally, i.e. on a training/test set, does not
imply generalization over the whole input domain. Trustworthiness is therefore far
from being granted with DNNs, even though white-box attacks remain somehow
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theoretical.

Prediction: 'cheeseburger'

Prediction: 'cheeseburger'

Prediction: 'revolver' Absolute difference x 19

Absolute difference x 10Prediction: 'revolver'

Figure 1.6: Adversarial attack with projected gradient descent [53] performed on
the ResNet50 classifier available in PyTorch. The first column depicts a legitimate
input, the second one an adversarial example, and the last one the absolute differ-
ence between the legitimate input and the adversarial example summed up along
the 3 color channels.

There now exist more realistic attacks, including black-box attacks, that craft
adversarial examples by querying the DNN on a sequence of well-chosen inputs
without accessing the internal structure of the model [54, 55], and are therefore able
to fool APIs. Note that black-box attacks also remain delicate to interpret because
they only seek worst-case examples, regardless of their probability of occurring in an
actual scenario. Evaluating the probability of failure of a DNN is very challenging
in practice.

Other evidence of the unstable nature of DNNs is revealed with out-of-
distribution tests. The DNN is tested on data that differ in nature from the train-
ing data, in such a way that the task does not look different or even harder to
humans. For classification problems, one can for instance add slightly blurry im-
ages or images with new styles and textures. Such distribution shifts do not alter
the semantics found in the images but suffice to drastically reduce the performance
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of a DNN [56]. This phenomenon underlines that it is not well-understood how
DNNs build their prediction since it might not generalize well to tasks that are
similar to the one used for training.

Hallucinations in Image Reconstruction

The problem of instabilities of DL is also observed in regression problems and is a
major concern for image reconstruction. The addition of adversarial noise to the
measurements or a small change of the measurement operator drastically reduces
the performance of DNNs trained in an end-to-end fashion to reconstruct MRI
and CT images [57]. More recent studies suggest that sparsity-promoting classi-
cal reconstruction methods are also sensitive to perturbations [58, 59]. However,
the instabilities with such methods are of different nature. Classical regulariza-
tion methods have a clear interpretation, and when they malfunction they produce
well-understood artifacts that can be identified by radiologists. For instance, total-
variation regularization may produce staircase artifacts and yield aliasing artifacts.
With DNNs, small perturbations lead to artifacts in the image that may be hard
to identify because they are typically (i) structured, (ii) realistic and (iii) vary a
lot from one DNN to another [57]. Incomplete measurements in some ill-posed IR
problems favor DNNs to hallucinate, in the sense that they build realistic struc-
tures given only too little information with no guarantees of their presence in the
ground-truth signal. The great representation power of DNNs makes them some-
times overstep the role of a regularizer. Particularly telling examples were seen in
the fastMRI challenge [60], in which radiologists were evaluating end-to-end DL
reconstruction methods proposed by competing teams. Radiologists raised serious
concerns after detecting hallucinations in MRI reconstructions. While the DNNs
yielded very good performance in terms of the standard metrics, they would some-
times incorporate local abnormalities into a normal brain structure, including a
sulcus or vessel, see Figure 1.7. Another example can be found in [61], in which a
DL IR method has been found to wipe out tumors [61]. DNNs can therefore truly
lead to error in the diagnosis since they can mimic realistic structures that are not
present and potentially abnormal.

Despite the good performance of DNNs in many fields, their unexpected behav-
iors and the lack of understanding of their functioning make it necessary to build
trust before deploying them in sensitive applications.
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Figure 1.7: Illustration of hallucinations with end-to-end DL-based methods for
MRI image reconstruction. The reconstruction methods used were among the best-
performing ones in the fastMRI challenge [60]. The figure is a modified version of
[60, Figure 6] licensed under CC BY-ND 4.0.

1.3 Improving Trustworthiness

1.3.1 The Three Pillars of Trustworthiness
Restoring trust in DL models while keeping the performance boost is a critical chal-
lenge and a very active topic of research [62, 63]. Many concepts revolving around
trustworthiness have been revisited and specified in the context of DL, including
verification [64], testing [65], interpretability [66], explainability [67], robustness
[68] and reliability [69]. In the context of this thesis, we propose to analyze the
trustworthiness of IR methods according to three components.

1. Empirical trustworthiness, built on tests. Trust is first built upon ex-
perimental testing to assess quantitatively and qualitatively the performance
of a method. Unfortunately, it is usually not sufficient because tests always
rely on some assumptions, e.g. regarding the measurement operator, and test

https://creativecommons.org/licenses/by/4.0/
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sets may contain some biases. In addition, the metrics to quantify perfor-
mance also have limitations, especially with images, for which assessing the
reconstruction quality is not obvious, and the aggregation of the performance
over a data set is not trivial either.

2. Theoretical trustworthiness, built on guarantees. In many IR tasks,
some natural constraints emerge, see Section 1.2.1 and 1.3.3 for more details.
A trustworthiness method should provably meet such constraints. Note that
the constraints come in various forms, and may apply to the prediction, e.g.
data consistency, or to the reconstruction pipeline, e.g. (Lipschitz) continuity
of the reconstruction with respect to the measurements, or convergence for
iterative methods.

3. Human trustworthiness, built on interpretability. This corresponds to
being able, as a human (or at least as a field expert), to understand the way
the model is built and the way it makes predictions. Field experts should
have some interpretability of the method to understand its strengths and
limitations, e.g. predict when it might fail or on the contrary for which
setups it should generalize well.

The quest for state-of-the-art performance left the second and third pillars
mainly disregarded in the first generation of DL methods, with potentially serious
problems for sensitive applications, as showcased in Section 1.2.1. In fields where
DL is sufficiently mature, such as IR, it is time to better balance the importance
of the three pillars.

In the remainder of this section, the discussion on trustworthiness is limited only
to topics that will further be explored throughout this thesis. We first discuss how
functional analysis can shed some light on black-box DNNs and eventually lead to
DNNs with stability guarantees. Then, we discuss the recent improvements in the
trustworthiness of DL-based IR methods and highlight the remaining challenges.

1.3.2 Controlling the Black Box to Build Stable DNNs
Spline Theory to Open the Black Box

Many popular DNNs employ the rectified linear unit (ReLU) as the activation
function. These DNNs create input-to-output mappings that are continuous and
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piecewise linear (CPWL) [70], equivalently referred to as linear splines [71]. This
means that ReLU DNNs divide the input domain into regions where the mapping
simply boils down to an affine transformation, see Figure 1.8 for an illustration.
This straightforward functional perspective has sparked extensive discussions in the
last decade. DNNs can now be viewed as local linear regressors or, equivalently,
as generating input-dependent affine transformations [71]. In the case of CNNs,
this interpretation extends further. CNNs perform linear filtering with kernels that
adapt to the input data and that can be visualized and further analyzed [71]. For
classifiers, it is possible to use the CPWL properties of DNNs to locally compute and
visualize the decision boundary [72]. On a theoretical level, the CPWL property of
DNNs has been instrumental in exploring the impact of depth and width in terms
of their expressive capabilities. Studies have revealed that increasing depth can
exponentially augment the number of linear regions [70, 73]. Although this result
highlights the important role of depth in NNs, it also confirms that depth may
produce mappings that are so complex that their exhaustive depiction, region by
region, is not feasible for combinatorial reasons.

The spline perspective on DNNs improves their interpretability on a high level,
but it once again underlines their complexity, especially for very deep NNs, and
calls for better control of DNNs.

Figure 1.8: An R2 ! R CPWL function parameterized by a ReLU NN, and its
corresponding partition of the input space.
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Lipschitz-control for Robustness Guarantees

The discussion in Section 1.2 showed that unnoticeable perturbations of the input
of a DNN may completely change its prediction. From a functional perspective,
this can be quantified by the Lipschitz constant, which, by definition, measures
the maximum rate of change of the output with respect to a change in the input.
Hence, a possible way to enhance the stability of DNNs is to control their Lipschitz
constant, ensuring that it remains not too large. For example, it is possible to
guarantee adversarial robustness at a given input for Lipschitz continuous classi-
fiers2. In particular, there cannot be adversarial examples that lie within a safe
distance of the legitimate input. This distance is lower-bounded by the ratio of
the margin at the input—which is readily computable and measures the confidence
of the DNNs regarding the class predicted—by the Lipschitz constant. Hence, the
smaller the Lipschitz constant is, the stronger the robustness guarantee against at-
tacks we have. Unfortunately, the computation of the Lipschitz constant of a DNN
is not feasible in practice, see details in Section 1.2.1. In addition, even if it was
accessible, a standard unconstrained training would likely result in such a large Lip-
schitz constant that the bound on the safety distance would be extremely small and
overly pessimistic at many locations. To address these issues, two approaches have
emerged to better control the Lipschitz constant of DNNs in the training stage.

• Soft Lipschitz constraints. Soft constraints favor the learning of input-to-
output maps with a small Lipschitz constant. For example, one can penal-
ize the norm of the Jacobian of the DNN during training on a finite set of
points—which is an estimate of the Lipschitz constant—via the addition of a
regularization term in the training loss [75, 76]. This turns out to be empiri-
cally satisfactory in many settings [77, 78] but does not yield any theoretical
guarantee.

• Hard Lipschitz constraints. Imposing a hard constraint is more chal-
lenging. Instead of controlling directly the Lipschitz constant of the whole
DNN, one can control an upper bound on it that is efficiently computable. In
practice, the canonical approach is to impose hard Lipschitz constraints on
each layer [79]. This layer-wise approach follows from the fact that (i) the
computation of the Lipschitz constant of each linear layer and each activation

2
The Lipschitz constant at stake here is the one of the input-to-logits map, the input-to-class

map being no continuous it is never Lipschitz-continuous.
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function is tractable and that (ii) the Lipschitz constant is sub-multiplicative
with respect to the composition operation. Hence, layer-wise Lipschitz con-
straints yield an upper bound for the DNN’s Lipschitz constant. In the last
years, significant improvements have been made to better constrain linear
layers while training [80, 81, 82, 83]. In addition, the ReLU activation was
found to be theoretically and empirically ill-suited to the hard-constraint ap-
proach [82]. This shortcoming has been addressed with the introduction of
new activation functions or higher dimensional nonlinear modules that can
easily be Lipschitz controlled [82, 84, 85].

The use of DNNs with control of their Lipschitz constants goes far beyond the
robustness of classifiers. It is also very relevant to design invertible DNNs [86, 87],
to stabilize the training of GANs [79, 88] and most importantly to us, it is a key
ingredient for plug-and-play IR methods [81], which we discuss in details in Section
1.3.3.

Despite the recent progress, it is still unclear to what extent Lipschitz constraints
can be combined with performance. Many theoretical questions also remain with
the layer-wise approach. Although it seems to rely on a very pessimistic upper
bound, it is not known if it actually limits theoretically the expressivity, for instance
under 2-norm constraints, which is the setup relevant to IR methods.

1.3.3 Model-Based DL for Image Reconstruction:
Improved Interpretability and Challenges

The CNN-based direct inversion methods discussed in Section 1.1.2 lack inter-
pretability, can behave erratically (lack of stability) and fail to offer any theoretical
guarantees. These issues can be partially mitigated with model-based DL, which
provides a more sensible incorporation of DL in IR. The core idea is to craft separate
data-consistency modules and regularization modules.

• Data-consistency modules. The data-consistency modules favor recon-
structions that are consistent with the measurements. In many medical IR
tasks, the acquisition process can be numerically modeled by a so-called for-
ward model. In this scenario, the data-consistency modules do not need to be
data-driven and can be fully physics-driven via the use of the forward model.
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• Regularization modules. DL is powerful for designing and learning regu-
larization modules that can reduce noise and aliasing artifacts. Regularization
modules for IR rely on CNNs and, in the end, yield a data-driven implicit
regularization.

The training of the regularization modules and their interplay with the data-
consistency modules can be implemented in various ways.

Plug-and-Play Methods: Regularization with Off-the-Shelf Denoisers

The core idea of plug-and-play (PnP) methods is to form the implicit regularization
prior from an off-the-shelf denoiser [89]. In classical methods, reconstructions are
typically computed with iterative algorithms that sequentially resort to (i) a data-
consistency operator that is built from the forward model, e.g. the gradient or the
proximal operator of a measure of the data consistency, and (ii) a regularization
operator that incorporates some prior knowledge on the image via the regularizer,
e.g. the gradient or proximal operator of the regularizer. PnP algorithms extend
such algorithms by crafting a regularization operator from an image denoiser. A first
instance is given by the proximal PnP methods, which extend proximal algorithms.
The proximal operator of the regularizer, which can be interpreted as a denoiser, is
replaced by the off-the-shelf denoiser. PnP methods can also extend gradient-based
algorithms, for instance with the regularization by denoising (RED) framework
[90]. The gradient of the regularizer, which can be interpreted as a noise extractor,
is replaced by the residual operator of the off-the-shelf denoiser. PnP methods
extend the popular iterative thresholding algorithms developed in the early 2000s
[91, 23, 24], and the general formulation was given a decade later in [89], which
showed that the handcrafted BM3D denoiser could be used to solve IR problems
with improvements over classical methods. Since then, the performance of PnP
methods has benefited from the continuous improvement of image denoisers boosted
by the DL revolution [92].

Compared to direct inversion methods with CNNs, PnP methods have some
clear advantages.

• Universality. PnP methods are more universal and easier to deploy since
the same denoiser can be used in a wide variety of settings and accommodate
different noise levels.
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• High-level interpretability. PnP methods also improve interpretability be-
cause one can identify which module is responsible for data consistency and
which one handles regularization. On another level, a PnP method outputs
the fixed point of some recursive adjustment procedure so that the reconstruc-
tion can be interpreted as the image where data consistency and regularization
balance each other, which is reminiscent of the classical IR algorithms.

PnP methods also come with many challenges that can alter their trustworthiness.

• Lack of theoretical guarantees. PnP with standard off-the-shelf denoisers
offers no theoretical guarantees regarding (i) the convergence of the iterations,
(ii) the consistency of the reconstructed image and (iii) the stability of the
measurement-to-reconstruction map. Convergence can be granted in various
ways, including by iteratively relaxing the denoiser [93, 94], by imposing some
Lipschitz constraints on the denoiser [81, 95, 78] or by using denoisers that
are the gradient of some scalar-valued map so that the PnP algorithm can
be recast into a non-convex minimization problem [96, 97, 76, 98, 99]. To
date, however, the only known approach to address all three challenges for
noninvertible forward models relies on the use of nonexpansive denoisers [81,
95, 100, 78]. Unfortunately, such a property is very nontrivial to obtain with
CNN denoisers while keeping the performance boost offered by DL. The vast
majority of frameworks violate such a constraint and relax it or turn it into
a soft constraint [81, 101, 78]. This strategy is empirically satisfactory but
wipes out all theoretical guarantees. Some recent versions of PnP achieve
convergence guarantees with expansive denoisers [102, 76], but the catch is
that there remain no theoretical guarantees on the reconstruction, e.g. data
consistency is not ensured and the scheme becomes sensitive to initialization
[76].

• Incomplete interpretability. The denoisers typically used in PnP are
black-box models so their internal functioning remains not interpretable. In
addition, the fixed-point interpretation of PnP reconstruction—balance be-
tween data consistency and level of noise—is not necessarily strong. Indeed,
many PnP frameworks with no or relaxed constraints may have a very diverse
set of fixed points, not even connected. In the end, the quality of a fixed point
might strongly depend on the algorithm and its initialization [76].
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Algorithms Unrolling

Algorithm unrolling provides a way to turn any classical iterative algorithm into
a DNN [103, 104, 36]. The DNN is made of a finite number of iterations of the
algorithm in which the classical regularization operator is replaced at each iteration
by learnable modules—which may or may not be shared across iterations. In this
way, the data-consistency blocks of the DNN are formed with the forward model,
while the regularization can be data-driven. The key difference with PnP methods
is that the DNN is trained in an end-to-end manner and is task-specific. This makes
unrolling less universal, but allows for a better coupling between data consistency
and regularization, resulting in improved performance. Most unrolling schemes are
very fast to reconstruct images because the number of iterations unrolled is typi-
cally small (around 10). Compared to direct CNN inversion, it was observed that
unrolling requires less trainable parameters and less training data, and tends to gen-
eralize better. Unfortunately, regarding trustworthiness, unrolling typically comes
with no theoretical guarantees on the data consistency and stability, see Figure 1.7
for examples of hallucination in MRI image reconstruction. The interpretation is
also reduced by the end-to-end training and the opaque regularization modules,
which tend to become deeper and deeper CNNs with always more parameters. In
the end, it is by no means clear whether the output is data consistent since data
consistency and regularization modules are not independent anymore.

1.4 Outline and Contributions
In this thesis, we pursue the goal of improving the trustworthiness of several DL
methods while maintaining performance. Our approach tackles the problem via the
design and mathematical analysis of novel parameterizations that are sufficiently
expressive, for performance, provably stable, for theoretical guarantees, and inter-
pretable, for human trust. The thesis is divided into three parts and a general
overview is given in Figure 1.9.
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Chapter 2
Shortest Multi-Spline Bases

Chapter 4
Number of Regions of CPWL DNNs

Chapter 5
Spline Activations for Stable and Expressive DNNs

Chapter 6
Spline Activations for Stable PnP Image Reconstruction

Chapter 7
A Neural-network-based Convex Regularizer

Chapter 8
From Convexity to Weak Convexity

Chapter 3
Stable Parameterization of CPWL Functions

I - The World of Splines

II - Going Deeper with Stability
              Guarantees

III - From Convex to Weakly-convex
         Data-driven Regularization

1-Lip CPWL

Linear-spline (3 regions or more) 

Linear-spline (2 regions) 

Absolute value / PReLU

Groupsort / Householder
ReLU / Leaky ReLU

Figure 1.9: General overview of the thesis.
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The contributions are now briefly presented. For a more technical perspective,
we refer the reader to the Conclusion of the thesis.

Part I: The World of Splines for Low-Dimensional Problems
In the first part, as a preliminary step, we concentrate on parameterizations for low-
dimensional regression tasks. There, depth is not beneficial and one can have it all—
expressivity, stability and interpretability—with linear combinations of well-chosen
atoms. This is first shown with the design of shortest-support multi-spline bases,
and then with the study of the stability of a local parameterization of continuous
and piecewise-linear functions (CPWL).

Relevant Publications

• A. Goujon, S. Aziznejad, A. Naderi and M. Unser “Shortest-support multi-
spline bases for generalized sampling”, Journal of Computational and Applied
Mathematics, volume 395, paper 113610, October 2021.

• A. Goujon, J. Campos and M. Unser “Stable parameterization of continuous
and piecewise-linear functions”, Applied and Computational Harmonic Anal-
ysis, volume 67, paper 101581, November 2023.

• M. Pourya, A. Goujon and M. Unser “Delaunay-Triangulation-Based Learning
with Hessian Total-Variation Regularization”, IEEE Open Journal of Signal
Processing, volume 4, page 167-178, February 2023.

Part II: Going Deeper with Stability Guarantees
In the second part, we focus on deep parameterizations to cope with higher-
dimensional problems. We begin with the analysis of the geometry of CPWL DNNs
and reveal the importance of the activation function to build expressive DNNs. We
then propose to use Lipschitz-constrained learnable linear spline activations to build
expressive and provably stable DNNs. We show that the splines need to have at least
3 linear regions to have the optimal representation power and show their theoretical
advantage over popular activations used to build Lipschitz-constrained DNNs. We
then develop an efficient procedure to train the constrained activation functions by
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introducing a reparameterization technique that allows for incorporating the con-
straints on the parameters into the computational graph of the DNN. Lastly, we
use our framework to build nonexpansive denoisers for convergent and stable plug-
and-play image reconstruction. We show experimental improvements over other
DNNs with similar constraints but different activation functions on various tasks,
from toy problems to CT and MRI image reconstruction.

Relevant Publications

• A. Goujon, A. Etemadi and M. Unser “On the number of regions of piecewise
linear neural-networks”, Journal of Computational and Applied Mathematics,
volume 441, paper 115667, 2024.

• {A. Goujon3, S. Neumayer3}, P. Bohra and M. Unser “Approximation of Lip-
schitz functions using deep spline neural networks”, SIAM Journal on Math-
ematics of Data Science, volume 5, page 306-322, issue 2, June 2023.

• S. Ducotterd, A. Goujon, P. Bohra, D. Perdios, S. Neumayer and M. Unser
“Improving Lipschitz-constrained neural networks by learning activation func-
tions”, submitted to Journal of Machine Learning Research.

• P. Bohra, D. Perdios, A. Goujon, S. Emery and M. Unser, “Learning Lipschitz-
controlled activation functions in neural networks for plug-and-play image
reconstruction methods”, NeurIPS 2021 Workshop on Deep Learning and In-
verse Problems.

Part III: From Convex to Weakly-convex Data-driven Regu-
larization
In the third and final part, we refine the parameterization of Part II to address image
reconstruction problems with explicit regularization. We propose a framework to
learn convex regularizers, which rely on our learnable Lipschitz-constrained spline
activations. The parameterization yields lightweight and transparent models—in
contrast to black-box models—with theoretical guarantees on the reconstruction.
Our method exhibits state-of-the-art performance for CT and MRI reconstruction

3
equal contribution
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among convex regularization methods. Lastly, we generalize the framework to learn
weakly convex regularizers. While this extension maintains most guarantees and
interpretability, it boosts the performance, surpassing the popular BM3D denoiser
and approaching the performance of state-of-the-art PnP methods, which, by con-
trast, lack trustworthiness.

Relevant Publications

• A. Goujon, S. Neumayer, P. Bohra, S. Ducotterd and M. Unser “A neural-
network-based convex regularizer for inverse problems”, IEEE Transactions
on Computational Imaging, volume 9, page 781-795, August 2023.

• A. Goujon, S. Neumayer and M. Unser “Learning weakly convex regularizers
for convergent image-reconstruction algorithms”, accepted in SIAM Journal
on Imaging Sciences, 2023.
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Our quest for stable, expressive and interpretable parameterizations begins in
a simplified setup. The problems of interest are limited to low-dimensional regres-
sion problems, allowing us to momentarily leave aside the curse of dimensionality.
In this context, and as argued in Chapter 3, the use of DNNs is not necessarily
relevant. The parameterized function spaces can simply be chosen as the span of
some well-chosen basis functions. To build performant and trustworthy parameter-
izations, we propose to design spline-based basis functions with special attention
put on two desirable properties. First, to ensure good expressivity, we develop
parameterizations with approximation properties that are optimal given some cri-
teria. Second, to ensure stability, we use parameterizations with a well-conditioned
parameter-to-function map, also referred to as the synthesis operator. Specifically,
this is ensured via the design of Riesz bases.

The restriction of this first part to low-dimensional problems will serve in the
remainder of the thesis in two aspects. In low dimensions, one can have it all:
expressivity, interpretability and stability. This highly contrasts with many deep
parameterizations, which lack such theoretical properties. The low-dimensional pa-
rameterizations discussed in Part I can thus set a target in terms of trustworthiness
when designing parameterizations for high-dimensional problems. On another level,
low-dimensional parameterizations can be used to design nonlinear modules within
DNNs. In particular, in Part II and III we will show theoretically and empiri-
cally how learnable spline activation functions can boost the performance of some
trustworthy deep-learning based image reconstruction methods.
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Chapter 2

Shortest-support Multi-Spline

Bases

The text of this chapter is adapted from the published article
A. Goujon, S. Aziznejad, A. Naderi and M. Unser “Shortest-support multi-spline

bases for generalized sampling”, Journal of Computational and Applied Mathemat-
ics, volume 395, paper 113610, October 2021.

2.1 Summary
In this chapter, we introduce the notion of multi-splines and we discuss their role
in general sampling. Generalized sampling consists of the recovery of a function f ,
from the samples of the responses of a collection of linear shift-invariant systems to
the input f . The reconstructed function is typically a member of a finitely generated
integer-shift-invariant space that can reproduce polynomials up to a given degree M .
While this property allows for an approximation power of order (M + 1), it comes
with a tradeoff on the length of the support of the basis functions. Specifically, we
prove that the sum of the length of the support of the generators is at least (M +1).
Following this result, we introduce the notion of shortest basis of degree M , which
is motivated by our desire to minimize computational costs. We then demonstrate
that any basis of shortest support generates a Riesz basis. Finally, we introduce
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a recursive algorithm to construct the shortest-support basis for any multi-spline
space. It provides a generalization of both polynomial and Hermite B-splines. This
framework paves the way for novel applications such as fast derivative sampling
with arbitrarily high approximation power.

2.2 Introduction

2.2.1 Generalized Sampling in Shift-Invariant Spaces
Since the formulation of Nyquist-Shannon’s celebrated sampling theorem [105], the
reconstruction of a function from discrete measurements has been extended in many
ways [106, 107]. In particular, Papoulis proposed the framework of generalized sam-
pling [108], where he showed that any bandlimited function f is uniquely determined
by the sequences of discrete measurements (generalized samples)

gn(kT ) = (hn ⇤ f)(kT ) = hf, n(·� kT )i, n = 1, ..., N, k 2 Z, (2.1)

where (gn(t))n=1,...,N are the outcome of N linearly independent systems applied
to f . The sampling is assumed to proceed at 1/N the Nyquist rate (i.e., T =
NTNyq = 2N⇡/!max, where !max is the maximum frequency of f). The functions
 n(t) = hn(�t), t 2 R, are called the analysis functions. They are the time-reversed
versions of the impulse responses. The sampling theorem was also generalized to
many different function spaces such as integer-shift-invariant spaces [109, 110], in-
cluding spline spaces [111, 112, 113]. Following this extension and Papoulis’ theory,
Unser and Zerubia introduced a framework to perform generalized sampling with-
out the bandlimited constraint [114, 115] which includes important cases such as
interlaced and derivative sampling in spline spaces. In this chapter, we adopt the
same framework and propose to reconstruct a function f from discrete samples
gn(k), k = 1, ..., N in an integer-shift-invariant space generated by a finite collec-
tion of generators as in some recent works [116, 117, 118]. The structure of such
reconstruction spaces has been thoroughly studied [119, 120, 121] and there exist
theoretical results that lead to the critical choice of relevant generating functions
[122]. As a minimal requirement to get a good approximation space, the generating
functions should satisfy jointly the partition-of-unity condition [123]. In addition,
there exists a tradeoff between the approximation power of the space and the size
of the support of the generating functions [124].
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2.2.2 Polynomial Splines
A polynomial spline is a piecewise polynomial function defined over the real line. Of
special interest are the splines of degree n because they provide one free parameter
per segment. They are defined by distinct knots and polynomial pieces of degree n
that are connected smoothly so that the global function has continuous derivatives
up to order (n�1). The splines whose knots are uniformly spaced are called cardinal
splines and they are relevant to many applications such as image processing [125].
In the 50s, Isaac Schoenberg laid the foundation of cardinal splines [126, 127] when
he showed that the set Sn of cardinal splines of degree n could be generated by
a single function [128], the B-spline of degree n. In this chapter we will consider
the causal B-spline and denote it by �n

+
. This simple building block is also the

shortest nonzero spline of degree n. Interestingly, the B-splines can be constructed
recursively with the relation

�n+1

+
= �n

+
⇤ �0

+
, (2.2)

starting from �0

+
, which is the rectangular window over [0, 1)

�0

+
(x) =

(
1, 0  x < 1

0, otherwise.
(2.3)

The convolution by �0

+
can be decomposed in two successive operations: an

integration (which transforms a spline of degree n into a spline of degree (n + 1))
followed by a finite difference (which gives back a compactly supported function).
Indeed, (f ⇤ �0

+
)(x) = �{

R
x

�1 f(t)dt}, where �{f} = (f(·)� f(·� 1)) is the finite
difference of f . Along with their great reproducing properties and shortest support,
B-splines allow an efficient and practical implementation, which is exploited in many
fields [129, 130, 131, 132].

2.2.3 Multi-Splines
To perform generalized sampling, it is natural to look at multi-spline spaces since
they offer additional degrees of freedom. A cardinal multi-spline space is defined
as the sum of N 2 N spline spaces: Sn = Sn1 + · · · + SnN

, n = (n1, ..., nN ) and
n1 < · · · < nN 2 N. From now on, any spline will be assumed to be a cardinal spline
unless stated otherwise. It is worth noting that, in the case of consecutive spaces
specified by nk = n1 + (k� 1), the resulting space is exactly the space of piecewise
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polynomials of degree nN that are in Cn1�1(R), the space of functions with (n1�1)
continuous derivatives (see Proposition 2.2). Some multi-spline spaces have proved
to be of great interest for derivative sampling, where the goal is to reconstruct
a signal from the samples of the function and of its first-order derivative. We
should mention the well-known bicubic Hermite splines (h1, h2), first introduced by
Schoenberg and Lipow in [133]. They constitute a basis of S2 +S3 with the shortest
support and provide the direct interpolation formula

8f 2 S2 + S3, 8x 2 R : f(x) =
X

k2Z

⇣
f(k)h1(x� k) + f

0
(k)h2(x� k)

⌘
, (2.4)

where f
0

= f (1) is the derivative of f . The excellent approximation capabilities
and minimal-support property of the Hermite splines [134] give a strong incentive
to investigate more general multi-spline spaces. The bicubic Hermite splines are
the backbone of many computer-graphics applications and closely linked to Bézier
curves [135, 136, 137, 138, 139]. Schoenberg and Lipow also found two fundamental
functions to reconstruct any function in S4+S5 from its samples and the samples of
its first-order derivative. Nonetheless, those functions are not well-suited to prac-
tical applications since they are not compactly supported.
Building on top of an impressive body of work from various communities, we pro-
pose a systematic study of shortest bases for any multi-spline space. In particular,
the main goal is to generalize the concept of B-splines to any multi-spline space.

The chapter is organized as follows: in Section 2.3, we formulate the problem in the
framework of finitely generated shift-invariant spaces. We then state the proper-
ties that relevant generating functions should satisfy. In Section 2.4, we show that
the conditions imposed can only be met if the sum of the support of the gener-
ating functions is large enough. In Section 2.5, we present a method to construct
shortest-support bases for any multi-spline space. This has important implications
in practice, which we illustrate in Section 2.6 where we give practical examples to
implement generalized sampling with the new set of functions, including interpola-
tion, derivative sampling, and a new way to envision Bézier curves.
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2.3 Formulation of the Problem
Let � = (�1,�2, . . . ,�N ) be a finite collection of functions in L2(R), Lebesgue’s
space of square-integrable functions. The integer-shift-invariant subspace of L2(R)
generated by � is denoted by S(�) and is defined as

S(�) = S(�1) + S(�2) + · · · + S(�N ), (2.5)

where
S(�n) = Span ({�n(·� k)}k2Z) ✓ L2(R), n = 1, . . . , N. (2.6)

We shall not restrict ourselves to multi-spline spaces for now and rather con-
sider finitely generated integer-shift-invariant spaces. To formulate the problem, we
recall three properties of � that have been imposed in previous works for practical
applications. Multi-spline spaces will then naturally stand out as practical and
important reconstruction spaces (Sections III and IV).

2.3.1 Riesz Basis
Definition 2.1. The set of functions {�n(·� k) : k 2 Z, n = 1, . . . , N} ⇢ L2(R) is
said to be a Riesz basis with bounds A, B 2 R with 0 < A  B < +1 if, for any
vector of square-summable sequences c = (c1, ..., cN ) 2 (`2(Z))N , we have that

A kck
`2


�����
X

k2Z
c[k]T�(·� k)

�����
L2(R)

 B kck
`2

, (2.7)

where kck`2 =
⇣P

N

n=1
kcnk2`2

⌘ 1
2
, � = (�1,�2, . . . ,�N ) and where A and B are the

tightest constants.

When this property is satisfied, we say that � generates a Riesz basis. The
Riesz-basis property guarantees that any f 2 S(�) has the unique and stable rep-
resentation ([140])

f(·) =
X

k2Z
c[k]T�(·� k) =

X

k2Z

NX

n=1

cn[k]�n(·� k). (2.8)
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This property is well characterized in the Fourier domain via the Gramian matrix-
valued function

Ĝ(!) =
X

k2Z
�̂(! + 2k⇡)�̂(! + 2k⇡)H =

X

k2Z
h�,�T (·� k)ie�j!k, (2.9)

where the inner product is defined as hf, gi =
R
R f(t)g⇤(t)dt, ⇤ is the complex

conjugate operator, and H is the conjugate transpose operator. Equality (2.9)
follows from Poisson’s formula applied to the sampling at the integers of the matrix-
valued autocorrelation function t 7! h�,�T (·� t)i = (�⇤�H_)(t)[141]. The Fourier
equivalent of the Riesz-basis condition is [120]

0 < A2 = ess inf
!2[0,2⇡)

�min(!)  ess sup
!2[0,2⇡)

�max(!) = B2 < +1, (2.10)

where �min(!) and �max(!) are the smallest and largest eigenvalues of Ĝ(!).

2.3.2 Reproducing Polynomials
Definition 2.2. The space S(�) is said to reproduce polynomials of degree up to
M if, for all m = 0, 1, ..., M , there exist vector sequences cm (not necessarily in
(`2(Z))N ) such that 1

8x 2 R, xm =
X

k2Z
cm[k]T�(x� k). (2.11)

Strang and Fix showed that the property of the reproduction of polynomials of
degree up to M is directly linked to the approximation power of the reconstruction
space [142]. More precisely, let

Sh(�) = {f(·/h) : f 2 S(�)} (2.12)

be the h-dilate of S(�). The space S(�) is said to have an approximation power
of order M if any sufficiently smooth and decaying function can be approached by
an element of Sh(�) with an error decaying as O(hM ). The so called “Strang-Fix
conditions" give sufficient conditions to have a space with an approximation power

1
for m = 0, we use in (2.11) the convention that xm = 1, including for x = 0.



2.4 Shortest Bases 37

of order M [134, 143, 144]. In particular, for compactly supported and integrable
generating functions, it is sufficient to have the space S(�) reproduce polynomials
of degree up to (M � 1). A straightforward implication is that the spline space Sn

has an approximation power of order (n + 1) since

(i) it can reproduce polynomials of degree up to n;

(ii) it can be generated by the compactly supported function �n

+
.

The multi-spline space Sn1 + · · ·+SnN
inherits the highest approximation power of

its spline spaces. Its approximation power is (nN +1), since SnN
⇢ Sn1 + · · ·+SnN

.

2.3.3 Compact Support

The evaluation of f 2 S(�) at a given x 2 R from its discrete representation
c 2 (`2(Z))N requires a number of computations more or less proportional to the
support size of �. So, ideally, we want to minimize the support of � while main-
taining a good approximation power [124]. The support of a function f 2 L2(R) is
written as supp(f) = {x 2 R : f(x) 6= 0}. If it is a compact subset of R, then the
support size is defined as |supp(f)| =

R
R supp(f)(t)dt, where supp(f) is the indi-

cator function of supp(f). For a finite collection of compactly supported functions
� = (�1, ...,�N ), the natural extension for the support size is

|supp(�)| =
NX

n=1

|supp(�n)|. (2.13)

In Section 2.4, we present theoretical results that clarify the relation between the
desired properties.

2.4 Shortest Bases
For a single generator � such that S(�) reproduces polynomials of degree up to M ,
Schoenberg stated that |supp(�)| �M +1 [126]. The result was proved in [145] for
N = 2. We now extend the proof to any N 2 N \ {0}.



38 Shortest-support Multi-Spline Bases

Theorem 2.1 (Minimal support). If S(�) = S(�1,�2, . . . ,�N ) reproduces polyno-
mials of degree up to M , then |supp(�)| �M + 1. In addition, if there is equality,
then

X

k2Z

NX

n=1

supp(�n)(x + k) = |supp(�)| for almost every x 2 R. (2.14)

Proof. If � is not compactly supported, then the inequality is clear. Now, we can
assume that � is compactly supported. This implies that, for any x 2 R, the
sum

P
k2Z c[k]T�(x� k) =

P
k2Z

P
N

n=1
cn[k]�n(x� k) has only a finite number of

nonzero terms that are identified by the set

⇤(x) = {(n, k) 2 {1, . . . , N}⇥ Z : x 2 supp(�n(·� k))} , (2.15)

and its cardinality

�(x) = #(⇤(x)) =
X

k2Z

NX

n=1

supp(�n)(x + k) 2 N. (2.16)

Equation (2.16) follows from the fact that supp(�n)(x+k) is 1 if and only if (n, k) 2
⇤(x) and 0 otherwise. The function x 7! �(x) is 1-periodic and bounded because
supp(�n) are compact subsets of R. Its average over one period reads (note that
the sums are in fact all finite)

� =

Z
1

0

NX

n=1

X

k2Z
supp(�n)(x + k)dx =

NX

n=1

X

k2Z

Z
1

0

supp(�n)(x + k)dx (2.17)

=
NX

n=1

Z 1

�1
supp(�n)(x)dx = |supp(�)|, (2.18)

where we applied Fubini’s Theorem in (2.17). Because � is bounded and takes
values in N, it only takes a finite number of values. Consequently, there exists a set
A ⇢ [0, 1] of nonzero measure such that � is constant on A and no greater than its
average, as in

8x 2 A : �(x) = �A  � = |supp(�)|. (2.19)
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The function #(⇤) restricted to A is constant, but this does not imply that ⇤ is
constant on A. Noting that A is bounded and that the �n are compactly supported,
the image of A under ⇤, denoted by ⇤(A), is a finite set. Therefore, there exists
B ⇢ A ⇢ [0, 1] of nonzero measure such that ⇤ is constant on B. This means that
the set S(�)|B of functions of S(�) restricted to B is spanned by �A functions
(�n(·� k))(n,k)2⇤(B).
Moreover, due to the reproducing property, the polynomials of degree up to M
restricted to B form a linear subspace of S(�)|B whose dimension is (M+1), because
B is infinite. Then, we must have that �A �M + 1 and, since �A  |supp(�)|, we
deduce the announced bound |supp(�)| �M + 1.
If � is not a.e. constant, then A can be chosen so that �A < � = |supp(�)| and
S(�)|B is spanned by fewer than |supp(�)| functions. The reproduction property
implies that |supp(�)| > M + 1. This means that the equality |supp(�)| = M + 1
is possible only if � is a.e. constant.

Following Theorem 2.1, we can introduce the central notion of shortest-support
basis.

Definition 2.3. A collection of functions � 2 (L2(R))N is said to be a shortest-
support basis of degree M if S(�) reproduces polynomials of degree up to M with
the shortest support, i.e. with |supp(�)| = M + 1.

The qualifier of basis comes from Theorem 2.2.

Theorem 2.2 (Shortest support and Riesz basis). Any shortest basis generates a
Riesz basis.

Before proving the theorem, we define the kth slice of any function f as

8x 2 R : Sk{f}(x) =

(
f(x + k), x 2 [0, 1)

0, otherwise,
(2.20)

and the set of nonzero slices of all the generating functions as

T (�) = {Sk{�n} : Sk{�n} 6⌘ 0 and k 2 Z, n = 1, ..., N}. (2.21)

The proof will also invoke Lemma 2.1.



40 Shortest-support Multi-Spline Bases

Lemma 2.1. Let � 2 (L2(R))N be compactly supported. If T (�) is a set of linearly
independent functions, then � generates a Riesz basis.

Proof. The generating functions can be expressed in terms of their slices as �n(x) =P
k2Z Sk{�n}(x� k). The Riesz-basis property is best characterized in the Fourier

domain with the Gramian matrix (note that, � being compactly supported, all the
sums are in fact finite), which leads to

(Ĝ(!))mn =
X

q2Z
h�m,�n(·� q)ie�j!q

=
X

q2Z

X

k12Z

X

k22Z
hSk1{�m}, Sk2{�n}(·� q � (k2 � k1))ie�j!q

=
X

k12Z

X

k22Z
hSk1{�m}, Sk2{�n}iej!(k2�k1)

= h
X

k12Z
Sk1{�m}e�j!k1 ,

X

k22Z
Sk2{�n}e�j!k2i

= h�̃m(!, ·), �̃n(!, ·)i, (2.22)

where �̃n(!, ·) is the finite weighted sum of slices

�̃n(!, x) =
X

k2Z
Sk{�n}(x)e�j!k. (2.23)

If, now, T (�) is a set of linearly independent functions, then, for any ! 2 R, the
functions (�̃n(!, ·))n=1,...,N are linearly independent because the sums are finite.
This means that Ĝ(!) is the Gramian matrix of a linearly independent family of
functions, which is known to be equivalent to det Ĝ(!) > 0. In addition g : ! 7!
det(Ĝ(!)) is a finite weighted sum of ej!k since � is compactly supported. It is
therefore continuous and 2⇡-periodic. The image of [0, 2⇡] under g is therefore a
closed interval such that

0 < ess inf
!2[0,2⇡]

min
!2[0,2⇡]

det(Ĝ(!)) < max
!2[0,2⇡]

det(Ĝ(!)) < +1. (2.24)

Noting that det(Ĝ(!)) is the product of the eigenvalues of Ĝ(!), Condition (2.10)
is satisfied, which means that � is a Riesz basis.
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Note that the converse of Lemma 2.1 is not necessarily true. For a counterexam-
ple, consider the function in (2.25) made of two side-by-side rectangles of different
height, so that

8x 2 R : �(x) =

8
><

>:

1, x 2 [0, 1)

↵, x 2 [1, 2)

0, otherwise.
(2.25)

In this case, with a single generator, the Gramian matrix is just a scalar and reads
ĝ(!) = (1 + ↵2) + 2↵ cos!, which verifies, for any ! 2 R, that

(1� |↵|)2  |ĝ(!)|  (1 + |↵|)2. (2.26)

So for |↵| 6= 1, � is a Riesz basis with bound A = (1� |↵|) and B = (1 + |↵|). Yet,
T (�) is clearly not a set of linearly independent functions since the second slice
is a scaled version of the first one. For a more practical counterexample, see [146,
Proposition 2.2.].

Lemma 2.2. Let � 2 (L2(R))N . If � is a shortest-support basis, then T (�) is a
set of linearly independent functions.

Proof. It is equivalent to prove the contrapositive of the lemma, which states that
if T (�) is not a set of linearly independent functions, then � is not a shortest-
support basis. To that end, suppose that T (�) is not a set of linearly independent
functions. This means that one can find a slice, say Sk0{�q0}, that depends linearly
on the others. Now, consider the integer-shift-invariant space generated by the set
of functions T (�)\{Sk0{�q0}}. Note that the new generating functions differ now
both in size (support size of at most 1) and in number (possibly greater than N).
On one hand, the new integer-shift-invariant space is larger than the initial space
and, in particular, is still able to reproduce polynomials of degree up to M . On
the other hand, the sum of the support size of the generating functions is smaller
than |supp(�)| because a nonzero slice was removed. So, � cannot be of minimal
support.

We can now prove Theorem 2.2.

Proof of Theorem 2.2. Let � 2 (L2(R))N be compactly supported. By contrapo-
sition, if it is not a Riesz basis, then T (�) is not a set of linearly independent
functions (Lemma 2.1). Then, by Lemma 2.2, � cannot be of minimal support.
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To conclude this section, we present two results for finitely generated integer-
shift-invariant spaces in preparation to a characterization of multi-spline spaces
(Theorem 2.4). The unit sample sequence is written �[·] and is defined by �[k] =(

1, k = 0

0, k 6= 0
, and its matrix version �N⇥N is defined by (�N⇥N )pq[·] =

(
�[·], p = q

0, p 6= q
.

Lemma 2.3. Let N, M 2 N, C 2 (RZ)N⇥M , B 2 (RZ)M⇥N . If the sequence of
matrices B is compactly supported and C ⇤B = �N⇥N , then M � N .

Proof. There exists s 2 N such that supp(B) ⇢ {�s, ..., s} ⇢ N. The behavior of
C[k] when |k|!1 is not known, and it is easier to work with the truncated version
Cm = {�s,...,ms} ⇥C, where m 2 N is a large enough integer m > 2N + 1. The
sequence of matrices Cm ⇤B is compactly supported and satisfies supp(Cm ⇤B) ⇢
{�2s, ..., (m + 1)s}. Following the properties of convolution of compact sequences,
we have, for any k = 0, ..., (m � 1)s, that Cm ⇤ B[k] = C ⇤ B[k] = �N⇥N [k].
Therefore, one can write that

Cm ⇤B = �N⇥N +
X

�2sk<0

(m�1)s+1k(m+1)s

Mk�[·� k], (2.27)

where Mk 2 RN⇥N are matrices that account for the fact that Cm is a truncated
version of C. This then translates into the following z-transform matrix relation
(note that all sequences are compactly supported so the z-transforms are well-
defined)

Ĉm(z)B̂(z) = IN⇥N +
X

�2sk<0

(m�1)s<k(m+1)s

z�kMk (2.28)

= MN⇥N +
�1X

k=�2s

z�kMk +

(m+1)sX

k=(m�1)s+1

z�kMk (2.29)

= z�2s
A(z), (2.30)

where A(z) can be decomposed as

A(z) = z2sIN⇥N + P (z) + z(m+1)s+1
Q(z), (2.31)
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where P (z) and Q(z) are polynomial matrices of degree (2s� 1). The determinant
of A(z) can be expressed in terms of the columns of IN⇥N ,P (z), and Q(z) (denoted
respectively ek,p

k
(z), and q

k
(z)), so that

det A(z) = det(z2se1 + p
1
(z) + z(m+1)s

q
1
(z), . . . , z2seN + p

N
(z) + z(m+1)s

q
N

(z)).
(2.32)

Knowing that the determinant is n-linear with respect to the columns, z 7! detA(z)
is a polynomial function of degree at most (m+3)sN . We now want to prove that it
cannot be identically zero. To that end, we expand the determinant with respect to
the columns and find that there is a unique term of the form �z2sN . It is obtained
by picking for k = 1, . . . , N the column ekz2s. The coefficient in front of z2sN is
therefore det(e1, . . . , eN ) = 1 6= 0. Indeed, for other combinations of columns in
the expansion, we would have that

• if at least one column of the form z(m+1)s
q

k
(z) is chosen, then it results in a

term of degree at least (m + 1)s > (2N + 2)s > 2sN ;

• else, at least one column of the form p
k
(z) is chosen. Since the degree of

p
k
(z) is lower than 2s, the resulting term in the expansion has a degree lower

than 2sN .

In the end, we proved that z 7! detA(z) cannot be identically zero. Therefore, there
exists z0 2 R so that rank(A(z0)) = N . It implies that N = rank(Ĉm(z0)B̂(z0)) 
min(rank(Ĉm(z0)), rank(B̂(z0)))  min(M, N) M .

Lemma 2.4. Let  2 (L2(R))M and ⌘ 2 (L2(R))N be two collections of compactly
supported functions that are able to reproduce each other (the reproducing sequences
might not be in `2(Z)). If ⌘ is a shortest-support basis, then M � N .

Proof. By hypothesis, there exist vector sequences cp 2 (RZ)M such that

⌘p =
X

k2Z
cp[k]T (·� k) = c

T

p
⇤ ,

which reads in matrix form

⌘ = C ⇤ , C 2 (RZ)N⇥M . (2.33)



44 Shortest-support Multi-Spline Bases

Similarly, one can write that

 = B ⇤ ⌘, B 2 (RZ)M⇥N . (2.34)

From Lemma 2.2, we know that the nonzero slices of ⌘ are linearly independent
(shortest-support basis). This implies that, to generate the compactly supported
function  , the sequence of matrices B must be compactly supported as well since
the only way to generate the zero function on a segment for ⌘ is to set the active
coefficient of B to 0. Now, one can mix the equations and find that

⌘ = C ⇤ (B ⇤ ⌘) = (C ⇤B) ⇤ ⌘. (2.35)

The associativity of the convolution operations is justified by the fact that both ⌘
and B are compactly supported, meaning that, for a given argument x, all sums
are finite. Because the slices of ⌘ are linearly independent, ⌘ can reproduce itself
in a unique way, which gives

C ⇤B = �N⇥N , (2.36)

We can now conclude that M � N with Lemma 2.3.

2.5 Multi-Spline Shortest Bases
With a single generator, the unique shortest basis of degree n 2 N (up to a scaling
and a shift operation) is the B-spline of degree n, which is a generator of Sn. For
multiple generators, it is natural to consider spaces generated by a finite number
of B-splines �n =

�
�n1

+
, ...,�nN

+

�
, where n = (n1, . . . , nN ) and n1 < . . . < nN .

In this way, the reproducing and approximation properties are inherited from the
higher-degree spline �nN

+
. Yet, multi-spline spaces are not generated optimally by

the classical B-splines.

Proposition 2.1. Let N 2 N \ {0} and n = (n1, . . . , nN ) with n1 < · · · < nN 2 N.
If N > 1, then �n =

�
�n1

+
, ...,�nN

+

�
is neither a shortest-support basis nor a Riesz

basis.

Proof. • The space S(�n) can reproduce polynomials of degree at most nN due
to the inclusion S(�nN

+
) ⇢ S(�). Moreover, the sum of the support of �n isP

N

m=1
(nm + 1) > nN + 1, which shows that the basis is not a shortest-support

one.
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• From the proof of Lemma 2.1, the Gramian matrix can be written

(Ĝ(!))pq = h�̃np(!, ·), �̃nq (!, ·)i, (2.37)

where �̃np(!, ·) is the finite weighted sum of slices

�̃np(!, x) =
X

k2Z
Sk{�np}(x)e�j!k. (2.38)

It is known that �
np

+
satisfies the partition of unity, meaning that, for any

x 2 R,
P

k2Z �
np

+
(x � k) = 1. In terms of slices, it means that �̃np(0, x) =

[0,1)(x). The functions (�̃np(0, ·))p=1,...,N are therefore not linearly independent
(because they are equal) and det Ĝ(0) = 0. As stated in the proof of Lemma
2.1, ! 7! det Ĝ(!) is a continuous function (because the B-splines are compactly
supported), meaning that

ess inf
!2[0,2⇡]

det Ĝ(!) = min
!2[0,2⇡]

det Ĝ(!) = 0. (2.39)

Following (2.10), �n cannot be a Riesz basis.

For N > 1, only few shortest bases are known, with the most prominent being
the Hermite splines presented by Lipow and Schoenberg [133]. They are solution
of the direct interpolation problem

find ⌘p 2 Sn,N : ⌘(⌫)

p
(k) =

(
1, if ⌫ = p and k = 0,

0, otherwise,
(2.40)

with k 2 Z, ⌫, p = 0, ..., (N � 1), and Sn,N = Sn + · · ·+Sn+N�1. The function ⌘p

has all its derivatives set to zero at the integers, except for the pth derivative that is
one at zero. The multi-spline space must be chosen so that ⌘p is sufficiently differ-
entiable, yielding the condition n � N . When n = N , shortest-support functions
were found (the Hermite splines, see plots [147] for instance) but, unfortunately,
in a higher-order approximation space, i.e. for n > N , the functions are not com-
pactly supported anymore. For instance, for derivative sampling (interpolate f and
f

0
), the smaller order of approximation solution (N = 2) is given by the cubic

Hermite-spline generators of S2 + S3.
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2.5.1 Consecutive Multi-Spline Spaces
The derivatives up to order (n � 1) of a compactly-supported spline of degree n
must vanish on the edges of the support. This constraint cannot be satisfied if
the function is too short. In particular, the shortest nonzero function of Sn has a
support size of (n+1) and, interestingly, it is precisely the B-spline of degree n. In
the special case of a consecutive multi-spline space Sn,N = Sn+Sn+1+· · ·+Sn+N�1,
this result can be directly extended. To that end, we define the space

Pm
0

m
= {p 2 Cm

0
(R) : p is a polynomial of degree m on each [k, k + 1), k 2 Z}.

(2.41)
Note that the space Pm

0

m
can be viewed as a spline space with knots of multiplicity

(m�m0 � 1) ([148, Section 5.11]). In our setting with simple knots, Pm
0

m
is rather

regarded as multi-spline space (Proposition 2.2).

Proposition 2.2. Let n, N > 0. Then Sn,N = Pn�1

n+N�1
.

Proof. The definition of a spline of degree n implies that, for q = 0, ..., N � 1, we
have that Sn+q ⇢ Pn�1

n+N�1
, from which we deduce that Sn,N ⇢ Pn�1

n+N�1
.

The other inclusion is proven by induction over N , with the induction hypothesis

HN : 8n 2 N, Pn�1

n+N�1
⇢ Sn,N . (2.42)

• For N = 1 and any n 2 N \ {0}, the result is directly given by the definition
of Sn,1 = Sn = Pn�1

n
.

• Suppose that HN holds for N 2 N⇤. Let p 2 Pn�1

n+N
. We have that p(n�1) 2

P 0

N+1
and, consequently, p(n) is a piecewise polynomial function with finite

jumps at the knots. There exists f0 2 S0 that has the same jumps on the knots
as p(n). Then, (p(n) � f0) is continuous on the integers, which implies that
(p(n)�f0) 2 P 0

N
. The induction hypothesis guarantees that (p(n)�f0) 2 S1,N

and, therefore, that p(n) 2 S0,N+1. After n integrations, we finally have that
p 2 Sn,N+1, which concludes the induction step and the proof.

For a given L 2 N, the space of functions in Pm
0

m
that are supported in [0, L] is

a vector space of the known finite dimension [149]

dim({p 2 Pm
0

m
: supp(p) ⇢ [0, L]}) = ((m�m0)L� (m0 + 1))+, (2.43)
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where x+ = max(0, x). Indeed, any p 2 Pm
0

m
supported in [0, L] is uniquely defined

by L pieces that are polynomials of degree m. So, L ⇥ (m + 1) coefficients have
to be set. The smoothness constraints imply that the pieces cannot be set inde-
pendently. On the first interval [0, 1), the (m + 1) coefficients must be chosen so
that p(0), ..., p(m

0
)(0) = 0, which leaves (m �m0) degrees of freedom. For the next

interval, (m + 1) new coefficients have to be set but the values p(0)(1), ..., p(m
0
)(1)

are already fixed, giving only (m � m0) new degrees of freedom. We see that
each interval provides (m � m0) extra degrees of freedom. In the end, there re-
main LN degrees of freedom. Now, to enforce that p 2 Pm

0

m
, we must have that

p(0)(L), ..., p(m
0
)(L) = 0. The total number of degrees of freedom gives the an-

nounced dimension ((m�m0)L� (m0 + 1))+.

Corollary 2.1. Let n, N, L 2 N. The set of functions of Sn,N that have their
support in [0, L] is a vector space of dimension (LN � n)+ = max(0, LN � n).

Corollary 2.2. Let the Euclidean division of n by N be written as n = pN + r.
Then, the shortest-support nonzero functions of Sn,N have a support size of (p+1).
Moreover, the set {f 2 Sn,N : supp(f) ⇢ [0, p + 1]} is a vector space of dimension
(N � r).

Proof. The set of functions of Sn,N that have their support in [0, L] is a vector
space of dimension (LN � n)+ (Corollary 2.1). To find at least one non-vanishing
function in the vector space, its dimension must be greater than one meaning that
(LN � n) � 1 , L � (n + 1)/N = p + (r + 1)/N . Knowing that L 2 N and
r < N , we conclude that one must have that L = (p + 1) to find a nonzero
compactly supported function. In this case, the dimension reads ((p + 1)N � n) =
(N + pN � n) = (N � r).

With a single generator, the shortest-support basis is provided by the shortest
function. In a consecutive multi-spline space, one would ideally take (N � r) func-
tions of size (p+1) (the shortest) and complete with r functions of size (p+2). This
would result in N functions with a total support size of (N � r)(p+1)+ r(p+2) =
Np + r + N = n + N = nN + 1, which is the objective for a shortest-support basis.
For nonconsecutive multi-spline spaces, similar results should exist, but in a more
complicated form.
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2.5.2 Existence and Construction of mB-Splines
Definition 2.4. A finite collection � of multi-spline functions is called an mB-
spline of degree n = (n1, . . . , nN ) with n1 < · · · < nN 2 N, if it is a shortest-support
basis of the space Sn.

mB-splines constitute a natural extension of B-splines. Similar to the latter,
mB-splines can be constructed recursively for any multi-spline space. Indeed, two
basic transformations (the “increment step" and the “insertion step") allow one to
convert a shortest-support basis of a given space into a shortest-support basis of
a different space. To simplify the explanation, we say that the collection � =
(�1, ...,�N ) 2 (L2(R))N of compactly supported functions is standardized if, for
n = 1, . . . , N , we have that

(i)
R
R �n(t)dt 2 {0, 1},

(ii) inf{t 2 R : �n(t) 6= 0} 2 [0, 1).

The second condition implies that the generating functions are causal, i.e.
�n(t < 0) = 0. Note that any � compactly supported can be standardized without
altering S(�).

Increment Step

The B-splines �n+1

+
can be constructed recursively by noting that

�n+1

+
(x) = �

⇢Z
x

�1
�n

+
(t)dt

�
, (2.44)

where � is the finite difference operator �{f}(x) = (f(x) � f(x � 1)). The inte-
gration increases the polynomial degree, along with the smoothness at the knots
(Step 1), while � ultimately returns a compactly supported function (Step 2). For
multiple generating functions, a similar two-step recursive approach is proposed.
The general process is mathematically detailed below, while an intuitive example
is proposed in Figure 2.1.

Suppose ⌘ = (⌘1, ..., ⌘N ) 2 (L2(R))N is an mB-spline of Sn1 + · · · + SnN
. The

goal is to find an mB-spline of Sn1+1 + · · · + SnN+1. It will be a generator with a
support size of (nN +2), able to reproduce the B-splines of degree n1 +1, ..., nN +1.
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Figure 2.1: Increment step that yields a shortest-support basis of S1 + S4 starting
from S0 + S3. (a) A shortest-support basis (⌘1, ⌘2) for S0 + S3 (|supp(⌘)| = 4).
(b) The integration of ⌘1 and ⌘2 results in two generators of S1 + S4, H1 and H2.
(c) To get compactly supported functions with the same generating properties, we
choose ✓1 = �H1 and ✓2 = (H1�H2). We found a shortest support-basis of S1+S4

(|supp(✓)| = 5).

Integration

The collection of functions ⌘ is able to reproduce the B-splines of degree n1, . . . , nN ,
that is, for any s 2 {1, ..., N} there exists a vector sequence c

s = (cs

1
, ..., cs

N
) (not

necessarily in (`2(Z))N ) so that

8x 2 R : �ns

+
(x) =

X

k2Z
c

s[k]T⌘(x� k). (2.45)

To justify the calculations to come, we assume that

cs

1
, ..., cs

N
are causal sequences, i.e., cs

n
[k] = 0 for any k < 0. (An)

The assumption (An) is not overly restrictive because it will hold for the starting
basis of our algorithm and then be preserved by the construction process. In the
end, all the bases constructed will be able to reproduce the B-splines with causal
sequences. Let H = (H1, ..., HN ) be defined as

H(x) =

Z
x

�1
⌘(t)dt. (2.46)
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The integration of equation (2.45), followed by the application of the operator �,
yields

�ns+1

+
(x) = �

(
X

k2Z
c

s[k]TH(x� k)

)
=
X

k2Z
c

s[k]T �{H}(x� k)

=
X

k2Z
c

s[k]T (H(x� k)�H(x� 1� k)) (2.47)

=
X

k2Z
(cs[k]T � c

s[k � 1]T )H(x� k). (2.48)

The assumption that cs

1
, ..., cs

N
are causal and the fact that H is also causal (because

⌘ is compactly supported and standardized) implies that, for any x 2 R, the sums
in (2.48) have a finite number of nonzero terms. This enables us to switch the
order of the operations (sum, integral, and �). Note that the sequence (cs[k]T �
c

s[k� 1]T )k2Z is causal. In short, H can reproduce (�n1+1

+
, ...,�nN+1

+
) with causal

sequences, but it is obviously not a shortest-support basis because its support is
infinite.

Finite Difference

The aim now is to find a basis with the same reproducing properties as H, but with
minimal support. To that end, we denote by s0 the index so that ⌘s0 is the shortest
function in ⌘ that satisfies

R
⌘s0 6= 0. It must exist; if not, the generating S(⌘)

would only contains zero-mean functions and could not reproduce the B-splines
that are not zero-mean. A shortest-support basis ✓ = (✓1, ..., ✓N ) is then given by

✓s =

8
><

>:

Hs if s 6= s0 and
R

⌘s(t)dt = 0

Hs �Hs0 if s 6= s0 and
R

⌘s(t)dt 6= 0

�Hs0 s = s0

(2.49)

Because ⌘ is compactly supported and standardized, the choice of s0 ensures that

|supp(✓s)| =

(
|supp(⌘s)| s 6= s0

|supp(⌘s0)| + 1 s = s0

(2.50)
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In short, |supp(✓)| = 1+ |supp(⌘)| = nN +2. Noting that Hs0 =
P

k2N ✓s0(·�k), it
is clear that ✓ can reproduce H with causal coefficients. It also implies that ✓ can
reproduce (�n1+1

+
, ...,�nN+1

+
) with causal coefficients (see (2.48)), which justifies the

assumption (An). In conclusion, ✓ is a shortest-support basis of Sn1+1+· · ·+SnN+1.

Insertion Step

The present step enables us to add a generator to a shortest-support basis. Suppose
⌘ = (⌘1, ..., ⌘N ) is a standardized shortest-support basis of Sn1 + · · · + SnN

and let
⌘

0 = (�, ⌘1, ..., ⌘N ), where � is the Dirac distribution. The increment step applied
to ⌘0 yields a shortest-support basis for S0 + Sn1+1 + · · · + SnN+1. Indeed, the
shortest function of ⌘ being �, the new basis ✓0 = (✓0

0
, ..., ✓0

N
) is given by

✓0
n

: x 7!

8
><

>:

�{
R

x

�1 �(t)dt} = �0

+
(x), n = 0R

x

�1 ⌘n(t)dt, n > 0 and
R

⌘n(t)dt = 0R
x

�1(⌘n(t)� �(t))dt, n > 0 and
R

⌘n(t)dt 6= 0.

(2.51)

Because ⌘ is compactly supported and standardized, we have that

|supp(✓0
n
)| =

(
1, n = 0

|supp(⌘n)|, otherwise,

which means that |supp(✓0)| = |supp(⌘0)| + 1 = nN + 2. The process also ensures
that ✓0 is a shortest-support basis of S0 + Sn1+1 + · · · + SnN+1.

Theorem 2.3. Let n1 < · · · < nN 2 N \ {0}. There exists an mB-spline ⌘ =
(⌘1, ..., ⌘N ) 2 (L2(R))N of Sn1 + · · · + SnN

that can be constructed recursively with
increment and insertion steps.

Proof. The increment and insertion steps are sufficient to construct an mB-spline
for any multi-spline space. Indeed, take ⌘0 = (�nN �nN�1�1

+
) a shortest sup-

port basis for SnN �nN�1�1. The insertion step gives a shortest-support basis for
S0+SnN �nN�1 . After (nN�1�nN�2�1) increment steps and one insertion step, the
process gives a shortest-support basis for S0 + SnN�1�nN�2 + SnN �nN�2 . By itera-
tion, a shortest-support basis for S0 +Sn2�n1 + · · ·+SnN �n1 is obtained. Applying
n1 increment steps, we finally obtain a shortest-support basis for Sn1 +· · ·+SnN
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Examples of mB-splines will be provided in Section 2.6. Note that our algorithm
does not always output functions with the most practical form. This is corrected
by appropriate linear combinations and, possibly, translations that do not alter the
reproducing properties and the support size. For instance, for the space S2+S3, our
construction will need a simple linear combination to obtain the wellknown bicubic
Hermite splines. We conclude this section with a result on the minimal number of
generating functions required to generate multi-spline spaces.

Theorem 2.4. Let n1 < · · · < nN 2 N \ {0}. The space Sn = Sn1 + · · · + SnN

cannot be generated by fewer than N compactly supported generating functions.

Proof. From Theorem 2.3, there exists an mB-spline of Sn composed of N functions,
say, ⌘ = (⌘1, . . . , ⌘N ) 2 (Sn)N . Let  = ( 1, ..., M ) 2 (Sn)M be a collection of
compactly supported functions able to generate Sn. It means that ⌘ and  can
reproduce each other and, by Lemma 2.4, M � N .

Note that N is a lower bound and the number of generating function of a
shortest-support basis can exceed N . For instance, take ⌘ = (⌘1, ⌘2) with

⌘1 : x 7! �0(2x) = [0,1/2)(x) (2.52)
⌘2 : x 7! �0(2(x� 1/2)) = [1/2,1)(x). (2.53)

Since ⌘1 + ⌘2 = �0, ⌘ can reproduce S0. In addition, the fact that |supp(⌘)| = 1
means that it is a shortest-support basis of degree 0 and now it is composed of two
generating functions. (Note that the space they generate is larger than S0).

2.6 Applications

2.6.1 Generalized Sampling in Multi-Spline Spaces
We consider a multi-spline space Sn along with the N -component mB-spline � =
(�1, . . . ,�N ) and some corresponding analysis functions  = ( 1, . . . , N ). As we
now show, the generalized-sampling formulation presented in [114] can be extended
to multiple generators. Let H be a space considerably larger than S(�). Consider
f 2 H, from which we know only some discrete measurements (g[n])n2Z written

g[n] = h (·� n), fi = (h 1(·� n), fi, ..., h N (·� n), fi).
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To construct an approximation f̃ 2 S(�) of f , a standard way is to enforce consis-
tency [110, 115], in the sense that f and f̃ must give the same measurements. This
formulation generalizes the notion of interpolation. For instance, to interpolate the
value of f and its derivative at the sampling locations, take  1 = � and  2 = �

0
.

In such a case, consistency simply means that f and f̃ should have the same value
and the same derivative at the grid points. In general, the consistency requirement
translates into

h (·� n), fi = h (·� n), f̃i

=
X

k2Z
h (·� n),�T (·� k)i · c[k]

=
X

k2Z
h (·� (n� k)),�T i · c[k]

= (A� ⇤ c)[n] (2.54)

where (c[n])n2Z is the unique vector sequence representing f̃ =
P

k2Z c[k]T�(·�k)

and A� [n] = h (·� n),�T (·)i is the matrix-valued sequence of the measurements
of the basis functions. To solve our problem, we rely on the theory of signal and
systems, including the z-transform. Indeed, with this framework efficient imple-
mentation techniques naturally stand out. When the matrix-valued filter A� is
invertible (see [114, Proposition 1] for the invertibility condition), the vector c of
sequences can be computed from the measurements by applying the matrix-valued
inverse filter Q, like in

c[n] = (Q ⇤ g)[n]. (2.55)

Its transfer function verifies in the z-domain Q̂(z) = Â
�1

� (z). This matrix filter
has not necessarily a finite impulse response (FIR) but it can be decomposed as
Q̂(z) = 1

det Â� (z)
com(Â� (z))T , where com(Â� ) denotes the cofactor matrix of

Â� . For compactly supported analysis functions, the comatrix com(Â(z)) is FIR
because it is a Laurent polynomial in z, so it is straightforward to implement. On
the contrary, 1

det Â� (z)
is often not FIR. Nonetheless, it can usually be implemented

efficiently too, using the same techniques as in [132].
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Online Interactive Tutorial Some examples are implemented in an online in-
teractive demo 2, a screenshot being provided in Figure 2.3. The user can control
the discrete measurements of a function (value, derivative), choose a multi-spline
reconstruction space, and see in live the reconstructed function.

2.6.2 Derivative Sampling with High-Degree Multi-Splines
in S2p + S2p+1

The derivative sampling problem reads for f 2 H

find f̃ 2 Sn :

(
f̃(k) = f(k)

f̃
0
(k) = f

0
(k)

, k 2 Z. (2.56)

The most relevant reconstruction spaces have the form Sn = S2p + S2p+1. The
underlying reason is that the filter complexity is the same for the spaces S2p+S2p+1

and S2p�1 + S2p, so, the higher degree is preferred (the filter has 2(p � 1) roots).
Note that the same occurs when one performs classical interpolation with B-splines
and odd degrees are usually preferred. To the best of our knowledge, when p > 1, no
solution based on shortest-support bases and recursive filtering has been proposed so
far. Our construction of shortest-bases results in the functions ⌘1 and ⌘2. They have
a support size (p+1) and are plotted in Figure 2.2. Due to the symmetry properties
of those functions, the entries of Â� (z) have poles that come in reciprocal pairs.
Consequently, the inverse matrix filter can be implemented with efficient recursive
techniques, as detailed in [131, 132].
The case of quintic-degree derivative sampling is detailed now. The basis functions
are specified in Table 2.1. The z-transform of the filter Â� (z) reads

Â� (z) =

"
z

�1
+z

�2

2

z
�1�z

�2

2

5(z
�1�z

�2
)

4

5(z
�1

+z
�2

)

8

#
. (2.57)

It follows that the transpose comatrix satisfies

com(Â(z))T
z ���! 1

2

"
5(�[·�1]+�[·�2])

4
��[·� 1] + �[·� 2]

� 5(�[·�1]��[·�2])

2
�[·� 1] + �[·� 2]

#
(2.58)

2https://bigsplinesepfl.github.io/

https://bigsplinesepfl.github.io/


2.6 Applications 55

Figure 2.2: Shortest-support bases for derivative sampling, obtained with the
shortest-basis algorithm and some linear combinations to get a symmetric and an
antisymmetric function. (a) The well-known bicubic Hermite splines. (b)-(c)-(d)
New bases for derivative sampling with high-degree splines. These functions are
piecewise polynomials of degree 5, 7, 9 with continuity of the derivatives of order
3, 5, 7, respectively.

and the determinant
z�1

det Â(z)
=

16

5

�z

(1� z0z�1)(1� z�1

0
z�1)

z ���! d[n], (2.59)

where z0 = (3 � 2
p

2). This means that the convolution of any sequence with d
can be implemented recursively. Interestingly, it is the same inverse filter as in
cubic-spline interpolation. The reader can therefore refer to [125] for a detailed
explanation of the implementation. The expansion coefficients can be evaluated as

c1 = d ⇤
✓

5

8
�+{f}� 1

2
�{f

0
}
◆

c2 = d ⇤
✓
�5

4
�{f} +

1

2
�+{f

0
}
◆

, (2.60)

where �+{f}[k] = f [k] + f [k � 1]. Finally, the multi-spline that is consistent with
the measurements is given by

f̃(x) =
X

k2Z
c1[k]⌘1(x� k) +

X

k2Z
c2[k]⌘2(x� k). (2.61)
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slice # x0

k
x1

k
x2

k
x3

k
x4

k
x5

k
x6

k
x7

k

S2 + S3

⌘1
k = 0 -3 2
k = 1 1 -3 1

⌘2
k = 0 -1 1
k = 1 1 -2 1

S4 + S5

4⌘1
k = 0 5 -3
k = 1 2 5 -10 5
k = 2 2 -5 10 -10 3

8⌘2
k = 0 15 -11
k = 1 4 5 -20 -50 95 -38
k = 2 -4 5 20 -50 40 -11

S6 + S7

108⌘1

k = 0 21 -11
k = 1 10 49 84 35 -70 -105 112 -27
k = 2 88 -168 140 -77 27
k = 3 10 -49 84 -35 -70 105 -56 11

918

5
⌘2

k = 0 42 -25
k = 1 17 77 105 -35 -245 -273 539 -185
k = 2 -224 560 -924 756 -185
k = 3 -17 77 -105 -35 245 -273 133 -25

Table 2.1: Slices of shortest-support bases for derivative sampling. The slices are
given as linear combinations of the shifted monomials xn

k
= (x�k)n if x 2 [k, k+1)

and xn

k
= 0 otherwise.

Derivative Sampling in S2 + S3 + S4

Here, we consider the setting  = (�, �
0
, �(·� 1/2)), which means that the value of

the function to be reconstructed is sampled twice more often than its derivative.
The specification of S2 + S3 + S4 as reconstruction space provides then an explicit
interpolation formula, which involves the shortest-support basis ⌘, plotted in Figure
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Figure 2.3: Derivative sampling with optimal bases. The solid curve lies in S2 +S3

(cubic piecewise polynomials with continuous derivative) and the dashed curve lies
in S4 + S5 (quintic piecewise polynomials with continuous third derivative).

2.4. This formula reads

f̃(x) =
X

k2Z
(f(k)⌘1(x� k) + f 0(k)⌘2(x� k) + f(k + 1/2)⌘3(x� k)) . (2.62)

More generally, we observed that the addition of N consecutive spline spaces to
S2 + S3 (i.e., choosing S2 + S3 + · · · + S3+N ) allows one to perform derivative
sampling and interpolate the function N times between the integers with a direct
interpolation formula.

Direct Derivative Sampling in S2 + · · · + S2p+1

The space S2 + S3 + S4 + S5 is also well suited for derivative sampling with
 = (�, �0, �(· � 1/2), �0(· � 1/2)) because of the structure of its shortest-support
generating functions ⌘1, ⌘2, ⌘3, and ⌘4 (Figure 2.5). Indeed, it yields the direct
interpolation formula

f̃(x) =
X

k2Z
f(k + 1/2)⌘1(x� k) + f(k)⌘2(x� k + 1) (2.63)

+f 0(k + 1/2)⌘3(x� k) + f 0(k)⌘4(x� k + 1). (2.64)
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Figure 2.4: Shortest basis of S2 + S3 + S4 associated to the analysis functions
 = (�, �

0
, �(·� 1/2)).

Figure 2.5: Shortest basis of S2 + S3 + S4 + S5 for direct derivative sampling.

The sampling step is 1/2, but the spline knots are still located at the integers. Note
that the sampling step can be tuned at will by dilation of the generating functions.
More generally, we conjecture that there exist basis functions with the interpolatory
property for any space of the form S2 + · · ·+S2p+1 and the sampling step 1/p. This
conjecture was verified for p = 1 (bicubic Hermite splines), p = 2 (Figure 2.5) and
p 2 {3, 4}.
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2.6.3 Classical Interpolation

The classical interpolation problem reads for f 2 H

find f̃ 2 Sn : f(k) = f̃(k), k 2 Z. (2.65)

When the number N of generating functions is greater than 1, we have two equiv-
alent options, (i) to sample the function f with the sampling step 1/N , and (ii) to
dilate the generators by a factor of N , keeping a unit sampling step. We present
the result in accordance with Option (i).

Modified Lagrange Polynomials in S1 + · · · + SN

Classical interpolation is well solved by B-splines but, starting from degree 2, the
filter is neither FIR nor causal. Exact operations such as local interpolation or
interpolation with a finite delay are therefore not possible. Some workarounds exist
[150]; we present now one that is based on modified Lagrange polynomials. Let
l = (l1, . . . , lN ) be a collection of N generating function such that, for x 2 [0, 1],
lq(x) =

Q
N

p=0

p 6=q

Nx�p

q�p
. In this way, when q = 1, . . . , (N � 1), lq is zero at x = 0 and

x = 1 so it can be set to zero for x 62 [0, 1] and lq 2 S1. Noting that lN (1) = 1,
to make sure that lN 2 S1, we extend its support to [1, 2] and set, 8x 2 [1, 2],
lN (x) = lN (2 � x) (see Figure 2.6). These functions constitute a shortest-support
basis of S1 + · · · + SN and give a direct interpolation formula. Interestingly, those
basis functions are sometimes used for finite-element methods [151].

Bi-Spline Classical Interpolation in S2p+1 + S2p+2

A bi-spline is the sum of two splines of different degrees, and it can be used to per-
form classical interpolation. In particular, interpolation in the reconstruction space
Sn = S2p+1 + S2p+2 leads to a filter with p pairs of reciprocal roots. In terms of
filtering, it has therefore the same complexity as for the interpolation inverse filter
associated with the single space S2p+1. Shortest-support basis functions for such
spaces are plotted in Figure 2.7. We now detail how this interpolation is performed
for S3 + S4, keeping in mind that the other cases are similar.
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Figure 2.6: Shortest-support basis for S1 + · · · + SN . The basis functions are
continuous and able to reproduce any polynomial of degree up to N .

Figure 2.7: Shortest bi-spline bases for classical interpolation with a half-integer
sampling step. (a) In S1 + S2, the functions presented give a direct interpolation
formula. (b) (c) (d) The functions are piecewise polynomials of degree 4, 6, 8 with
continuity of the derivatives of order 2, 4, 6 respectively. To perform interpolation,
a filter with 2, 4, 6 roots respectively has to be inverted.



2.6 Applications 61

The z-transform of the filter Â� (z) reads

Â� (z) =

"
z

�1

2

z
�1

+z
�2

4

5(z
�1

+z
�2

)

32

5(z
�1

+z
�3

)+210z
�2

320

#
, (2.66)

while the z-transform of the inverse filter can be decomposed as

Q̂(z) = p̂(z)P̂ (z), (2.67)

where

P̂ (z) =

"
5(1+z

�2
)+210z

�1

320
� 1+z

�1

4

� 5(1+z
�1

)

32

1

2

#
(2.68)

and
p̂(z) =

32

(1� z0z�1)(1� z�1

0
z�1)

(2.69)

with z0 = (4�
p

15). The final steps are identical to the detailed case of derivative
sampling (recursive filtering).

2.6.4 Bézier Curves and Computer Graphics in S1 + S2 + S3

and S1 + S2

In this section, we use our multi-spline formulation to revisit some Bézier curves
and, in particular, the cubic Bézier curves that are popular in computer graphics.
Each portion of the curve is a cubic polynomial defined by four control points.

• Starting point and ending point of the portion.

• Two handles that control the tangent of the curve at each extremity of the
portion.

Thus, the value of the function and its left and right derivatives are controlled on
the knots. From a multi-spline perspective, any cubic Bézier curve lies in the space
S1 + S2 + S3. With the well chosen generating functions ⌘1, ⌘2, and ⌘3 plotted in
Figure 2.8, the interpolation formula is explicit and reads

f̃(x) =
X

k2Z
f(k)⌘1(x� k) +

X

k2Z
f

0
(k�)⌘2(x� k) +

X

k2Z
f

0
(k+)⌘3(x� k), (2.70)
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2

Figure 2.8: Shortest-support bases for application in classical computer-graphics.
(a) Shortest basis for S1 + S2. The function ⌘1 controls the value of the function
on the knots while ⌘2 controls the left derivative on the knots. These functions
reproduce any quadratic Bézier curve. (b) Shortest basis for S1 + S2 + S3. The
function ⌘1 controls the value of the function on the knots while ⌘2 and ⌘3 control
the left and right derivatives, respectively, on the knots. These functions can re-
produce any cubic Bézier curve with the shortest support. They also give a simple
interpretation of such curves.

where f 0(k�) and f 0(k+) denote the left and right derivatives at k, respectively.
Interestingly, ⌘2 and ⌘3 can be obtained from the bi-cubic Hermite splines, by
splitting the antisymmetric function into two functions (see Figure 2.2 (a)). It
gives a simple interpretation to cubic Bézier curves as illustrated in Figure 2.9.
Similarly, quadratic Bézier curves are also multi-splines, this time associated to the
space S1 + S2 (Figure 2.8).

2.6.5 Nonconsecutive Bi-spline Spaces

Nonconsecutive multi-spline spaces are relevant to represent signals that have com-
ponents of different regularity [152]. For instance, the space S0 + Sp, with p > 0,
consists of smooth signals with sharp jumps. In Figure 2.10, we show shortest-
support bases of S0 +Sp, for p 2 {2, 3, 4}, that were obtained with our construction
algorithm.
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Figure 2.9: Screenshot from the online demo. The shortest basis of the space
S1 + S2 + S3 allows one to control the value of the function (green dots) and the
left/right derivatives (handles). It yields the same curve as with standard vector-
graphics editors relying on cubic Bézier curves. In this figure, the parametric curves
are two-dimensional and the interpolation is performed component-wise.

Figure 2.10: (a) (b) (c) Shortest-support bases for the spaces S0 + S2, S0 + S3 and
S0 + S4. (d) An example of a hybrid bi-spline that lies in the space S0 + S4.
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2.7 Conclusion
In this chapter, we have introduced the notion of shortest-support bases of degree
M . They are the shortest-support collections of functions that generate a recon-
struction space with an approximation power of order (M + 1). We proved that
shortest-support bases necessarily generate Riesz bases, a minimal requirement for
practical applications. With a single generator, the unique shortest-support basis
of degree M is the well-known B-spline of degree M . We extended this notion
to multiple generators and proposed a recursive method that yields shortest bases
for any multi-spline space. These new sets of functions helped us transpose the
efficient reconstruction techniques developed for B-splines, and perform generalized
sampling. In particular, we have provided a method to perform fast derivative sam-
pling with any approximation power. Finally, we presented a new way to approach
some Bézier curves.



Chapter 3

Stable Parameterization of

Continuous and

Piecewise-Linear Functions

The text of this chapter is adapted from the published article
A. Goujon, J. Campos and M. Unser “Stable parameterization of continuous and

piecewise-linear functions”, Applied and Computational Harmonic Analysis, volume
67, paper 101581, November 2023.

Summary
Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep
learning, generate continuous and piecewise-linear (CPWL) functions. While they
provide a powerful parametric representation, the mapping between the parameter
and function spaces lacks stability. In this chapter, we investigate an alternative
representation of CPWL functions that relies on local hat basis functions and that
is applicable to low-dimensional regression problems. It is predicated on the fact
that any CPWL function can be specified by a triangulation and its values at the
grid points. We give the necessary and sufficient condition on the triangulation (in

65
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any number of dimensions and with any number of vertices) for the hat functions
to form a Riesz basis, which ensures that the link between the parameters and
the corresponding CPWL function is stable and unique. In addition, we provide
an estimate of the `2 ! L2 condition number of this local representation. As a
special case of our framework, we focus on a systematic parameterization of Rd

with control points placed on a uniform grid. In particular, we choose hat basis
functions that are shifted replicas of a single linear box spline. In this setting, we
prove that our general estimate of the condition number is exact. We also relate
the local representation to a nonlocal one based on shifts of a causal ReLU-like
function. Finally, we indicate how to efficiently estimate the Lipschitz constant of
the CPWL mapping.

3.1 Introduction

3.1.1 Continuous and Piecewise-Linear Functions for Super-
vised Learning

The purpose of supervised learning is to reconstruct an unknown mapping from a
set of samples [153]. Namely, given a collection of training data pairs (vk, yk) 2
Rd ⇥ R for k = 1, . . . , K, one wants to find f : Rd ! R such that f(vk) ⇡ yk for
k = 1, . . . , K, without overfitting. As such, the problem is ill-posed. To make it
numerically tractable, a reconstruction space H is chosen as the image of a finite-
dimensional parameter space ⇥ under a given synthesis operator T : ⇥! H. This
operator maps a parameter ✓ 2 ⇥ to its continuous representation T{✓} 2 H. A
celebrated way to choose the synthesis operator is to pick a feedforward neural-
network architecture. Given the multidimensional parameter ✓ = (✓1, . . . ,✓L+1) 2
⇥, we then have that

T{✓} = (f✓L+1
� �L � f✓L

� �L�1 � · · · � �2 � f✓2
� �1 � f✓1

), (3.1)

where L is the number of hidden layers of the neural network, f✓k
: Rdk ! Rdk+1

is an affine function parameterized by ✓k, and �k is an activation function that is
chosen a priori. For the model to be able to generate a function space with good
approximation properties, the activation functions need to be nonaffine—otherwise,
the generated function would remain trivially affine. The pointwise rectified-linear
unit (ReLU) x 7! max(x, 0) is one of the most popular activation functions and it
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usually provides state-of-the-art performance [154, 155]. In this case, T{✓} is the
composition of continuous piecewise-linear (CPWL) functions, which turns out to
be a CPWL function as well [70]. The reverse also holds true: any CPWL function
Rd ! R can be parameterized by a deep neural network with at most dlog

2
(d+1)e

hidden layers [156]. The depth of the architecture is instrumental to improve the
approximation power of the network [70, 157, 158] and its generalization ability
[159], but it is an obstacle to the control of the model. For instance, to control
the Lipschitz constant of a feedforward neural network, state-of-the-art techniques
rely on theoretical upper bounds whose tightness degrades each time a new layer
is added [160, 48]. The depth also makes it hard to determine the role of each
parameter in the constructed mapping.

3.1.2 Linear Expansion of Continuous and Piecewise-Linear
Functions

More interpretable representations of CPWL functions are provided by linear ex-
pansions. They boil down to two families: local and nonlocal representations (Fig-
ure 3.1).

Local Representation

In dimension d = 1, any CPWL function f can be represented by the linear expan-
sion f =

P
k
f(vk)�k, where the �k are the underlying triangular B-spline functions

[128](Figure 3.1, upper left) and the {vk} are the knots of f , where the slope of f
changes. In dimension d > 1, the knots are replaced by a triangulation of the set
{vk} of vertices, which partitions the input domain into simplices. These simplices
are the convex hull of a subset of (d + 1) vertices and will serve to define the linear
regions of f . Given an appropriate triangulation, any CPWL function can be rep-
resented by the linear expansion f =

P
k
f(vk)�k, where the �k now denote the hat

functions—a.k.a. nodal basis functions or tent-shaped linear basis functions—that
correspond to the triangulation [161] (Figure 3.1, upper right). Each basis function
�k is defined as the unique CPWL function that satisfies �k(vq) = 1 for k = q and
�k(vq) = 0 otherwise, and that is affine over each simplex of the triangulation. The
�k are locally supported, hence the attribute local. When the vertices are regularly
spaced so that they coincide with the sites of a lattice, the hat functions can be
chosen as translates of a unique function, namely, a linear box spline [162, 163].
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B-spline (degree 1) Hat function

    Generalized hinging hyperplaneReLU

Figure 3.1: Local and nonlocal building bricks of CPWL functions, from dimension
1 to any dimension. Notice that the nonlocal basis functions have several equivalent
variations; only the ReLU-like one is shown in this figure.

There exist recent works that leverage the explicit representation offered by the
local parameterization to learn a CPWL function f for regression tasks. Since the
partition of f is known and typically not learned, it is possible to regularize the
function during training with an explicit regularizer. For instance, one can use the
total roughness of f [164, 165, 166] or the Hessian total variation of f [167, 168],
which is not possible with neural networks (NNs). With NNs, it is more common
to regularize the parameters, which yields an implicit regularization on the learned
mapping that is hard to understand. The global knowledge of the function offered
by the local parameterization has, however, a cost. Since the linear regions are fixed,
it suffers from the curse of dimensionality. To partially overcome this limitation, it
was proposed in [165] to use the local parameterization on subspaces of the features
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along with ensemble techniques.

Nonlocal Representations

In dimension d = 1, a CPWL function f with control points vk can also be repre-
sented by the nonlocal representation [169]

f(x) = a0 + a1(x� v1) +
K�1X

k=2

akReLU(x� vk). (3.2)

Note that (3.2) is one instance out of many nonlocal representations, another one
being f(x) = c0+c1(x�v1)+

P
K�1

k=2
ck |x� vk|. The generalization to any dimension

is due to Wang and Sun [170]. Their generalized hinging-hyperplanes (GHH) model
can represent any CPWL function as f(x) =

P
k
✏k max(fk

1
(x), . . . , fk

mk
(x)), where

fk

1
, . . . , fk

mk
are affine functions, ✏k = ±1, and mk  d+ 1. This expansion has also

different variations and can be recast as f(x) =
P

k
✏k max(gk

1
(x), . . . , gk

mk�1
(x))+,

where gk

1
, . . . , gk

mk�1
are affine functions, ✏k = ±1, mk  d + 1, and for any x 2 R,

(x)+ := max(x, 0) = ReLU(x).
The basis functions of nonlocal representations are the building blocks of many

feedforward neural networks. They play the role of activation functions, including
ReLU, leaky ReLU, PReLU, CReLU, and Maxout [154, 171, 172, 173, 174].

3.1.3 Stability of the Parameterizations
The stability of a parameterization can be analyzed through various metrics, in-
cluding the condition number and the Lipschitz constant of appropriate mappings
(see Section 3.2 for the mathematical definitions).

Condition Number of the Interpolation Problem: Consider the problem
of finding the parameter ✓ such that T{✓} interpolates the data (vk, yk). For
linear models, this amounts to solving a system of linear equations with unknown ✓
and input (yk). The stability of this problem is usually quantified via its condition
number, which is the ratio of the largest to the smallest singular value of the system
matrix. For the local representation, the explicit solution is f =

P
k
yk�k in any

dimension. The associated condition number is unity and optimal. The situation
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Local Nonlocal

Figure 3.2: Linear expansions of two nearly identical CPWL one-dimensional func-
tions (solid thick blue line and mixed thick orange line). The weighted basis func-
tions are represented with thin lines (solid gray and solid orange respectively if
different). Left: the local expansions of the two curves are very similar. Right: the
small difference between the two curves induces a great difference in their nonlocal
parameterization.

is less favorable for nonlocal representations. In Figure 3.2, we illustrate a case
where a small change in a single target value implies a significant change of the
nonlocal parameter ✓ for T{✓} to remain interpolatory. In Appendix 3.8, we prove
that the interpolation condition number given K data points is at least O(K3/2) for
the nonlocal representation (3.2) in the one-dimensional case. Thus the problem is
generally ill-conditioned.

Riesz Basis and Riesz Ratio: In the context of the local parameterization, we
consider the parameter space `2(Z) of finite-energy sequences and equip the function
space with the L2 norm. Although the collection (�k) of the local atoms is not an
orthonormal basis, it forms a Riesz basis under weak conditions [175, 176]. This
means that (�k) is the image of an orthonormal basis under a bounded invertible
linear operator. This guarantees that the synthesis operator T is a bounded linear
bijection from `2(Z) to H ⇢ L2(Rd) and allows us to define the condition number
of T , referred to as the Riesz ratio in the sequel. The Riesz basis is a standard
requirement in many signal-processing theories and finite-elements methods [109,
120, 144, 177, 178] within a broad spectrum of applications. To the best of our
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knowledge, the exact Riesz bounds of linear box splines are not known in high
dimensions and the case of arbitrary triangulations has not been addressed in full
generality so far.

In the context of a the nonlocal representation, since the basis functions do not
belong to L2(Rd), the synthesis operator T : ⇥! H is ill-conditioned, in the sense
that a small change of ✓ can lead to arbitrarily large changes in kT{✓}kL2 . In
other words, it is not possible to form a Riesz basis with nonlocal CPWL atoms.
Consequently, the associated guarantees on stability disappear.

Since the condition number of the interpolation problem is always 1 for the local
parameterization, we shall only concentrate on the Riesz ratio in the remainder of
this chapter, as the latter requires a more involved analysis.

Lipschitz Constant: Beyond the stability of the synthesis operator, in many
learning applications, it is also highly desirable to control the stability of the input-
output mapping. For instance, neural networks with controlled Lipschitz constants
tend to generalize better [179, 180, 181], to be more robust against adversarial
attacks [182, 183, 184, 185], and to be more interpretable [184, 186]. Despite many
recent advances to control the Lipschitz constant of deep models [80, 81, 82, 187], it
remains very challenging to learn compositional models under a Lipschitz constraint
[188]. This results from the fact that the determination of the Lipschitz constant
of a ReLU network is already NP-hard as soon as there is one hidden layer [48].

3.1.4 Contributions and Outline

In this chapter, we propose to investigate in any dimension the stability of the
local parameterization of CPWL functions with the hope to bring detailed results
against which other parameterizations could be compared. We define the Riesz
ratio in Section 3.2 and establish a few preliminary results in Section 3.3. We
then derive in Section 3.4 an upper bound on the Riesz ratio that is applicable
to any triangulation and that considers the worst case scenario. We also propose
a complementary stochastic framework that addresses better an average behavior
instead. In Section 3.5, we show that our upper bound on the Riesz ratio is exact for
linear box splines. Finally, in Section 3.6, we show that the local parameterization
gives access to the Lipschitz constant of the map and we provide novel fast-to-
evaluate upper and lower bounds on the Lipschitz constant.
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3.2 Mathematical Preliminaries

3.2.1 Simplicial Continuous and Piecewise-Linear Functions

Definition 3.1. A function f : Rd ! R is continuous and piecewise-linear (CPWL)
if it is continuous and if there exist distinct affine functions f1, f2, . . . , fM and
subsets R1, R2, . . . , RM of Rd such that

(i) each Rm is closed with nonempty interior;

(ii) for n 6= m, Rn and Rm have disjoint interiors;

(iii) the space is partitioned as
S

M

m=1
Rm = Rd;

(iv) the function f agrees with fm on Rm.

In this chapter, we extend this definition to compact input domains of Rd and to
any function f : Rd ! R whose restriction to any compact set is CPWL (sometimes
referred to as locally piecewise-affine functions [189]).

Definition 3.2. A set V ⇢ Rd is locally finite if its intersection with any compact
set of Rd is finite1.

In the sequel, V will always denote a locally finite set of Rd indexed by I ⇢ N
that is not contained in any (d � 1)-dimensional affine subspace of Rd. To each
point vk 2 V we associate a target value yk 2 R. Under Definition 3.1, it is not
clear how to construct a CPWL function f that satisfies f(vk) = yk. The local
representation offers a more systematic way to address this problem. This requires
first to form a triangulation of the set V.

Partition of the Input Domain into Simplices

A polyhedron is the intersection of finitely many half spaces. A polytope is a
bounded polyhedron. Simplices are the polytopes that have the fewest number of
faces; in growing number of dimension d = 0, . . . , 3 they include points, segments,

1
Note that the meaning of the term “locally finite” depends on the mathematical field.
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triangles, and tetrahedrons. Formally, a d-simplex s of Rd is the convex hull of
(d + 1) affinely independent vertices

s = conv(v1, . . . ,vd+1) =

(
d+1X

k=1

�kvk : �k � 0,
d+1X

k=1

�k=1

)
. (3.3)

A k-face of a simplex is the convex hull of (k+1) of its vertices, which is a k-simplex
embedded in Rd. The volume of a simplex admits the explicit form

Vol(s) =
1

d!
|det(v2 � v1, . . . ,vd+1 � v1)|.

Definition 3.3 (adapted from [190]). A triangulation of a locally finite set V ⇢ Rd

of points is a collection S of d-simplices whose vertices are points in V and such
that

(i) the union of all the simplices equals conv(V) (union property);

(ii) any pair of simplices intersects in a (possibly empty) common face (intersec-
tion property).

A triangulation of V is said to be full if all the points of V are vertices of it,
a property that we shall always assume to hold true in the sequel. For a given
locally finite set V ⇢ Rd of vertices of dimension d, the existence of a triangulation
is granted but in general not unique. In practice, most applications fall into one of
the two.

• Regular Sampling Locations: The vertices coincide with the sites of a lat-
tice, for which explicit triangulations are known (e.g., the Kuhn triangulation
[191, 192]).

• Irregular (Random) Sampling Locations: A Delaunay triangulation al-
ways exists in any number of dimensions for a finite set V, and there exist
algorithms to compute it [193, 194].

Definition 3.4. Let S be a triangulation of a locally finite set V ⇢ Rd. The star
St(v) of a vertex v 2 V is the set of those simplices of S that contain v.

We define the volume of the star of a vertex as Vol(St(v)) =
P

s2St(v)
Vol(s).

Its cardinality is denoted by |St(v)|.
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Figure 3.3: Left: 3D view of two hat functions on a finite triangulation. Note
that, although the left hat function seems discontinuous, it is continuous on the
triangulation. Right: star of two vertices of the triangulation (filled area).

Hat Basis Functions

The set of CPWL functions on a triangulation S with vertices V is defined as

CPWL(S) = {f 2 Rconv(V) : f is affine on any s 2 S and continuous on conv(V)}.
(3.4)

It is said to be the space of linear simplicial splines on S. Note that the functions
in CPWL(S) are only defined over the convex hull conv(V) of V, which can range
from a compact set to the whole space Rd.

It is known that any polyhedron can be partitioned into simplices [195]. As a
result, any CPWL function can be viewed as a linear simplicial spline. Two affine
functions that coincide on the vertices of a d-simplex are equal, which means that
any element of CPWL(S) is uniquely determined by the values it assumes at the
vertices V of S. This leads to the local linear expansion

8f 2 CPWL(S) : f =
X

v2V
f(v)�S

v , (3.5)

where the hat functions �S
v 2 Rconv(V) (see Figure 3.3) are defined on every simplex
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s 2 S by

�S
v |s =

(
�s

v, s 2 St(v)

0, otherwise,
(3.6)

where �s

v is the unique affine function that vanishes at all vertices of s but takes
value 1 at vertex v. In other words, �s

v outputs the barycentric coordinate of
simplex s attached to vertex v for a given x 2 s. Note that depending on the set of
vertices, the hat basis functions might not be defined over the whole Rd and, in the
sequel, for any f 2 Rconv(V) we use the notation kfkLp

= (
R
x2conv(V)

|f(x)|pdx)1/p.
The hat basis functions have many desirable properties such as

• for u,v 2 V,�S
v (u) =

(
1, v = u

0, otherwise;

• continuity;

• compact support supp(�S
v ) =

S
s2St(v)

s;

• minimal support among all nonzero functions of CPWL(S);

• ability to reproduce polynomials of degree up to 1 on conv(V), so that

8(a, b) 2 Rd ⇥ R, 8x 2 conv(V) : aTx + b =
X

v2V
(aTv + b)�S

v (x), (3.7)

which includes the partition-of-unity condition
P

v2V �
S
v = 1.

When St(v) is convex, the hat function simply reads [161]

�S
v =

✓
min

s2St(v)

�s

v

◆

+

. (3.8)

3.2.2 Riesz Basis and Riesz Ratio
For a set I ⇢ N, we denote by `2(I) the set of complex-valued sequences indexed
by I with finite energy.

Definition 3.5. Let H be a separable Hilbert space over C and I ⇢ N. A collection
of functions {'k}k2I in H is a Riesz basis if
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(i) Span({'k}k2I) = H (completeness),

(ii) there exist 0 < A  B < +1 such that, for any c 2 `2(I),

Akck`2  k
X

k2I

ck'kkL2  Bkck`2 (Riesz-sequence property), (3.9)

where kck`2 =
⇣P

k2I
|ck|2

⌘1/2

.

The tightest constants A and B that satisfy (3.9) are called the Riesz bounds.

Riesz Ratio: Consider the linear synthesis operator T : c 7!
P

k2I
ck'k, where

{'k}k2I is a Riesz basis. The synthesis operator T is a bounded linear bijection,
which means that there is a unique and stable link between the parameters and
the functions being generated. The condition number of the linear operator T is
defined as

(T ) = sup
c1,c2 6=0

kT{c1}kL2/kT{c2}kL2

kc1k`2/kc2k`2
. (3.10)

It follows from (3.9) that (T ) is the ratio B/A of the Riesz bounds of {'k}k2I .
Hence, we refer to this number as the Riesz ratio. The Riesz ratio is 1 if and only
if the collection of functions ('k)k2I forms an orthonormal basis (up to a scaling
factor).

When the collection of functions is formed by the multiindex shifts of a single
generating function ({'k} = {'(· � k) : k 2 Zd}), the Riesz-sequence property is
characterized via the discrete-time Fourier transform bg of the sampled autocorrela-
tion of ', as given by

bg : ! 7!
X

k2Zd

h','(·� k)ie�ikT !. (3.11)

In this uniform scenario, the Fourier equivalent of the Riesz-sequence condition is
[120, 196]

0 < A2 = ess inf
!2[0,2⇡]d

bg(!)  B2 = ess sup
!2[0,2⇡]d

bg(!) < +1. (3.12)
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3.2.3 Lipschitz Constant
A function f : Rd ! R is Lp-Lipschitz, with Lp 2 R+ and p � 1, if, for any
x,y 2 Rd, it holds that

|f(x)� f(y)|  Lpkx� ykp, (3.13)

and Lip
p
(f) 2 R+ is the smallest constant Lp for which f is Lp-Lipschitz. It

is well-known that a CPWL function with finitely many affine pieces is Lipschitz
continuous. In particular, the Lipschitz constant of the CPWL function f as defined
in Definition 3.1 is given by the maximum Lipschitz constant of its affine pieces, so
that

Lip
p
(f) = max

m=1,...,M

Lip
p
(fm). (3.14)

3.3 Affine Functions on Simplices
Considerations on affine functions on simplices will help us lay the foundations of
the analysis of the stability of the local parameterization on simplicial partitions
(Sections 3.4 and 3.5).

Proposition 3.1. Let f : Rd ! C be an affine function and s = conv(v1, . . . ,vd+1)
a d-simplex. Then

Vol(s)

(d + 2)(d + 1)

d+1X

k=1

|f(vk)|2 
Z

x2s

|f(x)|2dx  Vol(s)

(d + 1)

d+1X

k=1

|f(vk)|2. (3.15)

Prior to proving Proposition 3.1, we provide a series of useful results regarding
the computation of some integrals of affine functions over simplices.

For a linear function f : Rd ! R, an integer p 2 N, and a d-simplex s =
conv(v1, . . . ,vd+1), it is known that [197, 198]

Z

s

f(x)pdx = Vol(s)

✓
p + d

d

◆�1 X

k2Nd+1,|k|=p

f(v1)
k1 · · · f(vd+1)

kd+1 , (3.16)

where we use the notation k = (k1, . . . , kd+1) and |k| := k1 + · · · + kd+1. We can
extend this to affine functions.
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Lemma 3.1. Let f : Rd ! R be an affine function and s = conv(v1, . . . ,vd+1) a
d-simplex. For any p 2 N, we have that

Z

s

f(x)pdx = Vol(s)

✓
p + d

d

◆�1 X

k2Nd+1,|k|=p

f(v1)
k1 · · · f(vd+1)

kd+1 . (3.17)

Proof. If the affine function f is not constant, then it can be written as f(x) =
aT (x� x0). Equation (3.16) can be applied after a change of variable, as in

Z

s

f(x)pdx =

Z

s

(aT (x� x0))
pdx =

Z

s�x0

(aTy)pdy (3.18)

= Vol(s� x0)

✓
p + d

d

◆�1 X

k2Nd+1,|k|=p

(aT (v1 � x0))
k1 · · · (aT (vd+1 � x0))

kd+1

(3.19)

= Vol(s)

✓
p + d

d

◆�1 X

k2Nd+1,|k|=p

f(v1)
k1 · · · f(vd+1)

kd+1 . (3.20)

where s � x0 := {x � x0 : x 2 s}. If now the affine function f is constant with
f(x) = b, then

R
s
f(x)pdx = Vol(s)bp. We also have that

✓
p + d

d

◆�1 X

k2Nd+1,|k|=p

f(v1)
k1 · · · f(vd+1)

kd+1 =

✓
p + d

d

◆�1 X

k2Nd+1,|k|=p

bp = bp,

(3.21)
where we have used that

P
k2Nd+1,|k|=p

1 =
�
p+d

d

�
. This number is known in com-

binatorics as the combinations with replacement [199].

We can now deduce an important property of the hat functions.

Proposition 3.2. The Lp norm of the hat function �S
v only depends on the di-

mension d and the volume of its support. It reads

k�S
v kLp

=

 ✓
p + d

d

◆�1

Vol(St(v))

!1/p

. (3.22)
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Proof. We split the integral over the simplices of the support of �S
v and apply

Lemma 3.1, which reads

k�S
v k

p

Lp
=

Z

conv(V)

|�S
v (x)|pdx =

Z

conv(V)

�S
v (x)pdx

=
X

s2S

Z

s

�S
v (x)pdx =

X

s2St(v)

Z

s

�S
v (x)pdx

=
X

s2St(v)

✓
p + d

d

◆�1

Vol(s) =

✓
p + d

d

◆�1

Vol(St(v)). (3.23)

In the sequel, we shall make use of Proposition 3.2 through the two following
relations:

• the L2 norm

k�S
v k2L2

=
2Vol(St(v))

(d + 1)(d + 2)
; (3.24)

• the inner-product relation

h�S
v ,

X

u2V
�S
u iconv(V) = h�S

v , 1iconv(V) = k�S
v kL1 =

Vol(St(v))

(d + 1)
, (3.25)

where hf, hiconv(V) =
R
x2conv(V)

f(x)h(x)dx and where the first equality re-
sults from the partition of unity of the hat functions.

When p = 2, the integral in Lemma 3.1 is a quadratic form of the value of the
function on the vertices and admits the matrix form shown in Lemma 3.2.

Lemma 3.2. Let f : Rd ! R be an affine function, s = conv(v1, . . . ,vd+1) a
d-simplex, and fs = (f(v1), · · · , f(vd+1)) 2 Rd+1. Then,

Z

s

f(x)2dx =
Vol(s)

(d + 1)(d + 2)
fT

s
Pd+1fs, (3.26)
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where

Pd+1 = 1d+1 + Id+1 =

2

66664

2 1 . . . 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 2

3

77775
2 R(d+1)⇥(d+1), (3.27)

and where 1d+1 2 R(d+1)⇥(d+1) is the matrix of ones and Id+1 2 R(d+1)⇥(d+1) is
the identity matrix.

Proof. Following Lemma 3.1, on one hand we have that
Z

s

f(x)2dx = Vol(s)

✓
2 + d

d

◆�1 X

k2Nd+1,|k|=2

f(v1)
k1 · · · f(vd+1)

kd+1

=
2Vol(s)

(d + 1)(d + 2)
1/2

 
d+1X

p,q=1

f(vp)f(vq) +
d+1X

p=1

f(vp)
2

!

=
Vol(s)

(d + 1)(d + 2)

0

@
 

d+1X

p=1

f(vq)

!2

+
d+1X

p=1

f(vp)
2

1

A . (3.28)

On the other hand, we have that

fT

s
Pd+1fs =

d+1X

p=1

f(vp)

 
d+1X

q=1

f(vq) + f(vp)

!
(3.29)

=

 
d+1X

p=1

f(vp)

!2

+
d+1X

p=1

f(vp)
2. (3.30)

Lemma 3.2 can be extended to pairs of complex-valued functions.

Lemma 3.3. Let f, g : Rd ! C be affine functions, s = conv(v1, . . . ,vd+1) a d-
simplex, fs = (f(v1), · · · , f(vd+1)) 2 Rd+1, and gs = (g(v1), · · · , g(vd+1)) 2 Rd+1.
It holds that Z

s

f(x)g(x)dx =
Vol(s)

(d + 1)(d + 2)
fH

s
Pd+1gs, (3.31)



3.3 Affine Functions on Simplices 81

where
Pd+1 = 1d+1 + Id+1 2 R(d+1)⇥(d+1). (3.32)

To prove Lemma 3.3, we first consider real-valued functions f and g and apply
Lemma 3.2 to the left-hand side of the equality 2fg =

�
(f + g)2 � f2 � g2

�
. The

announced result is then reached because Pd+1 is a symmetric matrix. The gener-
alization to complex-valued functions is directly obtained via the decomposition of
f and g into their real and imaginary parts.

Proof of Proposition 3.1. The matrix Pd+1 defined in Lemma 3.2 is a symmetric
circulant matrix generated by the vector (2, 1, . . . , 1). Its eigenvalues are known to
be [200]

�m = 2 +
dX

n=1

⇣mn

d+1
with m = 1, . . . , d + 1 and where ⇣d+1 = ei

2⇡

d+1 . (3.33)

These expressions are further simplified to

�m = 1 +
d+1X

n=1

⇣mn

d+1
=

(
d + 2, m = d + 1

1, otherwise,
(3.34)

which shows that minm2{1,...,d+1}(�m) = 1 and maxm2{1,...,d+1}(�m) = (d+ 2). As
a result, for any c 2 Cd+1

kck2
2
 cHPd+1c  (d + 2)kck2

2
. (3.35)

We now conclude by applying Lemma 3.3.

The condition number
p

d + 2 given by the inequalities in Proposition 3.1 de-
pends on the dimension d. However, the eigenvalues of Pd+1 are all 1 except for
the largest one, given by (d + 2). This fact is used to derive Lemma 3.4, which
offers a stochastic view on the problem.

Lemma 3.4. Let s = conv(v1, . . . ,vd+1) be a d-simplex, C = (C1, . . . , Cd+1) a ran-
dom vector of Rd+1 with independent zero-mean components and with E(kCk2

2
) 

+1, and fC : Rd ! R the unique affine function such that fC(vk) = Ck for
k = 1, . . . , d + 1. Then,

E
✓Z

s

f(x)2dx

◆
=

2Vol(s)

(d + 1)(d + 2)
E(kCk2

2
). (3.36)
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Proof. Given the matrix Pd+1 defined in Lemma 3.2, it holds that C
TPd+1C =P

1k,ld+1
(Pd+1)klClCk. Using the independence of the zero-mean entries of C,

it follows that E(CTPd+1C) =
P

d+1

k=1
(Pd+1)kkE(C2

k
) = 2E(kCk2

2
). The conclusion

follows from the formula given in Lemma 3.2.

3.4 Riesz Ratio on Arbitrary Triangulations

3.4.1 Triangulations with Any Number of Vertices
Triangulations in high dimensions have complex combinatorial structures that can
induce a wide range of behaviors with the usual descriptors, for instance, shape of
the simplices, degree of the vertices, number of simplices shared by 2, . . . , d vertices.
Fortunately, the necessary and sufficient condition that a triangulation must satisfy
for the hat functions to form a Riesz basis only relies on the volume of the star of
the vertices, as outlined in Theorem 3.1. This result can be seen as an extension
of [201, Theorem 3.1], which gives a similar bound for the condition number of
the mass matrix for the hat functions on triangulations with finitely many vertices.
The present result applies to any triangulation, including those with infinitely many
vertices. This will be used to determine the exact Riesz bounds for linear box splines
in Section 3.5.

Theorem 3.1. Let S be a triangulation of a locally finite set V = {vk}k2I of ver-
tices in Rd and let (�S

v )v2V be the corresponding hat functions. Then, the following
statements are equivalent:

(i) the collection of functions (�S
v )v2V forms a Riesz basis;

(ii)

(
V St

inf
= infv2V Vol(St(v)) > 0

V St

sup
= supv2V Vol(St(v)) < +1;

(iii)

(
infv2V k�S

v kL2 > 0

supv2V k�S
v kL2 < +1.

When these statements hold, for any c 2 `2(I) we have that
s

V St

inf

(d + 1)(d + 2)
kck`2  k

X

v2V
cv�

S
v kL2 

s
V St

sup

(d + 1)
kck`2 (3.37)
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or, equivalently, that

1p
2

inf
v2V
k�S

v kL2kck`2  k
X

v2V
cv�

S
v kL2 

r
d + 2

2
sup
v2V
k�S

v kL2kck`2 . (3.38)

The Riesz ratio r satisfies

r 
p

d + 2

s
V St

sup

V St

inf

=
p

d + 2⇥ supv2V k�S
v kL2

infv2V k�S
v kL2

. (3.39)

Proof. The equivalence (ii), (iii) is a direct consequence of (3.24).
We now show that (i)) (iii). We consider sequences that are zero everywhere,

but at one location, and use the Riesz-sequence property to deduce that, for any
v 2 V,

A  k�S
v kL2  B, (3.40)

where 0  A  B  +1 are the Riesz bounds.
We now prove (ii)) (i). Let c 2 `2(I), f =

P
v2V cv�S

v . We have that

kfk2
L2

=

Z

conv(V)

|f(x)|2dx =
X

s2S

Z

s

|f(x)|2dx

 1

(d + 1)

X

s2S

X

v2s\V
Vol(s)|f(v)|2

=
1

(d + 1)

X

v2V

X

s2St(v)

Vol(s)|f(v)|2

=
1

(d + 1)

X

v2V
|f(v)|2

X

S2St(v)

Vol(s)

=
1

(d + 1)

X

v2V
Vol(St(v))|f(v)|2

 supv2V(Vol(St(v)))

(d + 1)
kck2

`2
, (3.41)
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where we have applied Proposition 3.1 and interchanged the order of the double
summation with positive arguments (special case of Tonelli’s theorem). Similarly,

kfk2
L2

=

Z

conv(V)

|f(x)|2dx =
X

s2S

Z

s

|f(x)|2dx

� 1

(d + 1)(d + 2)

X

s2S

X

v2s\V
Vol(s)|f(v)|2

=
1

(d + 1)(d + 2)

X

v2V

X

s2St(v)

Vol(s)|f(v)|2

=
1

(d + 1)(d + 2)

X

v2V
Vol(St(v))|f(v)|2

� infv2V(Vol(St(v)))

(d + 1)(d + 2)
kck2

`2
. (3.42)

Theorem 3.1 provides a quantitative way to compare the stability of triangula-
tions. In particular, a triangulation is good when the ratio V

St
sup

V
St
inf

is close to 1, which
is an indicator of how uniform the triangulation is.

From Theorem 3.1, we deduce a stronger condition that is sufficient for the Riesz
property to hold and that gives further insight into the problem. Since Vol(St(v)) =P

s2St(v)
Vol(s), we have that

inf
s2S

Vol(s)⇥ inf
v2V

|St(v)|  V St

inf
 V St

sup
 sup

s2S
Vol(s)⇥ sup

v2V
|St(v)|. (3.43)

This means that the hat functions form a Riesz basis whenever the degree of the
vertices is upper bounded and the volume of the simplices is upper and lower
bounded. This condition, however, is not necessary.

Theorem 3.1 does not contain direct information on the tightness of the bounds.
Yet, we shall prove in Section 3.5 that, when the hat functions are shifts of a linear
box spline, the given bounds are optimal.

The upper bound on the Riesz ratio given in Theorem 3.1 behaves as O(
p

d). In
Corollary 3.1, we propose a stochastic perspective that conveys the intuition that
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the upper Riesz bound B only accounts for very rare behaviors, all the more in
high dimensions.

Corollary 3.1. Let S be a triangulation of a locally finite set V = {vk}k2I of
vertices in Rd and let (�S

v )v2V be the corresponding hat functions. In addition,
suppose that (

V St

inf
= infv2V Vol(St(v)) > 0

V St

sup
= supv2V Vol(St(v)) < +1.

(3.44)

Let C 2 `2(I) be a random sequence with independent zero-mean entries and
such that E(kCk2

`2
)  +1. Then,

A2E(kCk2
`2

)  E
 
k
X

v2V
Cv�

S
v k2L2

!
 2A2

 
V St

sup

V St

inf

!
E(kCk2

`2
), (3.45)

where A =
q

V
St
inf

(d+1)(d+2)
is the lower Riesz bound of (�S

v )v2V given in Theorem 3.1.

Proof. The inequalities in (3.45) follow from Lemma 3.4 combined with the proof
of Theorem 3.1.

Within the setting of Corollary 3.1, it can be inferred from (3.45) that the stan-
dard deviation of the random variable k

P
v2V Cv�S

v kL2 is upper bounded by a
quantity that varies with d in a similar way as the lower Riesz bound A given in
Theorem 3.1. This yields the intuition that, in this random setting, the typical
behavior is better represented by the deterministic lower bound, and that the de-
terministic upper Riesz bound is only rarely approached in high-dimensional input
spaces.

3.4.2 Triangulations with Finitely Many Vertices
For a triangulation S of a finite set V of vertices in d dimensions, the hat functions
always form a Riesz basis. Indeed, since we assumed that V cannot be contained in
any (d�1)-dimensional affine subspace of Rd, all simplices of S are not degenerated
and the conditions of Theorem 3.1 are fulfilled. We now apply our formalism
to recover a classical result from the finite-element literature, for example [201,
Theorem 3.1].
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Theorem 3.2. [see also [201, Theorem 3.1.]] Let S be a triangulation of a finite
set V of dimension d of vertices. The corresponding hat functions form a Riesz
basis of CPWL(S) with Riesz bounds

A =

s
�min(M)

(d + 1)(d + 2)
and B =

s
�max(M)

(d + 1)(d + 2)
, (3.46)

where the matrix M 2 R|V|⇥|V| is symmetric and defined as

[M]
pq

=

(
2Vol(St(vp)), p = q

Vol(St(vp) \ St(vq)), otherwise,
(3.47)

and where �min(M) and �max(M) are the smallest and largest eigenvalues of M.

Proof. Let f =
P

v2V cv�S
v . The coefficients cv are ordered to form a vector c 2

R|V|. To each s 2 S we associate a matrix Ls 2 R(d+1)⇥|V| such that Lsc 2 Rd+1

contains the coefficients associated with the vertices of s. By invoking Lemma 3.2,
we obtain

kfk2
L2

=

Z

conv(V)

|f(x)|2dx =
X

s2S

Z

s

|f(x)|2dx

=
1

(d + 1)(d + 2)

X

s2S
Vol(s)(Lsc)

HPd+1(Lsc)

=
1

(d + 1)(d + 2)
cH

 
X

s2S
Vol(s)LT

s
Pd+1Ls

!
c

=
1

(d + 1)(d + 2)
cHMc, (3.48)

where M =
P

s2S Vol(s)LT

s
Pd+1Ls. Let 1  p, q  |V|. For p 6= q, each entry (p, q)

of Vol(s)LT

s
Pd+1Ls is given by

• Vol(s), if and only if vp and vq are in s or, equivalently, s 2 St(vp) \ St(vq);

• 0, otherwise.

Now, for p = q, each term Vol(s)LT

s
Pd+1Ls of the sum has the entry (p, p) be
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• 2Vol(s), if and only if vp is in s or, equivalently s 2 St(vp);

• 0, otherwise.

This shows that M is the matrix given in Theorem 3.2.

In the previously cited work [201, Theorem 3.1], the basis functions are attached
to interior vertices, which corresponds to zero boundary conditions in our frame-
work. For finite elements, the matrix M is usually referred to as the mass matrix:
it is the Gram matrix of the set of basis functions. For hat basis functions, this
matrix has the direct geometric interpretation given in Theorem 3.2.

For a finite set V of vertices, one may wonder which triangulation yields the most
stable CPWL model in the L2 sense (i.e., the smallest Riesz ratio). The Delaunay
triangulation is known to be optimal in several ways (e.g., in the plane it maximizes
the minimum angle of all the angles of the triangles in the triangulation), but it
does not necessarily give the smallest Riesz ratio. When the Delaunay triangulation
is not unique, the choice can be guided by the related Riesz ratio, as detailed in
Figure 3.4.

Figure 3.4: Riesz ratio of the local parameterization of CPWL functions on various
Delaunay triangulations for the same set of vertices. The results stem from Theorem
3.2 and were obtained numerically. In a) and e), the pattern is similar but the Riesz
ratios differ significantly. This comes mainly from the behavior on the border since
the smallest star has two simplices for a) while it has a single one for e).

3.5 Exact Riesz Bounds for Linear Box Splines
Throughout this section, we assume that the vertices coincide with the sites of a
lattice ⇤. This is relevant in some applications, such as image processing [202],
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but can also be taken advantage of in low-dimensional learning problems [167].
While a uniform grid constrains the model and thereby reduces its expressivity, it
significantly improves the computational performance. In this setting, the parame-
terization of CPWL functions involves shifts of a single linear box spline B for the
hat basis functions. The generated space CPWL(S) = {

P
k2⇤

ckB(·� k) : ck 2 C}
is now integer-shift-invariant and lends itself to the tools of Fourier analysis [122].
Note that, for any x 2 Rd, the sum

P
k2⇤

ckB(x� k) has at most (d + 1) nonzero
terms. This follows from the short support of linear box splines.

3.5.1 Linear Box Splines

Box splines of any degree have been extensively studied. We refer the reader to
the book by de Boor et al. [162] for a general theory and a more comprehensive
account. In this chapter, we shall concentrate solely on linear box splines, which will
in return allow us to derive exact Riesz bounds, which is one of our contributions.

Consider a matrix ⌅ = [⇠
1
· · · ⇠

d
] 2 Rd⇥d, where (⇠

1
, . . . , ⇠

d
) is a collection of

linearly independent vectors of Rd. The matrix ⌅ generates a lattice of Rd whose
sites are ⌅Zd = {⌅k : k 2 Zd}. Moreover, let ⌅d+1 = [⇠

1
· · · ⇠

d+1
] 2 Rd⇥(d+1) with

⇠
d+1

=
P

d

k=1
⇠

k
. The linear box spline B⌅d+1 : Rd ! R generated by the collection

of vectors (⇠
1
, · · · , ⇠

d+1
) can be defined via its Fourier transform

bB⌅d+1(!) = | det⌅|
d+1Y

k=1

1� e�i⇠T

k
!

i⇠T

k
!

. (3.49)

The normalization factor | det⌅| ensures consistency with our definition of a hat
function, but is often not included in the literature. The fact that B⌅d+1 is a CPWL
function is made explicit with Proposition 3.3.

Proposition 3.3.

B⌅d+1(x) =
X

✏2{0,1}d+1

(�1)|✏| min
�
⌅�1(x�⌅d+1✏)

�
+

, (3.50)

where |✏| =
P

d+1

k=1
✏k.
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Proof. The product in (3.49) can be expanded as

bB⌅d+1(!) = | det⌅|
 

d+1Y

k=1

1

i⇠T

k
!

!
⇥

X

✏2{0,1}d+1

(�1)|✏|e�i(⌅d+1✏)
T !. (3.51)

By invoking Lemma 3.7 (Appendix 3.9) and making use of the general Fourier-
stretch theorem, we get that

min(⌅�1x)+
F7! | det⌅|

d+1Y

k=1

✓
1

i⇠T

k
!

+ ⇡�(⇠T

k
!)

◆
, (3.52)

where x is the space variable, ! is the pulsation variable and � is the Dirac dis-
tribution. Knowing that (1 � e�i⇠T

k
!)�(⇠T

k
!) = 0, we observe that (3.49) has the

equivalent form

bB⌅d+1(!) = | det⌅|
 

d+1Y

k=1

1

i⇠T

k
!

+ ⇡�(⇠T

k
!)

!
X

✏2{0,1}d+1

(�1)|✏|e�i✏T⌅T

d+1!. (3.53)

We conclude by taking the inverse Fourier transform on both sides of (3.53).

Proposition 3.3 is illustrated in dimension d = 2 in Figure 3.5. This expansion
gives a way to prove that the GHH model [170] can represent any linear box spline.
In addition, it provides a relation between the local and nonlocal representations,
with explicit generalized hinging hyperplanes (namely, the shifts of a single gener-
alized hinging hyperplane). Our result is close to [203], where a similar formula is
proven for three directional box splines of any degree, but only in dimension d = 2.
In any dimension and for box splines of any degree, a comparable decomposition
is given in [204]. Nonetheless, when applied to linear box splines, the expansion in
[204] is made of discontinuous Green functions and contains more terms.

The key properties of the linear box spline B⌅d+1 are
• continuity and piecewise linearity (obvious from Proposition 3.3 because
x 7! min(x)+ is CPWL);

• compact support;

• approximation power of order 2 [162], which means that the reconstruction
error of sufficiently smooth decaying functions decreases with the square of
the grid size.
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-+

+

+

-

-

Figure 3.5: Linear decomposition of the 2D linear box spline with translates of the
nonlocal function (x, y) 7! min(x, y)+. The six basis functions are all translates
of (x, y) 7! min(x, y)+. They are only represented here over a finite-size grid, but
they are not compactly supported. The location of the corner of each hinge in the
central scene is given by the gray arrow.

3.5.2 Derivation of the Exact Riesz-Basis Bounds
Prior to giving the general Riesz-basis bounds of linear box splines (Theorem 3.3),
we show an invariance result: the Riesz ratio associated to linear box splines does
not depend on the directions (⇠

1
, . . . , ⇠

d
).

Proposition 3.4. Let (⇠
1
, . . . , ⇠

d
) be a family of linearly independent vectors of

Rd, ⇠
d+1

=
P

d

k=1
⇠

k
, ⌅d+1 = [⇠

1
· · · ⇠

d+1
] and U 2 Rd⇥d an invertible matrix.

Then, the Riesz bounds of BU⌅d+1 are the ones of B⌅d+1 scaled by
p

| det (U)|.

Proof. From Proposition 3.3, we infer that BU⌅d+1 = B⌅d+1 �U�1. (The general-
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ized version of this relation MU⌅ =
��detU�1

��M⌅ �U�1 is given in [162] and holds
true for unnormalized box splines of any degree.) In addition, for any f 2 L2(Rd),
a change of variable allows one to show that kf �U�1k2

L2
= |det(U)| kfk2

L2
, which

means that, for c 2 `2(Z), it holds that

k
X

k2Zd

ckBU⌅d+1(·�U⌅k)k2
L2

= k
X

k2Zd

ckB⌅d+1 �U�1(·�U⌅k)k2
L2

(3.54)

= k
X

k2Zd

ckB⌅d+1(U
�1 ·�⌅k)k2

L2
= k(

X

k2Zd

ckB⌅d+1(·�⌅k)) �U�1k2
L2

(3.55)

= |det(U)| k
X

k2Zd

ckB⌅d+1(·�⌅k)k2
L2

, (3.56)

which allows us to conclude.

The fact that {B⌅d+1(· � ⌅k) : k 2 Zd} forms a Riesz basis can be inferred
directly from established criterion in the literature [205, 206, 175, 176]. Here, we go
further and provide the upper and lower Riesz bounds in any number of dimensions
(Theorem 3.3), which is a new result to the best of our knowledge.

Theorem 3.3. Let (⇠
1
, . . . , ⇠

d
) be a basis of Rd, ⇠

d+1
=

P
d

k=1
⇠

k
, and ⌅d+1 =

[⇠
1
· · · ⇠

d+1
]. Then, the collection {B⌅d+1(· � ⌅k) : k 2 Zd} of linear box splines

forms a Riesz basis with Riesz bounds

A =

s
| det⌅|
(d + 2)

and B =
p

| det⌅|. (3.57)

The associated Riesz ratio is
p

d + 2.

Proof. Following Proposition 3.4, we focus solely on the Cartesian lattice Zd and
denote the corresponding linear box spline by D = B⌅d+1 , where ⌅d is the identity
matrix of Rd. In this case, it is known that the simplices form a Kuhn/Freudenthal
triangulation [163]. The vertices of any simplex s = conv(v0, . . . ,vd) of the trian-
gulation take the form

vk = v0 +
kX

p=1

e�(p), (3.58)
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where � is a permutation of the set {0, . . . , d}, k = 1, . . . , d and ei denotes the ith
element of the canonical basis of Rd. Correspondingly, for p = 0, . . . , d, there is
a unique vertex vkp

in each simplex such that
��vkp

�� ⌘ p mod (d + 1), where for
any x = (x1, . . . , xd+1) 2 Rd+1, we use the notation |x| =

P
d+1

k=1
xk. Indeed, (3.58)

yields that |vk| = |v0|+ k. Then, we use the Fourier characterization (3.12) to find
the Riesz bounds. Specifically, we have to find the essential extrema of

bg : ! 7!
X

k2Zd

hD, D(·� k)ie�i!T k. (3.59)

Since the basis function D is compactly supported, the sum is finite and the function
bg : Rd ! C is continuous and 2⇡-periodic with respect to each coordinate. We can
therefore simply look for the maximum and the minimum of bg in the hypercube
[0, 2⇡)d. We apply the triangular inequality, use the nonnegativity of D and invoke
the partition of unity of the linear box spline to conclude that the maximum of bg
is attained for ! = 0. With (3.25) we find the upper bound B2 = Vol(St(D))

d+1
, where

St(D) is the support of D or, equivalently, the star of the vertex located at 1. Now,
for the minimum, we have min!2[0,2⇡]d bg(!)  bg(!⇤) for !0 = (� 2⇡

d+1
1) and get

X

k2Zd

hD, D(·� k)ie�i!0
T k = hD,

X

k2Zd

⇣ |k|
d+1

D(·� k)i

=
X

s2St(D)

hD,
X

k2Zd

⇣ |k|
d+1

D(·� k)is

=
X

s2St(D)

hD,
X

(k�1)2Zd\s

⇣ |k|
d+1

D(·� k)is, (3.60)

where hf, his =
R
x2s

f(x)h(x)dx. On one hand, we apply Lemma 3.3 and use the
inherent structure of the Kuhn triangulation displayed in (3.58) to deduce that

bg(!⇤) =
X

s2St(D)

1

(d + 1)(d + 2)
Vol(s)

⇥
1 0 · · · 0

⇤

2

66664

2 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 2

3

77775

2

6664

1
⇣d+1

...
⇣d

d+1

3

7775

=
Vol(St(D))

(d + 1)(d + 2)
. (3.61)
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On the other hand, Theorem 3.1 implies that min!2[0,2⇡]d bg(!) � Vol(St(D))

(d+1)(d+2)
, from

which we infer that A2 = Vol(St(D))

(d+1)(d+2)
. Moreover, we have that

R
Rd D(x)dx = bD(0) =

det (I) = 1 (from (3.49)) and, since the box spline D is nonnegative,
R
Rd D(x)dx =

kDkL1 = Vol(St(D))

(d+1)
(from (3.25)). In short, Vol(St(D)) = (d + 1), which allows

us to derive the result for the Cartesian lattice. The extension to any lattice then
follows from Proposition 3.4.

Theorem 3.1 and 3.3 yield the same bounds for linear box splines, which shows
the relevance of the bounds provided for arbitrary triangulations.

In the proof of Theorem 3.3 we showed, on one hand, that the volume of the
star of a vertex in the Kuhn triangulation is (d+1). On the other hand, the volume
of the simplices of this triangulation can be readily computed and amounts to 1

d!
.

We deduce that the linear box spline is made of (d + 1)! nonzero affine pieces.
From Theorem 3.3, the Riesz ratio of the linear box-spline parameterization isp

d + 2, which grows with the dimension. However, this metric only reflects extreme
cases. A good estimate of the average behavior of the parameterization is given
by the mean of the function bg (defined in the proof of Theorem 3.3) over [0, 2⇡]d,
computed as

1

(2⇡)d

Z

!2[0,2⇡]d

X

k2Zd

hD, D(·� k)ie�i!T kd! = hD, Di = kDk2
L2

(3.62)

= 2
Vol((St(D))

(d + 2)(d + 1)
= 2 min

!2[0,2⇡]d
bg(!).

(3.63)

We infer that bg rarely takes values close to its upper bound, especially in high
dimensions, which was observed for affine functions on a simplex in Lemma 3.4.
In short, although the Riesz ratio scales badly with the dimension, most linear
combinations of box splines will behave in a similar way to the lower bound and
the dimension should not significantly degrade the stability of the parameterization.
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3.6 Lipschitz Bounds
While the determination of the Lipschitz constant of ReLU networks is NP-hard,
the situation is much more favorable for the local parameterization.

3.6.1 Lipschitz Properties of ReLU Networks
Consider a one-hidden-layer ReLU network mapping Rd to R and defined by

h : x 7! uT ReLU(WTx + b) =
mX

k=1

ukReLU(wT

k
x + bk), (3.64)

where W 2 Rd⇥m, u,b 2 Rm are the parameters, and wk are the columns of W.
This network parameterizes a CPWL function; hence, its Lipschitz constant is the
maximal Lipschitz constant of its affine pieces. However, the knowledge of these
affine pieces is not straightforward as it requires one to determine the linear regions
of h. This amounts to finding the nonempty regions of the form

m\

k=1

{x 2 Rd : ✏k(wT

k
x + bk) � 0}, (3.65)

where ✏k 2 {0, 1}. This geometrical problem is known as “finding the chambers of
a hyperplane arrangement", and a sharp upper bound on the maximal number of
these regions for given (d, m) can be found in [207]. The combinatorial aspect of
the problem is such that the computation of Lip

2
(h) is NP-hard [48]. In addition,

under the exponential-time hypothesis, there exists no polynomial-time approxi-
mation algorithm with ratio ⌦(d1�c) for the computation of Lip

1
(h) and Lip1(h)

for any constant c > 0 [208]. In practice, the strict control of the Lipschitz con-
stant can be achieved by the use of fast-to-compute but loose bounds. The most
common approach relies on the sub-multiplicativity of the Lipschitz constant for
compositions [80, 160, 209], which yields that

Lip
p
(h)  kWT kp,pkukq, (3.66)

where the matrix norm k · k↵,� is defined as

kMk↵,� = sup
kxk↵=1

kMxk� . (3.67)
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Remark 3.1. The (p, p) norm of the row matrix uT 2 R1⇥d is the q vector norm
kukq, where 1/p + 1/q = 1.

3.6.2 Lipschitz Properties of the Local Parameterization
Lipschitz Constant

In comparison to ReLU neural networks, the local parameterization f =
P

v2V cv�S
v

generates CPWL functions with known linear regions, namely, the simplices of S.
The Lipschitz constant of f therefore reads

Lip
p
(f) = sup

s2S
(krf |̊skq), (3.68)

where 1/p + 1/q = 1, and where rf |̊s is the gradient of f in the interior of the
simplex s̊, hence, a constant vector. Note that when (3.68) is not finite, then f is
not a Lipschitz function. For d > 1, the discrete estimate

sup
v,u2V

|cv � cu|
kv � ukp

 Lip
p
(f), (3.69)

is inadequate, as illustrated in our previous work [210, Figure 2], and is generally
only a lower bound. The determination of Lip

p
(f) requires some more involved

computations. Let s = conv(v1, . . . ,vd+1) be a d-simplex, and let h : x 7! gT

s
x+ bs

be the affine function which satisfies h(vk) = ck for k = 1, . . . , d + 1. The gradient
gs can then be computed as

gs = (�V�T

s
)�c, (3.70)

where �Vs = [v2 � v1 · · · vd+1 � v1] and �c = (c2 � c1, . . . , cd+1 � c1).
The matrix �Vs is indeed invertible since we have assumed that
Vol(s) = 1

d!
|det(�Vs)| > 0. It follows from (3.68) and (3.70) that Lip

p
(f) can

always be computed in polynomial time for finite partitions.

Lipschitz Constant of the Hat Function

We propose a geometrical interpretation of the Lipschitz constant of the hat basis
function, which will then lead us to a practical Lipschitz bound in Proposition 3.5.
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Lemma 3.5. Let �S
v be the hat basis function attached to the vertex v. For s 2

St(v), let fs,v be the facet of s opposed to v, let ns,v be the normal vector of fs,v

pointing toward the interior of s, and let hs,v,p be the p-norm length of the height
of s with apex v. Then,

r�S
v |̊s = (1/hs,v,2)ns,v, and Lip

p
(�S

v ) = max
s2St(v)

(1/hs,v,q), (3.71)

where 1/p + 1/q = 1.

Proof. Let s 2 St(v). To simplify the proof, we write s = conv(v1, . . . ,vd+1),
where v1 = v. Following (3.70), we have that

r�S
v |̊s = �(�V�T

s
)1. (3.72)

In addition, we have that
�Vsei = vi+1, (3.73)

where ei is the ith element of the canonical basis. Finally, we obtain for any
1  i < j  d

r�S
v |T

s̊
(vi+1 � vj+1) = �1T �V�1

s
�Vs(ei � ej) = 0, (3.74)

which means that r�S
v |̊s is orthogonal to the facet of s opposed to v. Let r be

the orthogonal projection of v onto the facet of s opposed to v. On the one hand,
�S
v |s(v) = 1 and �S

v |s(r) = 0. On the other hand, v� r is parallel to r�S
v |̊s, which

yields
r�S

v |̊s = v � r, (3.75)

and allows us to conclude the proof.

A Lipschitz Bound with Finite Differences and Geometrical Descriptors

To compute the Lipschitz constant of a CPWL function expressed with the local
representation, one has to compute the gradients of the function over each simplex.
This requires solving a set of linear problems that are specific to both the geometry
(triangulation) and the sequence of coefficients (c), as shown in (3.70). We now
propose simpler-to-compute upper and lower bounds. They require solving linear
problems that depend only on the geometry and, hence, can be solved offline for
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a given triangulation and then used for any sequence of coefficients c (Proposition
3.5). The bounds highlight the role of the finite differences of the coefficients and
the geometry of the simplices.

Proposition 3.5. Consider the same setting as in Theorem 3.1. Then,

sup
v,u2V

|cv � cu|
kv � uk2

 Lip
2

 
X

v2V
cv�

S
v

!
 sup

s2S

X

v2s\V

|cv � ↵s|
hs,v,2

, (3.76)

for any ↵s 2 R for s 2 S, and where hs,v,2 is the height of simplex s with apex v.

Proof. Let f =
P

v2V cv�S
v . For any s 2 S, it holds that

rf |̊s =
X

v2s\V
cvr�S

v |̊s. (3.77)

Hence,

krf |̊sk2 
X

v2s\V
|cv|kr�S

v |̊sk2 =
X

v2s\V

|cv|
hs,v,2

. (3.78)

We now note that

r
 

X

v2s\V
�S
v

!
|̊s = r(1)|̊s = 0. (3.79)

Hence,
rf |̊s =

X

v2s\V
cvr�S

v |̊s =
X

v2s\V
(cv � ↵s)r�S

v |̊s, (3.80)

for any ↵s 2 R, which allows us to conclude.

The bound given in Proposition 3.5 requires one to choose a reference value
↵s for each simplex s against which to compare the value of the function at the
vertices. In the case where hs,v,2 does not depend on v, then the choice of ↵s as the
median of {cv} for v 2 s\V leads to the tightest bound. More generally, a suitable
choice is to pick ↵s 2 [minv2s\V cv, maxv2s\V , cv], which ensures an upper bound
of 0 for constant functions. Note that this choice yields an exact bound when d = 1,
but this is not necessarily true for d > 1.
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3.7 Conclusion
We have provided a measure of the stability of the parameterization of CPWL
functions with hat basis functions on any triangulation. First, we have estimated
the `2 ! L2 condition number of the parameterization in full generality. We have
found that it is mainly determined by the relative volume of the star of the vertices
of the triangulation, namely, the relative size of the support of the hat functions.
This result is in accordance with the literature on finite-element methods, which
however only focus on the case of finitely many vertices. When the vertices lie at the
sites of a lattice, we parameterize the CPWL functions with linear box splines. We
have provided a formula to relate these local basis functions to nonlocal ReLU-like
functions. In this uniform setting, we have proved that the exact condition number
only depends on the dimension d and is

p
d + 2. Although it increases with the

dimension, we noticed that, from a stochastic point of view, the dimension might
only rarely affect the stability of the local representation. Eventually, we have shown
that the Lipschitz constant of a CPWL function can be easily determined when
its local parameterization is known. This highly contrasts with CPWL functions
defined by ReLU neural networks.
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3.8 Appendix – Interpolation Condition Number of
the Nonlocal Parameterization

Consider the nonlocal parameterization of one-dimensional CPWL functions with
knots v1 < · · · < vK 2 R

T{✓}(x) = ✓1 + ✓2(x� v1) +
K�1X

k=2

✓k+1(x� vk)+. (3.81)

Given target values y1, . . . , yK 2 R, the parameters ✓1, . . . , ✓K 2 R have to satisfy
for p = 1, . . . , K that

yp = T{✓}(vp) = ✓1 + ✓2(vp � v1) +
K�1X

k=2

✓k+1(vp � vk)+, (3.82)

which, assuming a constant step size h = (vk+1 � vk), further simplifies in yp =

✓1 + h
P

p�1

k=1
✓k+1(p� k). This yields the matrix equation

✓ =
1

h

2

6666664

1/h 0 · · · · · · 0
1/h 1 0 · · · 0
... 2

. . . . . .
...

...
...

. . . . . . 0
1/h (K � 1) · · · 2 1

3

7777775

�1

y = M�1y. (3.83)

To give a lower bound to the condition number of the problem, we remark that
Me2 = h

P
K�1

k=1
kek+1 and MeK = heK , where ek are the canonical vectors of Rd.

We infer that kM�1
P

K�1

k=1
kekk2/k

P
K�1

k=1
kek)k2 = (K(K � 1)(2K � 1)/6)�1/2/h

and that kM�1eKk2

keKk2
= 1/h. It implies that the `2 condition number r of the problem

satisfies

r = max
a,b2Rd\{0}

(��M�1a
��

kak
kbk

kM�1bk

)
�
r

K(K � 1)(2K � 1)

6
. (3.84)
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3.9 Appendix – Nonlocal Generating Function of
Linear Box Splines

The Fourier transform bh of the Heaviside function h : x 7!
(

1, x � 0

0, otherwise,
is given

by

bh : ! 7! 1

i!
+ ⇡�(!). (3.85)

From this we infer bH, the Fourier transform of H : x 7!
Q

d

k=1
h(xk), the separable

version of h in d dimensions,

bH : ! 7!
dY

k=1

✓
1

i!k

+ ⇡�(!k)

◆
. (3.86)

We define a directional Heaviside wall function as W : x 7! h(xd)
Q

d�1

k=1
�(xk)

and the matrix Ad =

2

6664

1 �1
. . . . . .

1 �1
1 · · · · · · 1

3

7775
.

Lemma 3.6. 8x 2 Rd, (H ⇤ (W �Ad))(x) = min(x)+.

Proof. We have that (H ⇤ (W �Ad))(x) =
R
Rd H(x � t)W (Adt)dt. In the sequel,

we take advantage of two properties.

• We prove that det(Ad) = d by induction using the Laplace/cofactor expansion
along the last column.

• We observe that Ad1 = ded, which in turn implies that A�1

d
ed = d�11.
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We now use the change of variable y = Adt. It yields that

(H ⇤ (W �Ad))(x) = (1/d)

Z

Rd

H(x�A�1

d
y)h(yd)

d�1Y

k=1

�(yk)dy

= (1/d)

Z

Rd

H(x� ydA
�1

d
ed)h(yd)

d�1Y

k=1

�(yk)dy

= (1/d)

Z

Rd

H(x� yd

d
1)h(yd)

d�1Y

k=1

�(yk)dy

= (1/d)

Z

Rd

h(yd)

 
dY

k=1

h(xk � yd/d)

! 
d�1Y

k=1

�(yk)

!
dy

= (1/d)

Z

R
h(yd)

 
dY

k=1

h(xk � yd/d)

!
dyd. (3.87)

The quantity
Q

d

k=1
h(xk � yd/d)h(yd) is nonzero when yd > 0 and yd < dxk for

k = 1, . . . , d, which is equivalent to yd > 0 and yd < d min(xk). We can now
conclude that (H ⇤ (L �Ad))(x) = min(x)+.

Lemma 3.7. min(x)+
F7!
Q

d+1

k=1

⇣
1

i!k

+ ⇡�(!k)
⌘
, where !d+1 =

P
d

k=1
!k.

Proof. From Lemma 3.6, we have that (H ⇤ (W �Ad))(x) = min(x)+. The function
W is separable and its Fourier transform reads cW (!) = 1

i!d

+ ⇡�(!d). In addition,
the general stretch theorem implies that

(W �Ad)
F7! 1

d
cW (A�T

d
!) =

1

d

 
1

ieT

d
A�T

d
!

+ ⇡�(eT

d
A�T

d
!)

!
. (3.88)

Now, we use that A�1

d
ed = d�1ed and the effect of a dilation on the Dirac distri-

bution to conclude that

(W �Ad)
F7! 1

d
cW (A�T

d
!) =

✓
1

i!d+1

+ ⇡�(!d+1)

◆
. (3.89)

We reach the conclusion by using the Fourier transform of H and by transforming
the convolution into a product in the Fourier domain.
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Part II

Going Deeper with Stability

Guarantees
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The second part of this thesis is dedicated to the design of stable DNNs to build
trustworthy plug-and-play (PnP) image reconstruction methods. We propose to
build Lipschitz-constrained deep neural network (DNN) denoisers to obtain prov-
ably convergent and robust PnP methods. The main challenge lies in the fact that
for most DNNs, the Lipschitz constant is not efficiently computable, and the exist-
ing methods to impose a hard Lipschitz constraint usually come with a significant
performance drop. For these reasons, many popular PnP methods rely on relaxed or
soft Lipschitz constraints, at the possible expense of trustworthiness. In this part,
we do not relax the constraint and pursue the goal of restoring the performance of
Lipschitz-constrained DNN denoisers.

Our first chapter serves as a transition from shallow parameterizations, as stud-
ied in Part I, to deep ones. The game changer in DNNs is the composition op-
eration. To shed some light on its role in DNNs, we first propose a geometrical
analysis in Chapter 4 and focus on the family of continuous and piecewise-linear
(CPWL) DNNs, which covers many popular architectures. Beyond the role of
depth and width, which have been abundantly studied, we characterize the role
of generic nonlinear modules on the linear regions of DNNs and generalize some
well-established results on the expressivity of ReLU NNs. In the context of this
thesis, the outcome is twofold. First, a DNN produces such complicated mappings
that the computation of the Lipschitz constant, which would be trivial if the set
of linear regions were known, is not feasible in practice. Second, the use of expres-
sive activation functions is expected to boost the expressivity of DNNs with few
additional parameters.

To bypass the exact computation of the Lipschitz constant, we thus propose to
build stable DNNs with the popular layer-wise approach. The Lipschitz constant of
each layer is constrained, resulting in a hard constraint on the Lipschitz constant of
the whole DNN. This strategy is justified by the sub-multiplicativity of the Lipschitz
constant for the composition operation, but it may lead to overly constrained DNNs,
all the more for deep NNs. Hence, one needs to craft carefully the layers of the DNN
to preserve expressivity under the constraint. To do so, we provide a theoretical
study in Chapter 5 and reveal the benefits of using learnable linear spline (LLS)
activations with sufficiently many breakpoints to build Lipschitz-constrained DNNs.
In Chapter 6, we then aim to leverage these findings to improve the performance
of trustworthy PnP methods. We begin with an overview of PnP methods and
detail our theoretical motivations for using Lipschitz-constrained denoisers. We
then propose an algorithm to efficiently deploy Lipschitz-constrained LLS within



106

DNNs. Finally, we empirically show that Lipschitz-constrained LLS activations
yield improvements over other competing activations in denoising, CT, and MRI
image reconstruction.



Chapter 4

On the Number of Regions of

Continuous and

Piecewise-Linear Neural

Networks

The text of this chapter is adapted from the published paper
A. Goujon, A. Etemadi and M. Unser “On the number of regions of piecewise lin-

ear neural-networks”, Journal of Computational and Applied Mathematics, volume
441, paper 115667, 2024.

Summary
Many feedforward neural networks (NNs) generate continuous and piecewise-linear
(CPWL) mappings. Specifically, they partition the input domain into regions on
which the mapping is affine. The number of these so-called linear regions offers
a natural metric to characterize the expressiveness of CPWL NNs. The precise
determination of this quantity is often out of reach in practice, and bounds have
been proposed for specific architectures, including for ReLU and Maxout NNs. In

107
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this chapter, we generalize these bounds to NNs with arbitrary CPWL activation
functions. We first provide upper and lower bounds on the maximal number of linear
regions of a CPWL NN given its depth, width, and the number of linear regions of
its activation functions. Our results rely on the combinatorial structure of convex
partitions and confirm the distinctive role of depth which, on its own, is able to
exponentially increase the number of regions. We then introduce a complementary
stochastic framework to estimate the average number of linear regions produced by
a CPWL NN. Under reasonable assumptions, the expected density of linear regions
along any 1D path is bounded by the product of depth, width, and a measure
of activation complexity (up to a scaling factor). This yields an identical role to
the three sources of expressiveness: no exponential growth with depth is observed
anymore.

4.1 Introduction
The ability to train deep parametric models has enabled dramatic advances in a
wide variety of fields, ranging from computer vision to natural-language processing
[211, 212]. Many popular deep models belong to the family of feedforward neural
networks (NNs), for which the input-output mapping takes the form

x 7! (�L � f✓L
� �L�1 � · · · � �2 � f✓2

� �1 � f✓1
)(x), (4.1)

where L is the number of layers of the NN (referred to as the depth of the NN),
f✓k

: Rdk ! Rdk+1 is an affine function parameterized by ✓k, and �k is a non-
affine activation function. One of the most widespread activation functions in deep
learning is the rectified linear unit ReLU(x) = max(x, 0) [155, 171, 154]. With this
choice, the mapping is a composition of continuous and piecewise-linear (CPWL)
functions, which yields a map that is CPWL too [213]. Remarkably, the reverse also
holds true: any CPWL function Rd ! R can be parameterized by a ReLU NN with
at most dlog

2
(d + 1)e hidden layers [156]. The family of NNs generating CPWL

functions (referred to as CPWL NNs in the sequel) is broad. It benefits from a large
choice of effective activation functions that includes ReLU [154], leaky ReLU [171],
PReLU [172], CReLU [173], Maxout [174], linear splines [214, 215], GroupSort [82],
Householder [216] as well as other components such as convolutional layers, max-
and average-pooling, skip connections [217], and batch normalization [218](once the
model is trained). While the depth of the architecture is instrumental to overcome
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the curse of dimensionality [157, 158, 159], it concurrently deters our understanding
of the parameterization when compared to simpler models [219].

The observation that a ReLU NN produces a CPWL function sheds light on
its behavior. In effect, a ReLU NN partitions the input domain into affine regions
[71, 220]. The characteristics of the regions are therefore fundamental to grasp the
structure of the learned mapping and there exist different approaches to define them
[221, 222]. The regions can be described as polyhedrons or union of polyhedrons,
which results from the continuity and the piecewise-affine property of the mapping.
In the case of ReLU NNs, it is common to define activation regions, which are
sets of points that fire the same group of neurons. On each activation region, the
mapping is affine and these sets are convex [223]. Unfortunately, the linear regions
in deep NNs are only indirectly specified. While they can be locally described [224]
their global delimitation becomes computationally less and less tractable as the
dimension increases, which compromises the interpretability of deep NNs. Yet, it
is entangled with their ability to overcome the curse of dimensionality.

The successive compositions inherent in deep models prevent us from attribut-
ing a specific role to each parameter. The size and the expressiveness of the function
space HN generated by a given architecture N is consequently remotely connected
to the number of trainable parameters. With their remarkable structure, CPWL
NNs benefit from another meaningful descriptor: the distribution of counts of re-
gions of all the mappings that the architecture can produce. Two approaches have
been proposed to give a better understanding of this descriptor.

• Upper and lower bound the maximum number of regions of the CPWL map-
pings generated by a given architecture. The first bounds, given in [213],
showed that the maximum number of regions that can be produced by ReLU
NNs increases exponentially with their depth. This revealed that deep models
have the ability to generate much more complex functions than shallow ones
do. The bounds for ReLU NNs have since been refined, for example in [73]
and then in [225], and also extended to other NN architectures. For instance,
[226] specifies bounds for the maximum number of regions of convolutional
NNs (CNNs). It is shown that CNNs produce more regions per parame-
ter than fully connected NNs do. For Maxout NNs, bounds can be derived
directly from the ones on ReLU NNs [213, 73]. However, this approach usu-
ally yields loose bounds, as recently shown in [227]. The derivation of sharp
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bounds for Maxout NNs, as proposed in [227], requires to take into account
the specificities of the Maxout unit, and it was handled via the use of tropical
geometry.
The available bounds show that the maximum number of regions in ReLU
and Maxout NNs increases exponentially with their depth. It suggests that
deep models have the ability to generate more complex functions than shallow
ones do [213, 73, 156, 225, 227].

• Upper bound the average number of regions of the mappings generated by
ReLU and Maxout NNs. The available bound for ReLU NNs depends on
the number of neurons, regardless of whether the NN is deep or wide, and
depth does not produce exponentially more regions on average [228, 223]. In
other words, this behavior drastically differs from the maximum number of
regions. This new perspective was then recently extended to Maxout NNs,
with a similar qualitative conclusion [229].

The existing toolbox of CPWL NNs is broad and likely not complete yet, as
hinted by recent works on the MaxMin or more generally GroupSort activation
function, in the field of Lipschitz-constrained NNs [82, 230], or with the Piecewise
Linear Unit (PWLU) [231]. Previous studies on the count of linear regions have
provided insights on some specific CPWL NNs only, mostly ReLU and Maxout
NNs. Their qualitative outcomes turn out to hold true for CPWL NNs in general.
We intend to prove this claim with quantitative results in this chapter. We want
to improve the understanding of the role of the three main ways to increase the
expressiveness of CPWL NNs (Figure 4.1), namely,

• depth, which is the number of composed CPWL functions;

• width, which relates the input and output dimensions of the composed
CPWL layers;

• activation complexity, the rationale there being that the expressiveness of
CPWL NNs can be heightened by increasing the complexity of the composed
functions. This strategy is used in Maxout, GroupSort, PWLU, and deep-
spline NNs for example. In the remainder of this chapter, the complexity of
an activation will refer to its number of linear regions. For example, a rank-k
Maxout unit has a complexity of k (see Figure 4.6 for visual examples).
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L (depth)

W
(width)

κ (activation complexity)

din dout

Figure 4.1: The three sources of complexity of CPWL NNs.

Our contributions are as follows.

(i) Generalization of the notion of arrangement of hyperplanes to arrangement
of convex partitions with analogous tight bounds on the number of regions.

(ii) Determination of precise bounds on the maximal number of linear convex
regions generated by the primary operations of the space of CPWL functions
(sum, vectorization, and composition). The compositional upper and lower
bound grow exponentially with depth and polynomially with the width and
the activation complexity.

(iii) Demonstration that, under reasonable assumptions, the expected number of
regions along a 1D path for random CPWL NNs is at most linear with the
product of the depth, the width, and the activation complexity (up to an
independent factor), which yields equivalent roles to the three descriptors in
terms of expressiveness.

The chapter is organized as follows: In Section 4.2, we present the relevant math-
ematical concepts. In Section 4.3, we bound from below and from above the max-
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imal number of regions produced by CPWL NNs and, in Section 4.4, we present
a stochastic framework to quantify the average expressiveness of CPWL NNs with
random parameters.

4.2 Mathematical Preliminaries

4.2.1 CPWL Functions
Definition 4.1. A function f : Rd ! Rd

0
is continuous and piecewise-linear

(CPWL) if it is continuous and if there exists a set {fk : k 2 {1, . . . , K}} of affine
functions and closed subsets (⌦k)K

k=1
of Rd with nonempty and pairwise disjoint

interiors such that [K

k=1
⌦k = Rd and f |⌦k

= f
k on ⌦k. The f

k are called the
affine pieces of f , and the ⌦k the corresponding projection regions.

An example of a CPWL function and of its partition is given in Figure 4.2. The
kth component of a vector-valued CPWL function f

`
, which is necessarily CPWL

as well, will be denoted by f`,k. The space of CPWL functions has the following
remarkable properties:

• it is closed under compatible compositions;

• it is closed under compatible linear combinations;

• it is closed under compatible vectorization.

Since the function x 7! max(x) = max(x1, . . . , xd) is CPWL (with d regions), the
space of CPWL functions is also closed under max-pooling.

4.2.2 Regions of CPWL Functions and Convex Partitions
The term linear region is frequently used in an ambiguous way and may refer to
different mathematical definitions. In the sequel, we shortly present some relevant
definitions and discuss them in the context of CPWL NNs.

Projection Regions

We recall that a polyhedron is the intersection of finitely many half-spaces, and
that a polytope is a bounded polyhedron. The subsets ⌦k in Definition 4.1 are
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Figure 4.2: An R2 ! R CPWL function and its corresponding partition of the
input space.

commonly referred to as projection regions [221, 222]. The affine pieces of different
projection regions are distinct and, since the overall function is continuous, the
common points of two neighboring regions lie in a hyperplane. This implies that
the ⌦k are polyhedrons or unions of polyhedrons. These projection regions might,
however, not be connected (Figure 4.3).

4 convex regions 3 projection regions

Figure 4.3: Convex and projection regions of the CPWL function
(x, y) 7! ReLU(min(x + 1,�x + 1)).
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Convex Regions

It is usually preferred to work with (connected) convex regions because of their
simpler geometrical structure. We now precisely define convex linear regions of
CPWL functions.

Definition 4.2 (Convex partitions of Rd, adapted from [232]). Let n and d be two
positive integers. A convex partition of Rd is a collection ⇧ = (P1, P2, ..., Pn) of
convex and closed subsets of Rd with nonempty and pairwise-disjoint interiors so
that the union

S
n

k=1
Pk = Rd. Each of the sets Pk is called a region of ⇧. Convex

partitions with n regions are called n-partitions.

Definition 4.3 (Linear convex partition). A convex partition ⇧ of Rd is said to be
a linear convex partition of a CPWL function f : Rd ! Rd

0
if f is affine on each

region of ⇧.

The existence of a linear convex partition is guaranteed for any CPWL function
but not its unicity. This motivates Definition 4.4, which gives a precise meaning to
the number of convex linear regions for CPWL functions.

Definition 4.4 (Number of convex linear regions). The number f of convex linear
regions of f is defined as the minimal cardinality of all linear convex partitions of
f .

A special instance of the linear convex regions for scalar-valued CPWL functions
are the uniquely-ordered regions. Each of these regions has the same ordering of
the values of the affine pieces fk of f in all its points [222]. Uniquely-ordered
regions are used to build the lattice representation of a CPWL function [221] and
are tightly connected to the GroupSort activation function [82].

Projection vs Convex Linear Regions

In the remainder of this chapter we shall keep in mind the following connections
between projection and convex linear regions.

• Projection regions can always be partitioned into convex regions so that any
upper bound on the number of convex regions also applies to the number
of projection regions. Conversely, the number of convex regions can also be
upper bounded by the number of projection regions (Proposition 4.1).
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• The majority of commonly used parameterizations have typically convex pro-
jection regions. The local parameterization with hat basis functions produces
simplicial linear splines whose natural regions are simplices [219] and, there-
fore, are convex. Other known linear expansions, such as the generalized
hinging-hyperplanes model [170], use nonlocal CPWL basis functions that
partition the input domain into convex regions. The generated function will
produce projection regions that are convex for all sets of parameters except
for some specific values that are usually encountered with zero probability
in a learning framework. The convex regions are also naturally adapted to
compositional models such as ReLU and Maxout NNs as explained in [228].

Proposition 4.1. Let f : Rd ! Rd
0
be a CPWL function with ⇢ projection regions.

The number  of linear convex regions of f is no larger than the number of convex
regions formed by the arrangement of ⇢(⇢� 1)/2 hyperplanes

⇢   
(

2⇢(⇢�1)/2, ⇢(⇢� 1)/2  d
P

d

k=0

�
⇢(⇢�1)/2

k

�
, otherwise.

(4.2)

The proof of Proposition 4.1 is given in 4.6.

Useful Properties of Convex Partitions

We now give a series of lemmas on convex partitions that are used in the proofs of
Section 4.3. The proofs are given in 4.6.

For convenience, we extend the definition of convex partitions of Rd to convex
partitions of affine subspaces of Rd. In particular, a convex partition of an affine
subspace E of Rd consists of convex and closed subsets of E of dimension dim(E)
whose pairwise intersection is of dimension smaller than dim(E) and whose union
is E.

Lemma 4.1 (Projection of a convex partition). Let E be an affine subspace of Rd

and ⇧ an n-partition of Rd. Then, there exists a convex partition ⇧E of E in Rd

with no more than n regions such that, for PE 2 ⇧E, there is P 2 ⇧ with PE ⇢ P .

Lemma 4.2 (Preimage of a convex partition under affine maps). Let f : Rd ! Rd
0

be an affine function and ⇧ be an N -partition of the affine space f(Rd) in Rd
0
.

Then, f�1(⇧) = {f�1(P ) : P 2 ⇧} is an N -partition of Rd.
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Lemma 4.3. Let (f
`
)`2[L] be a set of affine functions with f

`
: Rd` ! Rd`+1 .Then,

dim((f
L
� · · · � f

1
)(Rd1))  min (d1, . . . , dL+1). (4.3)

4.2.3 Arrangement of Convex Partitions

The known results on the number of convex regions of ReLU NNs are built upon the
theory of hyperplane arrangements. In combinatorial geometry, an arrangement of
hyperplanes refers to a set of hyperplanes. It is known that the number of connected
regions formed by an arrangement of N hyperplanes in Rd is at most

Pmin(d,N)

k=0

�
N

k

�

[207]. This bound is reached when the hyperplanes are in general position: any
collection of k of them intersect in a (d � k)-dimensional plane for 1  k  d
and have an empty intersection for k > d. Although this positioning seems very
specific, it is qualified as “general” because it almost surely happens when the
hyperplanes are randomly generated (with a “reasonable” notion of randomness).
When it comes to the study of generic CPWL NNs, the concept of arrangement of
hyperplanes lacks precision since only a small fraction of all convex partitions can be
seen as arrangement of hyperplanes. We thus introduce the notion of arrangement
of convex partitions (Definition 4.5 and Figure 4.4) as a generalization, which will
prove to be necessary to find the precise bounds given in Section 4.3. Note that,
in the case of an arrangement of N hyperplanes, our terminology differs. Instead
of considering the hyperplanes, we rather consider the N 2-partitions they form,
which consist of pairs of closed half-spaces separated by the hyperplanes.

Definition 4.5 (Arrangement of convex partitions). Let (⇧k)k2[N ] be a collection
of N convex partitions, with ⇧k = (P k

1
, . . . , P k

nk
), for k 2 [N ]. The arrangement

A(⇧1, . . . , ⇧N ) of these partitions is the convex partition whose regions are the
Am1,...,mN

that have nonempty interiors, where

Am1,...,mN
=

N\

k=1

P k

mk
,

for (m1, . . . , mN ) 2 {1, . . . , n1}⇥ · · ·⇥ {1, . . . , nN}.
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Figure 4.4: Arrangement of two convex partitions of R2.

4.3 Maximum Number of Regions Produced by
CPWL NNs

In this section, we characterize the largest number of regions that can be generated
by simple operations with CPWL functions, including sums, vectorizations, and
compositions. In particular, we strictly generalize the known upper and lower
bounds on the number of regions of ReLU NNs [73] and Maxout NNs [227] to NNs
activated by generic CPWL activation functions.

4.3.1 Upper Bound on the Number of Regions of Arrange-
ments

Operations with CPWL functions imply arrangement of convex partitions, either
explicitly, for sums and vectorizations, or implicitly, for compositions. It can
be directly proven that an arrangement A(⇧1, . . . , ⇧N ) of N convex partitions



118 Number of Regions of CPWL Neural Networks

⇧1, . . . , ⇧N of Rd with n1, . . . , nN regions cannot yield more than n1n2 · · · nN re-
gions. This naive bound is a polynomial of degree N in n1, . . . , nN . In dimension
d = 1 one can, however, check that the bound is not sharp: the number of regions
is no more than 1+(n1�1)+ · · ·+(nN �1). More generally, the number of regions
of the arrangement is bounded by a polynomial in the cardinality of the partitions
n1, . . . , nN of degree min(d, N) (Theorem 4.1), which highlights the role played by
the dimension of the ambient space.

Theorem 4.1 (Upper bound on the cardinality of an arrangement). The maximum
cardinality �d(n1, . . . , nN ) of the arrangement A(⇧1, . . . , ⇧N ) of N convex parti-
tions ⇧1, . . . , ⇧N of Rd with cardinality n1, . . . , nN is a polynomial in n1, . . . , nN

of degree min(d, N). It is given by

�d(n1, . . . , nN ) = 1 +

min(d,N)X

k=1

X

1`1<···<`kN

kY

q=1

(n`q
� 1). (4.4)

Moreover, this bound satisfies

�d(n1, . . . , nN ) =
Q

N

k=1
nk, if N  d

�d(n1, . . . , nN ) 
⇣
1 +

P
N

k=1
(nk � 1)

⌘d


⇣P

N

k=1
nk

⌘d

, otherwise.
(4.5)

The expression of the bound in Theorem 4.1 is based on a broad result of dis-
crete geometry [233]. We then relied on Zaslavsky’s Theorem [207] and Whitney’s
formula to construct a specific arrangement of convex partitions for any set of pa-
rameters d, N, n1, . . . , nN 2 N\{0} that achieves the bound. The proof of Theorem
4.1 is given in 4.6. We now discuss the result and its implications.

• Theorem 4.1 is a generalization of the hyperplane-arrangement bound. In-
deed, let us consider the number of regions generated by an arrangement of
N hyperplanes: each hyperplane defines a 2-partition of Rd and the bound
yields �d(2, . . . , 2) = 1 +

Pmin(d,N)

k=1

P
1`1<···<`kN

1 = 1 +
Pmin(d,N)

k=1

�
N

k

�
=

Pmin(d,N)

k=0

�
N

k

�
, which is known to be exactly the number of convex regions

generated by an arrangement of N hyperplanes in general position [207].

• The naive upper bound can be rewritten as
Q

N

k=1
nk =

Q
N

k=1
((nk� 1)+1) =

1+
P

N

k=1

P
1`1<···<`kN

(n`1�1) · · · (n`k
�1). This shows that when N  d,
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1   2   3
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1   2   3
4   5   6
7   8   9

2D

1  2   3

1    2 3

1  2  3  4  5

1D

Figure 4.5: Arrangement of two convex partitions with 3 regions each. While in
2D the maximal number of regions is 3⇥ 3 = 9, this cannot be reached in 1D, for
which the maximum is 5.

the naive bound is optimal. By contrast, when N > d, the dimension enforces
the existence of one or more empty intersections between regions of different
partitions. This is illustrated in Figure 4.5 with a simple example.

• For partitions with the same number n of regions, we introduce the simpler
notation �d

N
(n) := �d(n, . . . , n) = 1 +

Pmin(d,N)

k=1

P
1`1<···<`kN

(n � 1)k =
Pmin(d,N)

k=1

�
N

k

�
(n� 1)k  min(nN , (1 + N(n� 1))d).

• The bound is reached when the partitions ⇧k are made of the regions of the
arrangement of (nk � 1) distinct parallel hyperplanes, where the hyperplanes
are in general position when only one per partition is selected (more detailed
in the proof in 4.6).

Remark 4.1. After the disclosure of our work on arXiv, we became aware of [227],
which contains highly relevant results on the complexity of Maxout NNs. From
Theorem 4.1, we can directly recover the sharp bound on the number of regions of a
shallow Maxout NN recently given in [227, Theorem 3.7]. Regarding the converse,
i.e. inferring Theorem 4.1 from [227, Theorem 3.7], we believe that it could perhaps
be done but it is not immediate. Indeed, [227, Theorem 3.7] is specific to convex
partitions that are the linear partitions of the maximum of affine functions, i.e. only
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specific CPWL functions. Note that the proofs in [227] rely on tropical geometry,
which gives an overall perspective very different from ours.

4.3.2 Single Hidden-Layer: Bound for the Sum and Vector-
ization Operations

The sum and vectorization of CPWL functions both yield the same bound on the
number of linear convex regions. We now give a novel optimal bound in Proposition
4.2. The proof is given in 4.6.

Proposition 4.2. Let f1, . . . , fN : Rd ! R be CPWL functions with 1, . . . ,N

convex linear regions. The number of convex linear regions of the sum (f1+· · ·+fN )
and of the vector-valued function (f1, . . . , fN ) can be bounded by a polynomial in
1, . . . ,N of degree min(d, N), namely

f1+···+fN
 �d(1, . . . ,N ), (4.6)

(f1,...,fN )  �d(1, . . . ,N ), (4.7)

and these bounds are sharp.

Remark 4.2. Bounds similar to the ones given in Proposition 4.2 have recently
been derived for one hidden-layer Maxout NNs [227]. The latter work is a specific
instance of our setting, in which the CPWL functions considered are the maximum
of a finite set of affine functions.

As an illustration of Proposition 4.2 and Theorem 4.1, we give some direct
implications on the number of regions of some building blocks of CPWL NNs before
going deeper.

Ridge Functions Consider the ridge expansion fR : x 7!
P

N

k=1
�kReLU(wT

k
x+

bk), where wk 2 Rd and bk 2 R. The number Ridge of linear convex regions of fR

is upper-bounded as

Ridge  �d

N
(2) =

min(d,N)X

k=0

✓
N

k

◆
 min(2N , (N + 1)d), (4.8)

and the bound is tight.
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Max-Pooling The kth component of the max-pooling operation f
mp

: Rd !
Rd

0
takes the form f

k

mp
(x1, . . . , xd) = maxp2Ik

(xp), where Ik is a set of chosen
cardinality N of “neighboring” coordinate indices. The number mp of convex
linear regions of the max-pooling operation is upper-bounded as

mp  �d

d0(N) =

min(d,d
0
)X

k=0

✓
d0

k

◆
(N � 1)k. (4.9)

Generalized Hinging Hyperplanes (GHH) Consider the GHH expansion
Rd ! R fG =

P
N

k=1
✏k max(fk

1
, . . . , fk

d+1
), where fk

p
are affine functions and

✏k = ±1 [170]. The number GHH of convex linear regions of fG is upper-bounded
as

GHH  �d

N
(d + 1) =

min(d,N)X

k=0

✓
N

k

◆
dk  min

�
(d + 1)N , (Nd + 1)d

�
. (4.10)

GroupSort Layer The sort operation takes as input a vector x 2 Rd and simply
sorts its components. For any permutation � of the set {1, . . . , d}, we define the
uniquely-ordered region P� = {x 2 Rd : x�(1)  · · ·  x�(d)}, where xk is the kth
component of x. These regions are convex as intersections of half-spaces and the
sort operation agrees on them with distinct affine functions, namely, permutations.
We infer that the sort operation has exactly d! linear convex regions and the same
number of projection regions.

The GroupSort activation was recently introduced and shown to be beneficial
in the context of Lipschitz-constrained learning [82]. It generalizes the minmax
and sort activations: it splits the pre-activation into a chosen number ng of groups
of size gs (with nggs = d), sorts each pre-activation of each group in ascending
order, and outputs the combined sorted groups. Each group produces gs! linear
convex regions which are invariant along the coordinates that are not in the group.
We infer the number of linear convex regions of the GroupSort activation to be
GS = (gs!)ng , which can be bounded as

(gs/2)d/2  GS  (ggs

s
)ng = gd

s
, (4.11)

where we have used the known inequalities (n/2)n/2  n!  nn. The bounds sup-
port the intuition that larger group sizes generate more regions than smaller ones.
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Note, however, that they simultaneously increase the computational complexity of
the layer.

PWLU The PWLU [231] is a learnable CPWL activation function with con-
trol points placed on a grid and with fixed linear regions (namely simplices whose
vertices are control points). In its 2D version, a PWLU 'PWLU : R2 ! R with
M2 control points has 2(M � 1)2 linear regions that are triangles, see Figure
4.6 for an illustration with M = 4, and see [231, Figure 5] for a more generic
representation of PWLUs. Consider the one-hidden layer Rd ! R PWLU NN
fPWLU(x) =

P
N

k=1
'k

PWLU
(Wkx) with 2D PWLU activations 'k

PWLU
with M2

control points and corresponding weight matrices Wk 2 R2⇥d. The number PWLU

of convex linear regions of this PWLU NN is upper-bounded as

PWLU  �d

N

�
2(M � 1)2

�
=

min(d,N)X

k=1

✓
N

k

◆
(2(M � 1)2 � 1)k (4.12)

 min((2(M � 1)2)N , (1 + N(2(M � 1)2 � 1))d)
(4.13)

 min((2M2)N , (1 + N(2M2))d). (4.14)

Our framework also allows one to derive bounds for NNs activated with higher
dimensional PWLUs, but we are not aware of their use in practice.

4.3.3 Multiple Hidden-Layers: Compositional Bounds
The architecture of a CPWL NN Rd1 ! RdL+1 is specified by its depth L, its
layer dimensions (d1, . . . , dL+1), and its activation complexity `,k at each node
(`, k), which is naturally depicted by the number of linear convex regions of the kth
component of the `th composed function (Figure 4.6). Theorem 4.2 below yields
precise bounds on the maximal number of convex linear regions of any CPWL NN.
It is complemented by Corollary 4.1 which tackles the following question: given a
CPWL NN with fixed input and output dimensions, how is the maximal number of
regions related to depth, width, and activation complexities? Our results confirm
and generalize the following qualitative intuitions:

• (i) depth can exponentially increase the complexity of the generated function;
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ReLU Deepsplines Maxout CPWLPWLU

Figure 4.6: Partition and complexity of some CPWL components.

• (ii) width and activation complexity, on the contrary, can only increase the
number of linear convex regions of the generated function polynomially;

• (iii) layers with small dimensions reduce the maximal number of regions pro-
duced by the NN, especially if they are located toward the input of the NN.
This bottleneck effect stems from the upper bound given in Theorem 4.1.

Note that (i) is well known and was first proven in [213], (ii) is in agreement with
the recent results in [227] obtained for the particular instance of Maxout NNs, and
(iii) was observed for ReLU NNs in [234, 73].

Theorem 4.2. The maximal number max of convex linear regions of a CPWL NN
with depth L, layer dimensions (d1, . . . , dL+1), and activation complexities `,k for
k = 1, . . . , d`+1 and ` = 1, . . . , L, is bounded as

LY

`=1

↵min(d1,...,dL+1)(`,1, . . . ,`,d`+1)  max 
LY

`=1

�min(d1,...,d`)(`,1, . . . ,`,d`+1),

(4.15)
where �·(·) is the upper bound on the number of regions of an arrangement of convex
partitions (Theorem 4.1) and where

↵min(d1,...,dL+1)(`,1, . . . ,`,d`+1) = max
⌧2Td

`

min(d1,...,dL+1)Y

r=1

X

k2⌧�1({r})

`,k. (4.16)
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There, Td`
denotes the set of all mappings from {k 2 N : 1  k  d`+1} to {k 2

N : 1  k  min(d1, . . . , dL+1)}, and ⌧�1({r}) denotes the preimage of {r} under
⌧ .

Corollary 4.1. The maximal number max of convex linear regions of a CPWL
NN with L layers, layer dimensions (din, W, . . . , W, dout), with din, W, dout 2 N\{0}
and W � din, where each component of the composed functions has  linear convex
regions is bounded as

( bW/d⇤c)Ld
⇤
 max  (W )Ldin , (4.17)

where d⇤ = min(din, dout).

Corollary 4.2. The bounds given in Theorem 4.2 and Corollary 4.1 also apply to
the maximal number of projection regions of a CPWL NN and, equivalently, to its
maximal number of distinct affine pieces.

The proofs of Theorem 4.2 and of its corollaries can be found in 4.6.4.

4.3.4 Application to Some Popular CPWL NNs
In the sequel, we consider the CPWL NN f

L
� · · · � f

1
where f

`
: Rd` ! Rd`+1 .

We now apply Theorem 4.2 to bound the maximal number of convex linear regions
produced by the most popular architectures. Note that the lower bound given in
Theorem 4.2 only applies to CPWL NNs with pointwise activation functions. This
includes ReLU and, more generally, deepspline NNs. The reason is that the lower
bound of Theorem 4.2 was found by building a deepspline NN.

ReLU/PReLU/leaky ReLU NNs In a ReLU NN, the kth component f`,k of
f

`
takes the form f`,k : x 7! ReLU(w`,kx + b`,k) and has two convex linear regions

(half-spaces). Theorem 4.2 then yields

ReLU 
LY

`=1

min(d1,...,d`)X

k=0

✓
d`+1

k

◆
, (4.18)

which is the bound proposed in [213]. However, it is not the tightest upper bound
known [73]. The reason is that the ReLU function is only a very specific instance of
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1D CPWL functions with 2 linear regions: the image of the half real line (�1, 0] by
the ReLU function is only the singleton {0}. This reduces the apparent dimension
of the problem for any region that would not fire all neurons. This observation was
exploited in [73] to get a better estimate. In that sense, (4.18) is better tailored
to PReLU and Leaky ReLU NNs, which have activations with two nonzero slope
regions.

Deepspline NN Deepspline NNs have learnable pointwise 1D CPWL activation
functions [214, 215, 235]. Given activation functions with (� 1) knots (at most 
linear convex regions), the number of linear convex regions of the NN is bounded
as

Deepspline 
LY

`=1

min(d1,...,d`)X

k=0

✓
d`+1

k

◆
(� 1)k. (4.19)

Maxout NN In a Maxout NN with  units, the kth component fk

`
of f

`
takes the

form fk

`
: x 7! max(h1

`,k
, . . . , h

`,k
), where h1

`,k
, . . . , h

`,k
are learnable affine functions

[174]. Theorem 4.2 yields that

Maxout 
LY

`=1

min(d1,...,d`)X

k=0

✓
d`+1

k

◆
(� 1)k. (4.20)

This bound is an improvement over [73]. In their work they plug d` = d for
` = 1, . . . , L and obtain the bound 2

(�1)
2 dL, to be compared to dL for (4.20).

GroupSort NNs To bound the number of linear convex regions of a GroupSort
NN [82] with the same group size gs in each layer, we consider for each composition
the arrangement of d`+1/gs convex partitions (one per group) with gs! regions each
and obtain that

GroupSort 
LY

`=1

min(d1,...,d`)X

k=0

✓
d/gs

k

◆
(gs!� 1)k. (4.21)

These bounds provide an intuition of the role of the hyperparameters of CPWL NNs
in terms of expressiveness. For instance, the number of units in Maxout NNs plays
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a role in the bound that is analogous to that of the number of knots of the activation
functions in deepspline NNs. However, these two architectures do not induce the
same implementation complexity. To increase the activation complexity by one
unit, Maxout requires the inclusion of an additional learnable multidimensional
affine function, whereas deepspline simply requires the insertion of one more knot
to a 1D CPWL function.

While it is tempting to compare architectures on the sole basis of their expres-
siveness, it can be very delicate to draw generic practical conclusions from this
comparison. The final choice of an architecture is guided by a tradeoff between
expressiveness, computation complexity, memory usage, and ability to learn over
the functional space. For instance, an increase in the group size of a GroupSort
activation function increases the expressiveness with no additional parameters, but
usually small group sizes are favored to keep the computational impact limited.

4.4 Expected Number of Regions of CPWL NNs
Along 1D Paths

In Section 4.3, we found that depth increases the expressiveness of the model expo-
nentially when the corresponding metric is the maximal number of regions. How-
ever, the compositions that achieve the lower bound of Theorem 4.2 could be very
specific and hard to reach in practice.

The composition (f
2
� f

1
) of two CPWL functions results in the partitioning

of each linear region of f
1

into smaller linear pieces. The successive compositions
(f

`
� · · · � f

1
) have regions that are obtained from splitting of the regions of the

previous compositions (Figure 4.7). As such, we expect the image of each region
of the composition to shrink when depth increases, at least for compositions with
reasonable gradients magnitude (⇠ 1). The extent of the split should therefore
depend on the depth of the composition. The more there are regions produced
by the first compositions, the fewer splits each region will undergo after the next
compositions. This intuition rules out an exponential growth of the average number
of regions with `. This effect has already been revealed for ReLU NNs in [223] and
recently extended to Maxout NNs in [229]. We now aim to prove that it is universal
to NNs with any type of CPWL activations under reasonable assumptions.

Throughout this section, we consider CPWL functions f✓ parameterized by
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Figure 4.7: Linear region-splitting process for a CPWL NN with absolute-value
activation function and randomly generated parameters. The figure shows the
linear regions of the mapping after k activation layers, for k = 0, . . . , 9. From one
layer to the next, the regions are partitioned into smaller pieces. The number of
linear regions is indicated in parentheses and suggests that the splitting process
saturates with depth. The regions were numerically identified by evaluating the
Jacobian of the mapping on a very fine grid.

random parameters ✓. We shall specify the parameterization and characteristics of
the underlying stochastic model whenever needed. The natural extension of Section
4.3 is to estimate the expected number of regions of compositions of randomly
generated CPWL functions. This task seems unfortunately very complex as it
mixes stochasticity and combinatorial geometry. It would involve an overly heavy
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framework with the risk to lose focus on the high-level intuition. Instead, we propose
a simpler but closely related metric: the expected density of regions along 1D paths.
This quantity is valuable in practice since it gives the expected number of linear
regions that are found in-between two locations of the input space that are 1 unit
distance apart. In addition, the inverse of the density gives a rough measure of the
average size of a linear region along one direction.

4.4.1 Knot Density
The characterization of the density of linear regions of CPWL NNs along one-
dimensional paths requires the introduction of some mathematical concepts.

1D CPWL Path A 1D CPWL path denotes in the sequel any CPWL mapping
� : S ! Rd on a closed segment S = [a, b] (a, b 2 R) with finitely many knots. This
path will serve to “navigate” within the input domain of CPWL NNs for counting
the linear regions. The length of � is computed as Len(�) :=

R
t2S
kd�

dt
k2dt. Note

that � is a parameterization of what is often referred to as a polygonal chain. In
this Section we only study the density of linear regions along CPWL paths because
of their simplicity and connections with CPWL NNs, e.g. the composition of a
CPWL path and a CPWL NN is again a CPWL path. This choice is, however, not
very restrictive since CPWL paths can approximate any continuous path arbitrarily
close.

Knot Density Along a Path Given a 1D CPWL path, the goal is to characterize
the complexity of a CPWL NN along it. Informally, the number of knots of a CPWL
NN along the path is the number of times the path crosses regions. This intuitive
definition is unfortunately not sufficiently precise since it does not specify how to
count knots when some nonzero-length portion of the path � is contained in a face
of a linear region, see in Figure 4.8 for an example. To avoid any ambiguity, we
introduce the characteristic function

'
�
f : R! RK (4.22)

t 7! ( ⌦1(�(t)), . . . , ⌦K
(�(t))) (4.23)

of a CPWL f along �, where the sets ⌦k are the projection regions of f and
⌦k

(�(t)) = 1 if �(t) 2 ⌦k and ⌦k
(�(t)) = 0 otherwise. Since � is continuous with
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finitely many knots, and since the projection regions are unions of polyhedrons,
'�
f is a binary function with finitely many jumps, see Figure 4.8. Note that '�

f
uniquely identifies the supporting affine function active at location �(t). Hence,
in practice, the knowledge of f(�(t)) and rf(�(t)), which is computable in any
deep-learning library, suffice to identify '�

f (t).

(0, 0, 1, 0)

(0
, 0

, 1
, 1

)

(0, 0, 0
, 1)

(0, 1, 0, 0)

Figure 4.8: Example of a 1D CPWL path � : R! R2. The value of the character-
istic function '�

f along � is given as a 4D vector and allow one to identify the 3
knots along �.

Definition 4.6 (Knot density along 1D CPWL curves). Let f : Rd ! Rd
0

be a
CPWL function, � a 1D CPWL path, and '�

f the characteristic function of f

along �. The number kt�f of knots of f along � is the number of discontinuous
points of the piecewise-constant function '�

f . The knot density ��f of f along � is
defined as

��f = kt�f/Len(�), (4.24)

where Len(�) is the length of �.

We stress that alternative definitions of the knot density that correspond to the
same informal intuition are possible, but they would differ when the path � follows
the boundaries of some projection regions. In the sequel, this will not matter since,
in any reasonable stochastic framework, the path does not follow some boundaries
almost surely.
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The knot density along a path is subadditive for the sum and vectorization of
CPWL functions.

Proposition 4.3. Let � : S ! Rd be a 1D CPWL path on the segment S ⇢ R and
let f

1
: Rd ! Rd

0
and f

2
: Rd ! Rd

0
be two CPWL functions. The knot density

along � of either the sum f
1
+ f

2
or of the vectorized function (f

1
,f

2
) is bounded

as

��f1+f2
 ��f1

+ ��f2
, (4.25)

��
(f1,f2)

 ��f1
+ ��f2

, (4.26)

where ��f1
and ��f2

are the knot density of f
1

and f
2

along �, respectively.

Proof. Consider two CPWL functions f
1
,f

2
with characteristic functions '�

1
and

'
�
2

along � and projection regions (⌦1

k
)K1
k=1

and (⌦2

k
)K2
k=1

. Let '�
(1,2)

denote the
characteristic function of (f

1
,f

2
) and '�

1+2
the one of f

1
+ f

2
along �. Consider

a subset R ⇢ S on which '�
1

and '�
2

are continuous. Following the definition of
the characteristic function, any projection region ⌦ of f

1
or of f

2
either entirely

contains �(R) or does not intersect with it; otherwise, '�
1

or '�
2

would not be
continuous on R. Any projection region ⌦(1,2) of (f

1
,f

2
) is a nonempty intersection

of the form ⌦1

p
\⌦2

q
, with p 2 [K1] and q 2 [K2]. Since the regions ⌦1

p
and ⌦2

q
either

entirely contain �(R) or do not intersect with it, the same holds true for ⌦(1,2),
which implies that '�

(1,2)
must be continuous on R. The same argument holds true

for '�
(1+2)

, the only difference being that the projection regions of f
1
+f

2
are unions

of nonempty subsets of the form ⌦1

p
\ ⌦2

q
, which also has the same implications.

So, on the one hand, we proved that, where '
1

and '
2

are continuous, '
1+2

and
'

(1,2)
are also continuous. On the other hand, the number of points where either

'
1

or '
2

is discontinuous is no greater than the number of points where '
1

and
'

2
are discontinuous, which concludes the proof.

Proposition 4.4. Let � : S ! Rd1 be a 1D CPWL path on S ⇢ R and let
f

1
: Rd1 ! Rd2 and f

2
: Rd1 ! Rd2 be two CPWL functions. Then, the knot

density of f
2
� f

1
on � is bounded as

��f2�f1
 ��f1

+

✓
Len(f

1
� �)

Len(�)

◆
�f1��
f2

, (4.27)

where ��
1

is the knot density of f
1

along � and ��
2

the one of f
2

along f
1
� �.
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Proof. Consider the characteristic function '�
f1

of f
1

on � and 'f1��
f2

of f
2

on
f

1
� �. Moreover, consider a subset R ⇢ S on which both '�

f1
and 'f1��

f2
are

continuous. The projection regions of f
1

and f
2

are denoted by (⌦1

k
)K1
k=1

and
(⌦2

k
)K2
k=1

. On any region ⇤p,q = ⌦1

p
\f�1

1
(⌦2

q
), the function f

2
�f

1
is affine, meaning

that each projection region of f
2
� f

1
is a union of some of the regions ⇤p,q. Each

region ⌦1

p
either entirely contains the subset �(R) or does not intersect with it;

otherwise, '�
f1

would not be continuous on R. We now remark that 'f1��
f2

(t) =

( ⌦
2
1
(f

1
��(t)), . . . , ⌦

2
K2

(f
1
��(t))) = ( f�1

1 (⌦
2
1)

(�(t)), . . . , f�1
1 (⌦

2
K2

)
(�(t))), which

means that each region f
�1

1
(⌦2

q
) either entirely contains the subset �(R) or does

not intersect with it since, otherwise, 'f1��
f2

would not be continuous on R. We
therefore have that each region ⇤p,q either entirely contains the subset �(R) or
does not intersect with it. Consequently, the same holds true for union of regions
⇤p,q and, as a result, for the projection regions of f

2
� f

1
. This shows that, where

'
�
f1

and 'f1��
f2

are continuous, '�
f2�f1

is also continuous. In short, the number of
points of discontinuities of '�

f2�f1
is no greater than the the number of points of

discontinuity of either '�
f1

or 'f1��
f2

, which concludes the proof.

4.4.2 Knot Density of CPWL Layers
The goal of this subsection is to show that the knot density is well behaved for
classical CPWL NN layers, which justifies the assumption (i) of Theorem 4.3 and
Corollary 4.3. The proofs can be found in 4.7.

Proposition 4.5 (Knot density - ReLU). Let (w, b) 2 Rd ⇥ R be independent
random variables with bounded probability density functions ⇢b for b and ⇢w for the
components of w, which are i.i.d. Then, the expected knot density of the ReLU
CPWL component x 7! ReLU(wTx+ b) along any 1D CPWL path � is bounded as

E [��
ReLU

] 
q

E[w2

1
] sup

t2R
⇢b(t). (4.28)

In particular, when b and the components of w are normally distributed with zero
mean and standard deviation �b and �w, respectively, the following tighter bound
holds true

E [��
ReLU

]  �w

⇡�b

. (4.29)
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When the ReLU activation function is replaced by a 1D CPWL function with a
given number K of knots, we conjecture that the bounds can simply be multiplied
by K.

Proposition 4.6 (Knot density - Maxout). Let ((wk1, . . . , wkd), bk) 2 Rd ⇥ R for
k = 1, . . . , K be independent random variables with bounded probability density
functions ⇢b for any bk and ⇢w for all components wkl of wk, which are i.i.d. over
both k 2 [K] and l 2 [d]. Then, the expected knot density of the rank K Maxout
unit f : x 7! maxk=1,...,K(wT

k
x + bk) along any 1D CPWL path � is bounded as

E [��
Maxout

] 
p

2

✓
K

2

◆
�w sup

t2R
⇢b(t), (4.30)

where �w is the standard deviation of any wkl. In particular, when bk and wkl are
normally distributed with zero mean and standard deviation �b and �w, respectively,
a tighter bound holds true, according to

E [��
Maxout

] 
p

2

✓
K

2

◆
�w

⇡�b

. (4.31)

The bounds provided in Proposition 4.6 grow quadratically in terms of the
number of Maxout units; we conjecture the existence of a tighter linear bound.

Proposition 4.7 (Knot density - GroupSort). Let (wk, bk) be as in Proposition
4.6. Then, the expected knot density ��f of the GroupSort layer f : Rd ! Rd : x 7!
GSng,gs

(Wx), where GSng,gs
is the GroupSort activation with ng groups of size gs,

is bounded along any 1D CPWL path � as

E
h
��

GroupSort

i

p

2

2
d(gs � 1)�w sup

t2R
⇢b(t), (4.32)

where �w is the standard deviation of any wk,l. In particular, when bk and wkl are
normally distributed with zero mean and standard deviation �b and �w, respectively,
a tighter bound can be given as

E
h
��

GroupSort

i

p

2

2
d(gs � 1)

�w

⇡�b

. (4.33)
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For ReLU and Maxout layers with multidimensional outputs, the bounds given
in Proposition 4.5 and 4.6 are simply multiplied by the output dimension (see Propo-
sition 4.3). We note that all bounds proposed take the form (W�w sup

t2R ⇢b(t)),
where the prefactor  only depends on the activation function and W is the num-
ber of outputs of the layer. The learnable parameters are typically initialized by
sampling a uniform or normal distribution with the same characteristics for the
biases and the weights of a same layer. In this case, although the characteristics
of the distribution usually depend on the input and output dimensions of the layer
[172], the quantity �w sup

t2R ⇢b(t) is determined only by the distribution: normal
or uniform (since, for these distributions, the supremum of the probability density
function is proportional to the standard deviation). All in all, it should be reminded
that

• the expected knot density is well defined for learnable CPWL layers;

• with standard initialization methods, it is reasonable to assume that the ex-
pected knot density of the components of a CPWL layer depends neither on
its width nor on the total depth of the NN (at least at initialization stage).

It is tempting to take advantage of the previous results to adjust the distributions of
the weights and biases at initialization in the hope to increase the upper bound and,
possibly, the knot density of a NN. The effect is, however, subtle: for instance, if one
narrows the distribution of the biases, the bound increases as sup

t2R ⇢b(t) increases.
While this may increase the average knot density at some specific locations, it will
inevitably decrease it elsewhere.

4.4.3 Bounds on the Expected Knot Density of CPWL NNs

In Theorem 4.3 and Corollary 4.3, we introduce two different settings to bound
the expected knot density of CPWL NNs. Theorem 4.3 highlights the role played
by the gradients of the composed layers: larger gradients allow for a more intense
splitting process within the composition and should lead to a greater knot density.
With Corollary 4.3, we propose a more practical analysis: given a learning task that
dictates the input and output dimensions, how does the expected density of linear
regions along 1D curves relate to the depth, width, and activation complexity of
the CPWL NN? In accordance with the intuition given in Figure 4.7, depth cannot
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provide exponentially more linear regions on average. This key result relies mainly
on the assumption (ii), which is discussed in Section 4.4.3.

The directional derivative of the function f in the direction u is denoted by
Du{f}.

Theorem 4.3. Let f✓1
, . . . ,f✓L

, with f✓`
: RW ! RW , be CPWL functions pa-

rameterized by the independent and identically distributed random variables
✓1, . . . ,✓L. Suppose that there exist �0, D0 2 R such that

(i) for any 1D CPWL path �, E[��
f✓

`
,k

]  �0, where f✓`,k is the kth component
of f✓`

(bounded expected knot density of the components);

(ii) for any x,u 2 RW with kuk2 = 1, E[Du{f✓}(x)]  D0 (bounded expected
directional derivative).

Then, on any 1D CPWL path �, the expected knot density of the CPWL NN is
bounded as

E[��f✓L
�···�f✓1

] 
(
�0W

⇣
1�D

L

0
1�D0

⌘
, D0 6= 1

�0WL, D0 = 1.
(4.34)

Corollary 4.3. Let f✓1
, . . . ,f✓L

, with f✓`
: Rd` ! Rd`+1 , be CPWL functions pa-

rameterized by the independent and identically distributed random variables
✓1, . . . ,✓L and d2 = · · · = dL = W > dL+1. Suppose that there exist �0, D0 2 R
such that

(i) for any 1D CPWL path �, E[��
f✓

`
,k

]  �0, where f✓`,k is the kth component
of f✓`

(bounded expected knot density of the components),

(ii) for any x,u 2 Rd with kuk2 = 1, E[Du{f✓`
�· · ·�f✓1

}(x)]  D0, for 1  `  L
(bounded expected directional derivative within the composition).

Then, on any 1D CPWL path �, the expected knot density of the CPWL NN is
bounded as

E[��f✓L
�···�f✓1

]  D⇤
0
(�0WL), (4.35)

where D⇤
0

= max(D0, 1).

The proof of Theorem 4.3 relies on Lemma 4.4. In the bound presented in this
lemma, the expected value is evaluated before taking the supremum, whilst a switch
of the order of the operators would yield a much looser bound.
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Lemma 4.4. Let � : S ! Rd be a 1D CPWL path and f✓ : Rd ! Rd
0

a CPWL
function parameterized by the random variable ✓ such that, for any x,u 2 Rd, f✓

is differentiable at x in direction u with probability 1. Then, the expected length of
the 1D CPWL path f✓ � � : S ! Rd

0
is bounded as

E[Len(f✓ � �)]  Len(�) sup
x,u2Rd

kuk2=1

E[kDu{f✓}(x)k2]. (4.36)

Proof. In what follows, the technical developments originate from the fact that f✓

is not differentiable everywhere.

The function f✓ � � is the composition of two CPWL functions, hence it is
CPWL and, therefore, differentiable for almost every t 2 S. Note, however, that
we cannot assert that the Jacobian of f✓ is well defined at �(t) for almost every
t 2 S. Indeed, whenever � follows the boundary of two projection regions of f✓,
the Jacobian of f✓ along � becomes ill-posed. This is why the notion of direc-
tional derivative is better suited. The characteristic function '�

f✓
of f✓ along �

is piecewise-constant on S: We can partition S into finitely many convex regions
where '�

f✓
is constant. Let P ⇢ S denote one of these regions and let Q ⇢ S be

a linear convex region of �. Following the definition of the characteristic function,
there exists a projection region ⌦ of f✓ such that �(int(P \Q)) either lies entirely
in the interior of ⌦, or entirely on its boundary.

In the first case, f✓ is differentiable in �(int(P \ Q)) and we have that (f✓ �
�)0(t) = Jf✓

(�(t))�0(t) = D�0(t){f✓}(�(t)) for t 2 int(P \Q).
In the second case, � is differentiable on int(P \Q) as well, but the Jacobian of f✓

is undefined. Fortunately, the directional derivative of f✓ is well defined along �(t)
since, for any t 2 int(P \ Q), there exists ✏ > 0 such that ⌧ 7! f

✓
(�(t) + ⌧�0(t))

is affine on (�✏, ✏). All in all, the relation (f✓ � �)0(t) = D�0(t){f✓}(�(t)) is well
defined for any t 2 int(P \Q) and, more generally, for almost any t 2 S because of
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the properties of P and Q. We can now write that

E [Len(f✓ � �)] = E
Z

t2S

k(f✓ � �)0(t)k
2
dt

�

= E
Z

t2S

��D�0(t){f✓}(�(t))
��

2
dt

�

=

Z

t2S

E
⇥��D�0(t){f✓}(�(t))

��
2

⇤
dt

 sup
x,u2Rd

kuk2=1

E[kDu{f✓}(x)k2]
Z

t2S

k�0(t)k
2
dt

= Len(�) sup
x,u2Rd

kuk2=1

E[kDu{f✓}(x)k2], (4.37)

where we have used Tonelli’s theorem to interchange the expectation and the inte-
gral.

Proof. of Theorem 4.3 Let F ` = f✓`
� · · · � f✓1

. With Lemma 4.4, we have that

E
⇥
kt�F `

⇤
= E

h
kt�f✓

`
�FL�1

i
 E

h
kt

F `�1��
f✓

`

i
+ E

h
kt�F `�1

i
. (4.38)

We now apply the law of the iterated expectation to obtain that

E
h
kt

F `�1��
f✓

`

i
= E✓1,...,✓`�1

h
E✓`

h
kt

F `�1��
f✓

`

|✓1, . . . ,✓`�1

ii

 E✓1,...,✓`�1 [d�0Len(F `�1 � �)] , (4.39)

where the inequality follows from the first assumption of the theorem, the appli-
cation of Proposition 4.3, and requires the independence of the random variables.
We can now apply Lemma 4.4 recursively to F ` and invoke the second assumption
of the theorem to infer that

E
h
kt

F `�1��
f✓

`

i
 d�0Len(�)D`�1

0
. (4.40)

All in all, we just proved that

E
⇥
kt�F `

⇤
 E

h
kt�F `�1

i
+ d�0Len(�)D`�1

0
, (4.41)
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which reads in term of linear densities as

E
⇥
��F `

⇤
 E

h
��F `�1

i
+ d�0D

`�1

0
. (4.42)

This recurrence relation directly yields the announced bound.

Proof. of Corollary 4.3 The proof is similar to the proof of Theorem 4.2 except
that, with the different second assumption, the quantity E✓1,...,✓`�1 [Len(F `�1 � �)]
can be bounded by D0Len(�) (Lemma 4.4). In the end the recurrence relation
(4.42) is changed into

E
⇥
��F `

⇤
 E

h
��F `�1

i
+ D0�0W. (4.43)

Discussion of the Compositional Bounds

Our approach relies on the independence of the randomly generated CPWL func-
tions. It usually holds at initialization stage, but it is not true anymore in the
learning stage. While this can be regarded as a limitation, it is a legitimate and
convenient way to explore and depict the whole function space that a given archi-
tecture gives access to.

Assumption (i) of Theorem 4.3 and its corollary (bounded expected knot density
of the learnable CPWL components) have been discussed in details in Section 4.4.2,
where it was remarked that it is reasonable to assume that �0 is independent of W
and L.

Theorem 4.3 and Corollary 4.3 differ on Assumption (ii) (well behaved gra-
dients). While the assumption of the theorem seems more natural at first sight
(gradient controlled for each layer), the one of the corollary is closer to practical
observations. Assumption (ii) of Corollary 4.3 was invoked to bound the expected
length of the image of any finite-length 1D CPWL path, independently of the depth
of the composition. While early works suggested that this expected length grows
exponentially with depth [236], it was recently shown otherwise in a more realistic
setup, both theoretically and experimentally [237]. For instance, for ReLU NNs,
with the usual 2/fan-in weight variance, depth typically does not affect the expected
length [237]. More generally, a control of the magnitude of the directional deriva-
tives that is independent of the depth is highly desirable in the learning stage for
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a stable back-propagation algorithm [172] and, in the inference stage, to produce
robust models [238]. In short, it is also reasonable to assume that the parameter
D0 depends neither on W nor on L.

The previous discussion suggests a simple and important bound on the density
of regions of CPWL NNs. It attributes an identical role to the three sources of
complexity, namely depth, width, and activation complexity.

The quality of the proposed bounds seems to be completely determined by the
tightness of the bounds in Assumptions (i) and (ii). Based on the proofs of Theorem
4.3 and Corollary 4.3, we believe that the compositional bounds are sharp provided
that the expected knot density is uniform (i.e., the same for any 1D CPWL curve)
and that the expected norm of the directional derivative is uniform and isotropic
within the NN.

4.5 Conclusion
In this chapter, we have investigated the role of depth, width, and activation com-
plexity in the expressiveness of CPWL NNs. By invoking results from combinatorial
geometry, we have found that depth has a predominant role over width and acti-
vation complexity: it is the only descriptor able to increase the number of linear
regions exponentially. However, this exponential growth is only observed for the
maximal number of regions. Indeed, when exploring the whole function space pro-
duced by a given CPWL NN, we have found that, on average, the number of regions
along a line is bounded by a quantity that only depends on the product of the three
descriptors. In that perspective, the three complexity parameters have an identical
role: no exponential behavior with depth is observed anymore.

The ability to train deeper and deeper NNs has led to major improvements in
machine learning. However, depth comes at a price in applications where the NN
needs to be stable, for instance by constraining its global Lipschitz constant. In such
settings, we, therefore, believe that expressive learnable activations should always
be regarded as a valuable opportunity to increase substantially the expressiveness
of the model without resorting to deeper NNs, and we develop this idea in Chapter
5 and 6.
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4.6 Appendix – Proofs for Section 4.3

4.6.1 Number of Convex vs Projection Regions
Proof. of Proposition 4.1 The first inequality follows from the fact that there
cannot be fewer linear convex regions than affine pieces. Consider two neighboring
projection regions ⌦k and ⌦p of f , where 1  k < p  ⇢, with corresponding
affine pieces f

k : x 7! WT

k
x + bk and f

p : x 7! WT

p
x + bp, where Wk,Wp 2

Rd
0⇥d and bk,bp 2 Rd

0
. Since f is continuous, any x 2 ⌦k \ ⌦p satisfies that

(Wk �Wp)Tx + (bk � bp) = 0. The set of all boundary points of f is therefore
included in [1k<p⇢Hkp, where Hkp = {x 2 Rd : (Wk �Wp)Tx+ (bk �bp) = 0}
is an affine subspace of dimension at most (d� 1) since k 6= p. The arrangement of
the ⇢(⇢� 1)/2 hyperplanes Hkq with k 6= p 2 [⇢] yields convex regions on which f

is affine since these regions do not contain boundary points. The number of such
regions is, therefore, an upper bound on the number of convex regions of f . It is
known from [207] that the number of convex regions formed by an arrangement of N

hyperplanes in Rd is at most
Pmin(d,N)

k=0

�
N

k

�
. Hence, for ⇢(⇢� 1)/2 > d, we directly

reach the announced result. Otherwise, the bound yields
P⇢(⇢�1)/2

k=0

�
⇢(⇢�1)/2

k

�
=

2⇢(⇢�1)/2.

Proof. of Lemma 4.1 Let e = dim(E). The natural candidate for ⇧E is the
partition

⇧0 = {P 0 : P 0 = P \ E, P 2 ⇧, and IntP 0 6= ;} , (4.44)

which is unfortunately not necessarily a proper convex partition. Indeed, if E
contains an e-face of a region, then some elements of ⇧0 will not have disjoint
interiors. Since the regions of ⇧ are polyhedrons, there exist a given number nH

of distinct boundary hyperplanes Hp = {x 2 Rd : aT

p
x + bp = 0} and such that for

each Pk 2 ⇧, there exists a subset Ik ⇢ [nH ] and ✏k,p 2 {�1, 1} for p 2 Ik such that

Pk = {x 2 Rd : ✏k,p(a
T

p
x + bp) � 0 8p 2 Ik}. (4.45)

We now consider a mapping � that assigns to each hyperplane Hp a unique region
�(p) such that p 2 I�(p). We can now define n new pairwise-disjoint convex regions
as

P 0
k

=

⇢
x 2 Rd :

✏k,p(aT

p
x + bp) � 0 for p 2 [nk] and �(p) = k

✏k,p(aT

p
x + bp) > 0 for p 2 [nk] and �(p) 6= k

�
. (4.46)
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It is clear that [n

k=1
P 0

k
= Rd. From these new regions, one can eventually build the

proper convex partition

⇧E =
n

PE = P 0
k
\ E : k 2 [n] and IntPE 6= ;

o
. (4.47)

By construction, all regions of ⇧E are closed with nonempty interiors; their union
covers E. Let PE,1 = P 0

k1
\E and PE,2 = P 0

k2
\E be two (nonempty) regions of ⇧E .

We have that Int(PE,1)\ Int(PE,2) = Int(PE,1 \PE,2) = Int(P 0
k1
\P 0

k2
\E) = ; for

k1 6= k2. We, therefore, proved that ⇧E is a convex partition of E; it has at most
n regions and is such that, for any PE 2 ⇧E , there is P 2 ⇧ with PE ⇢ P .

Proof. of Lemma 4.2 Let P 2 ⇧. Recall that P is a closed and convex subset
of the affine space f(Rd) with dimension dim(f(Rd)). We first prove that f

�1(P )
meets the requirements to form a convex partition of Rd.

• The continuity of f implies that f
�1(P ) is closed.

• The function f is written as f : x 7! Ax + b with A 2 Rd
0⇥d and b 2 Rd

0
.

For x,y 2 f
�1(P ) and � 2 [0, 1], we have that f(�x + (1 � �)y) = A(�x +

(1 � �)y) + b = �f(x) + (1 � �)f(y) 2 P since P is convex. Therefore,
f

�1(P ) is also convex.

• We have that [P2⇧f
�1(P ) = f

�1([P2⇧P ) = f
�1(f(Rd)) = Rd.

• For two distinct regions P1, P2 2 ⇧, we have that f
�1(P1) \ f

�1(P2) =
f

�1(P1 \ P2). Since P1 and P2 are distinct regions of ⇧, dim(P1 \ P2) <
dim(f(Rd)), which implies that dim(f�1(P1)\f�1(P2)) < d and proves that
P1 and P2 have disjoint interiors.

• We decompose the input space as the direct sum Rd = ker(A) � U . Note
that f(U) = f(Rd). It is clear that, for any x 2 f

�1(P ) and y 2 ker(A),
we have that x + y 2 f

�1(P ), which implies that dim(Proj
U

(f�1(P ))) =
ker(A). In addition, we use the fact that f restricted to U has full rank and
write dim(Proj

ker(A)
(f�1(P ))) = dim(P ) = dim(f(Rd)). All in all, we have

proved that dim(f�1(P )) = d, which implies that the regions of f�1(⇧) have
nonempty interiors.
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Proof. of Lemma 4.3 The result stems from the fact that the rank of a product
of matrices is bounded by the smallest rank of these matrices.

4.6.2 Upper Bound on the Number of Regions of Arrange-
ments

Proof. of Theorem 4.1 First, we prove that the expression given in the theorem is
an upper bound. To that end, we need to formalize our problem with the notion of
abstract simplicial complex so as to focus solely on the combinatorial structure of
the task and be compliant with the formalism of [233]. Let ⇧⇤

k
= {int(P ) : P 2 ⇧k},

where int(P ) denotes the interior of P in Rd, and let F = [N

k=1
{P ⇤ : P ⇤ 2 ⇧⇤

k
} be

the set that contains the elements of the N sets ⇧⇤
k
. The the nerve K of F is defined

as
K = {X ⇢ F : \X 6= ;}. (4.48)

In simple words, K is made of all the nonempty intersections of sets in any of
the ⇧⇤

k
. The nerve of an open covering is an abstract simplicial complex which,

therefore, applies to K since F is an open covering of Rd. This more simply follows
from the definition of an abstract simplicial complex: it is a family of sets that
is closed under taking subsets. In the sequel, we need K to be a d-representable
simplicial complex, which is granted because it is the nerve of a finite family of
convex sets in Rd (more details in [233]). In our problem, the faces of dimension 0
of the complex, also known as vertices, are the elements of F . More generally, a face
of K of dimension p is a nonempty intersection of p+1 elements of F . Each set ⇧⇤

k

induces a sub-complex K[⇧⇤
k
] = {X ⇢ ⇧⇤

k
: \X 6= ;} of K. The dimension of this

sub-complex, which is the largest dimension of its faces, is 0 because the elements
of ⇧⇤

k
are disjoint. We note that the interior of the regions of the arrangement

of the convex partitions are (N + 1)-faces of the abstract simplicial complex K,
which are also called 1-colorful faces, where 1 = (1, . . . , 1) 2 RN specifies that each
region of the arrangement is built from one region per partition. We are therefore
looking to bound the number f1(K) of 1-colorful faces of the complex K. Since we
have now fully translated our problem into the framework of [233], we can apply
[233, Theorem 10] to F . The parameter r = (r1, . . . , rN ) can be chosen so that
dim(K[⇧⇤

k
])  (rk � 1). Therefore, we simply choose r = 1 and obtain that

�d(n1, . . . , nN ) = f1(K)  p1(n, d,1), (4.49)
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where

pk(n, d, r) =
X

`=(`1,...,`N )2Lk(d)

NY

i=1

✓
ni � ri

`i

◆✓
ri

ki � `i

◆
(4.50)

and

Lk(d) = {` = (`1, . . . `N ) 2 NN : `1 + · · · + `N  d and `i  ki for i 2 [N ]}. (4.51)

In our problem, k = 1 and

L1(d) = {` = (`1, . . . `N ) 2 NN : `1 + · · · + `N  d and `i 2 {0, 1} for i 2 [N ]}.
(4.52)

With r = 1, we have that

�d(n1, . . . , nN )  p1(n, d,1) =
X

`=(`1,...,`N )2L1(d)

NY

i=1

✓
ni � 1

`i

◆✓
1

1� `i

◆

=
X

`=(`1,...,`N )2L1(d)

NY

i=1

✓
ni � 1

`i

◆

=
dX

k=0

X

`1,...,`N 2{0,1}
`1+···+`N=k

NY

i=1

✓
ni � 1

`i

◆

=
dX

k=0

X

`1,...,`N 2{0,1}
`1+···+`N=k

NY

i=1
`i=1

✓
ni � 1

`i

◆ NY

i=1
`i=0

✓
ni � ri

`i

◆

=
dX

k=0

X

`1,...,`N 2{0,1}
`1+···+`N=k

NY

i=1
`i=1

(ni � 1)

= 1 +
dX

k=1

X

1`1<···<`kN

kY

i=1

(n`i
� 1), (4.53)

which proves that the bound given in the Theorem holds true.
Now we show that this upper bound is sharp. To that end, consider that each

partition ⇧k is made of the regions of the arrangement of the (nk � 1) distinct
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parallel hyperplanes Hk

q
for q = 1, . . . , (nk�1) so that the hyperplanes are in general

position when only one per partition is selected. Recall that N hyperplanes are in
general position if any collection of k of them intersect in a (d�k)-dimensional plane
for 1  k  d and have empty intersection for k > d. The number of regions of the
arrangement A(⇧1, . . . , ⇧N ) is exactly the number of regions of the arrangement
of all the hyperplanes Hk

q
for q = 1, . . . , (nk � 1) and k = 1, . . . , N . Following

Zavalasky’s Theorem, the number of regions can be computed by

#R(A) = (�1)d�A(�1), (4.54)

where �A is the characteristic polynomial of the arrangement. There is no need here
to define the characteristic polynomial in detail since Whitney’s formula provides
a direct way to evaluate it as

�A(�1) =
X

B⇢A
\H2BH 6=;

(�1)#B(�1)dim(\H2BH). (4.55)

To further explicitize the formula, we note that the subsets B ⇢ A that have a
nonempty intersection can be written as B = {Hk1

qk1
, . . . , H

kp

qkp
} with 1  k1 < · · · <

kp  N , qki
2 [nki

� 1] where i = 1, . . . , p and 0  p  d. This holds because, for
q 6= q0, Hk

q
\Hk

q0 = ;. Note that, by convention, the set B = ; is also considered in
the sum. Because of the particular choice of the hyperplanes, for a given p, B is the
nonempty intersection of p hyperplanes and there are

P
1`1<···<`pN

Q
p

i=1
(n`i
�1)

such subsets of A. The intersection of the elements of B has dimension (d�p) (recall
that the hyperplanes of B are in general position). All in all, we have that

#R(A) = (�1)d
X

B⇢A :

\H2BH 6=;

(�1)#B(�1)dim(\H2BH)

= 1 + (�1)d

dX

k=1

X

1`1<···<`kN

(�1)k(�1)d�k

kY

i=1

(n`i
� 1)

= 1 +
dX

k=1

X

1`1<···<`kN

kY

i=1

(n`i
� 1), (4.56)

which is the upper bound given in the theorem.
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When N  d, we readily check that the bound is giving n1 · · · nN . To prove the
second additional bound for N > d given in the theorem, we invoke the binomial
theorem and remark that

 
1 +

NX

p=1

(np � 1)

!d

= 1 +
dX

k=1

✓
d

k

◆ 
NX

p=1

(np � 1)

!k

= 1 +
dX

k=1

✓
d

k

◆ X

1`1,...,`kN

kY

i=1

(n`i
� 1) (4.57)

� 1 +
dX

k=1

X

1`1,...,`kN

kY

i=1

(n`i
� 1)

� 1 +
dX

k=1

X

1`1<···<`kN

kY

i=1

(n`i
� 1). (4.58)

4.6.3 Sum and Vectorization
Proof. of Proposition 4.2 Let ⇧k be a linear convex partition of fk for k =
1, . . . , N . On each region of the arrangement A(⇧1, . . . , ⇧N ), the fk are affine, and
so is their sum and their vectorization. This implies that A(⇧1, . . . , ⇧N ) is a linear
convex partition of both the sum and the vectorization of the scalar-valued CPWL
functions, which shows that �d(1, . . . ,N ) is a valid upper bound on the number
of convex linear regions.

We now prove that the bounds are sharp. First, consider N convex partitions
⇧k where each ⇧k is made of the regions of the arrangement of (k � 1) distinct
parallel hyperplanes Hp

k
= {x 2 Rd : wT

k
x = bp

k
}, p = 1, . . . , (k � 1), and such that

the hyperplanes are in general position when only one per partition is selected.
In such a way, the arrangement A(⇧1, . . . , ⇧N ) has exactly �d(1, . . . ,N ) convex
regions (see proof of Theorem 4.1). Second, for each partition, we consider a CPWL
function 'k : R ! R with knots (bp

k
)k�1

p=1
and k distinct affine pieces ('p

k
)k

p=1
. In

the sequel, the affine pieces are written 'p

k
: x ! ap

k
x + cp

k
. The function fk : x 7!

'(wT

k
x) has exactly nk linear convex regions and ⇧k is a linear convex partition

of it. The construction implies that A(⇧1, . . . , ⇧N ) is a linear convex partition
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of both (f1 + · · · + fN ) and (f1, . . . , fN ). Because the affine pieces of each 'k

are distinct, the vector-valued function (f1, . . . , fN ) will agree with distinct affine
pieces on each region of A(⇧1, . . . , ⇧N ), which proves that this partition has the
minimal number of linear convex regions. This yields CPWL functions such that
(f1,...,fN ) = �d(1, . . . ,N ). On the contrary, in the case of the sum (f1+ · · ·+fN ),
there is no guarantee that A(⇧1, . . . , ⇧N ) is a partition with the minimal number
of linear convex regions. To ensure that the regions of this partition have different
affine pieces, it is sufficient to choose the pieces ('p

k
) such that

P
N

k=1
'

p
1
k

k
(wT

k
·) 6=

P
N

k=1
'

p
2
k

k
(wT

k
·) for any 1  p1

k
, p2

k
 k and (p1

1
, . . . , p1

N
) 6= (p2

1
, . . . , p2

N
). An

explicit choice is ap

k
= pmk�1 with m = max(k). The biases bp

k
are then set such

that 'p

k
is continuous. In such a way, the slope of

P
N

k=1
'pk

k
(wT

k
·) is

P
N

k=1
pkmk.

This number can be represented in base m as “(pN · · · p1)m”, which shows that it
is uniquely related to the choice of indices (pk). Although this choice seems very
specific, a random choice of the slopes would also satisfy the condition almost surely.
We have therefore found a collection of CPWL functions whose sum has exactly
�d(1, . . . ,N ) linear convex regions.

4.6.4 Compositional Bounds
Proof. of Theorem 4.2 We use the notation m` = min(d1, . . . , d`) and F ` =
f

`
� · · ·�f

1
. First, we prove by induction the validity of the proposed upper bound.

The initial step is given by Proposition 4.2. Now suppose that the result holds
for F `�1 with ` � 1 > 0. Let ⌦ be a linear convex region of F `�1 and let g

⌦
be

the corresponding affine function. The affine space g
⌦
(Rd1) ⇢ Rd` is of dimension

at most min(d1, · · · , d`) (Lemma 4.3). Each linear convex partition ⇧`,k of the
components of f

`
yields a convex partition ⇧0

`,k
of the affine subspace g

⌦
(Rd1) with

no more than `,k regions on which f`,k is affine (Lemma 4.1). The arrangement
of the partitions ⇧0

`,1
, . . . , ⇧0

`,d`+1
results in a convex partition of g

⌦
(Rd1) with no

more than �m`(`,1, . . . ,`,d`+1) regions (Theorem 4.1). Lemma 4.2 shows that
g

�1

⌦
(A(⇧0

`,1
, . . . , ⇧0

`,d`+1
)) is a convex partition of Rd1 with F ` affine on each of its

sets. In short, each linear convex region of F `�1 is partitioned into no more than
�m`(`,1, . . . ,`,d`+1) linear convex regions, which concludes the first part of the
proof.

Second, we propose a construction inspired from [213] to derive the lower bound
given on the maximal number of regions. Let the sawtooth function swp of order p
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be the unique 1D CPWL function with knots located at k/p for k = 1, . . . , (p� 1)
that satisfies swp(k/p) = 1

2
(1 � (�1)k) for k = 0, . . . , p. The key properties of the

sawtooth function of order p that will prove useful in the sequel are

• it has p projection regions that are also convex linear regions;

• it can be decomposed as

swp : x 7!
pX

k=1

'k,p, (4.59)

where 'k,p = p(x + 2(�1)p|x � k/p|) is a CPWL function with 2 projection
regions;

• the composition of sawtooth functions is a sawtooth function whose order is
the product of the orders of the composed functions, as in

swp � swq = swpq, (4.60)

for p, q 2 N.

The strategy is now to build a CPWL NN which mimics a given NN with indepen-
dent sawtooth components. Let ed,k be the kth element of the canonical basis of
Rd, d⇤ = min(d`) and ⌧` : {1, . . . , d`+1} ! {1, . . . , d⇤} for ` = 1, . . . , L. Consider
the dimension-reduction linear operator u` : Rd` ! Rd

⇤
associated to ⌧`�1, which

is defined on the canonical basis by

u` : ed`,k 7! ed⇤,⌧`�1(k), (4.61)

for ` = 2, . . . , L and

u1(ed`,k) =

(
ed⇤,k, k  d⇤

0, otherwise.
(4.62)

Similarly, let v` : Rd
⇤ ! Rd`+1 be the dimension-augmentation linear operator

v` : ed⇤,k 7!
X

q2⌧
�1
`

({k})

ed`+1,q, (4.63)

for ` = 1, . . . , L.
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We now define the nonlinear pointwise function �
`
: Rd`+1 ! Rd`+1 . For r 2

{1, . . . , d⇤} let p`,r =
P

k2⌧
�1
`

({r})
`,k and {J`,⌧`,i}

|⌧�1
`

({r})|
i=1

be a partition of the set
{1, . . . , p`,r}, where the cardinality of the subsets is in one-to-one correspondence
with {`,q}q2⌧

�1
`

({r})
. In this way, we assign to each k 2 {1, . . . , d` + 1} a set of

indices J`,⌧`,ik
that allows us to define the kth component of �

`
as

�`,k =
X

j2J`,⌧
`

,i
k

'|⌧�1
`

({⌧`(k)})|,j . (4.64)

This ensures that
X

k2⌧
�1
`

({r})

�`,k = swp`,r
. (4.65)

From the pointwise property of �, we deduce that, for any t1, . . . , td⇤ 2 R,

(u`+1 � � � v`)

 
d

⇤X

r=1

tred⇤,r

!
= (u`+1 � �)

0

@
d

⇤X

r=1

X

k2⌧
�1
`

({r})

tred`,k

1

A

= u`+1

0

@
d

⇤X

r=1

X

k2⌧
�1
`

({r})

�`,k(tr)ed`,k

1

A

=
d

⇤X

r=1

X

k2⌧
�1
`

({r})

�`,k(tr)u`+1(ed`,k)

=
d

⇤X

r=1

X

k2⌧
�1
`

({r})

�`,k(tr)ed⇤,⌧`(k)

=
d

⇤X

r=1

0

@
X

k2⌧
�1
`

({r})

�`,k(tr)

1

A ed⇤,r

=
d

⇤X

r=1

swp`,r
(tr)ed⇤,r, (4.66)
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which means that u`+1���v` is a pointwise multivariate function with 1D sawtooth
components of order p`,r for r = 1, . . . , d⇤. We denote it by swp`

with p` =
(p`,1, . . . , p`,d⇤). The function f

`
of the NN is chosen to be f

`
= �

`
� v` �u`. Each

component f`,k can be written in the form of f`,k : x 7! �`,k(wT

`,k
x) with w`,k =P

q2⌧
�1
`�1({⌧`(k)})

ed`,q. This shows that f`,k has the same number of projection
regions as �`,k (`,k) whenever w`,k 6= 0.

All in all, we have that

f
L
� f

L�1
� · · · � f

2
� f

1

= (�
L
� vL � uL) � (�

L�1
� vL�1 � uL�1) � · · · � (�

2
� v2 � u2) � (�

1
� v1 � u1)

(4.67)
= �

L
� vL � (uL � �L�1

� vL�1) � (uL�1 � · · · � �
2
� v2) � (u2 � �1

� v1) � u1)

= �
L
� vL � swpL�1 � · · · � swp1 � u1. (4.68)

We now note that there are no fewer projection regions of f
L
� f

L�1
� · · · � f

2
� f

1

than the number of projection regions of h = uL+1 � fL
� · · · � f

1
because uL+1 is

a linear mapping. In addition,

uL+1 � fL
� · · · � f

1
= swpL

� · · · � swp1 � u1

= swq � u1, (4.69)

where q = (q1, . . . , qd⇤) and qr =
Q

L

`=1
p`,r. The properties of the sawtooth func-

tions and the special form of u1 yields the projection regions for h as

{x 2 Rd1 : for r = 1, . . . , d⇤,

8
><

>:

�1 < xr  1/qr, ir = 0

1� 1/qr  xr < +1, ir = qr � 1

ir/qr  xr  (ir + 1)/qr, otherwise
}, (4.70)

where ir = 0, . . . , (qr � 1) for r = 1, . . . , d⇤. In summary, the number of projection
regions of the constructed CPWL NN is at least

d
⇤Y

r=1

qr =
LY

`=1

d
⇤Y

r=1

p`,r =
LY

`=1

d
⇤Y

r=1

X

k2⌧
�1
`

({r})

`,k. (4.71)

The conclusion is reached by noticing that the reasoning does not depend on any
property of the mappings ⌧`: one can therefore pick the ones that yield the largest
lower bound.
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Proof. of Corollary 4.1 To get the upper bound, we combine Theorem 4.2 and
the simplified version of the bound given in Theorem 4.1 with the assumption that
W � din � d⇤ := min(din, dout). To get the lower bound, we have to compute

↵d
⇤
(`,1, . . . ,`,d`+1) = max

⌧2Td
`

d
⇤Y

r=1

X

k2⌧�1({r})

`,k. (4.72)

We lower-bound this quantity by selecting an arbitrary mapping ⌧ : [W ] ! [d⇤]
such that, for r 2 [d⇤], the cardinality of ⌧�1({r}) is at least bW/d⇤c. In this way,
we obtain that

↵d
⇤
(`,1, . . . ,`,d`+1) � ( bW/d⇤c)d

⇤
(4.73)

for ` = 1, . . . , L and reach the given lower bound.

Proof. of Corollary 4.2 The upper bound is a direct consequence of Proposition
4.1: the number of convex linear regions is never smaller than the number of pro-
jection regions. The CPWL NN built to provide the lower bound of Theorem 4.2
had exactly as many projection regions as convex linear regions, hence justifying
the lower bound.

4.7 Appendix – Proofs for Section 4.4.2
Proof. of Proposition 4.5 First, we prove the result when � parameterizes a
linear segment. Let x0,u 2 Rd with kuk2 = 1 and � : t 7! x0 + tu for t 2 S,
where S = [0, |S|] ⇢ R is a segment. The first step is to compute the probability
P(kt�

f
= 1) that f has a knot along �. The hyperplane {x 2 Rd : wTx + b = 0}

intersects the line {x0 + tu : t 2 R} for t0 such that w
T (x0 + t0u) + b = 0 or,

equivalently, b = (�wT (x0 + t0u)). In order to have a knot along �|S , t0 has to lie
in S. For a given w, this implies that b should be in an interval of length |S||wTu|,
more precisely [�wTx0, |S|wTu�wTx0] if wTu < 0 and [|S|wTu�wTx0,�wTx0]
otherwise. Therefore, P(kt�

f
= 1|w)  sup

t2R ⇢b(t)|S||wTu|. From the indepen-
dence of the random variables and from the fact that kt�

f
= 0 or kt�

f
= 1 almost

surely, we infer that E[�
�|S
f

]  sup
t2R ⇢b(t)E[|wTu|]  sup

t2R ⇢b(t)
p

E[|wTu|2] =
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sup
t2R ⇢b(t)

p
uT E[wwT ]u  sup

t2R ⇢b(t)
p

E[w2]. In the last step, the assumption
that the random variables wk are i.i.d. has allowed us to infer that E[ww

T ] =
E[w2]I, where I 2 Rd⇥d is the identity matrix.

If b is normally distributed with standard deviation �b, then sup
t2R ⇢b(t) =

(�b

p
2⇡)�1. In addition, suppose that the components wk are independent and

normally distributed with standard deviation �w. The random variable w
Tu is also

normally distributed with standard deviation �w (since kuk2 = 1). We can now
compute explicitly E[|wTu|] = �w

p
2/
p
⇡ based on the properties of half-normal

distributions.
The result is extended to any polygonal chain through the linearity of the ex-

pectation operator and by application of the result to the finitely many pieces of
the polygonal chain.

Proof. of Proposition 4.6 A knot of f along a line � must lie on a hyperplane
Hp,q = {x : (wp �wq)Tx+ (bp � bq) = 0} with 1  p < q  K, since elsewhere the
Maxout unit is affine. Therefore, the expected knot density is bounded as

E [��
Maxout

]  1

|S|E

2

4
X

1p<qK
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t2R
⇢b(t), (4.74)

where we have taken advantage of the results derived in the proof of Proposition
4.5 to bound the probability that a randomly generated hyperplane intersects a
segment of length |S|, along with the independence of the random variables. We
also notate (A 6= ;) to encode the variable that takes the value 0 if A = ; and 1
otherwise. When the random variables are normally distributed, the reasoning is
similar to the one in the proof of Proposition 4.5.
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Proof. of Proposition 4.7 A knot of f along a line � must lie on a hyperplane
Hp,q = {x : (wp � wq)Tx + (bp � bq) = 0}, where 1  p < q  K and where p, q
belong to the same sorting group, since elsewhere the GroupSort layer is affine.
One can now follow the same steps as those in the proof of Proposition 4.6 with
ng

�
gs

2

�
= nggs(gs � 1)/2 = d(gs � 1)/2 hyperplanes.
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Chapter 5

Spline Activations for Stable

and Expressive Deep Neural

Networks

This chapter is concerned with theoretical considerations on Lipschitz-constrained
neural networks (NNs). The implementation counterpart is then given in Chapter
6, which also provides a detailed introduction to plug-and-play methods for image
reconstruction.

The text of this chapter is adapted from the published article
(A. Goujon1, S. Neumayer1), P. Bohra and M. Unser “Approximation of Lips-

chitz functions using deep spline neural networks”, SIAM Journal on Mathematics
of Data Science, volume 5, page 306-322, issue 2, June 2023,

and also contains results taken from
S. Ducotterd, A. Goujon, P. Bohra, D. Perdios, S. Neumayer and M. Unser “Im-

proving Lipschitz-Constrained Neural Networks by Learning Activation Functions”,
submitted to Journal of Machine Learning Research.

1
equal contribution
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Summary
Although many applications in machine learning require Lipschitz-constrained mod-
els, the design and training of expressive Lipschitz-constrained networks is very
challenging. Since the popular rectified linear-unit networks have provable disad-
vantages in this setting, we propose to use learnable spline activation functions with
at least 3 linear regions instead. We prove that our choice is universal among all
component-wise 1-Lipschitz activation functions in the sense that no other weight-
constrained architecture can approximate a larger class of functions. Additionally,
we prove that learnable linear splines have provable advantages over the recently in-
troduced GroupSort and Householder activation functions under 2-norm Lipschitz
constraints, which corresponds to the plug-and-play setup explored in Chapter 6.

5.1 Introduction
Lipschitz-constrained neural networks (NNs) have proven to be useful in several
areas of machine learning, for instance, to obtain robustness guarantees in classifi-
cation [183, 238, 185], to train Wasserstein generative adversarial networks (GANs)
[79, 88], to learn normalization flows with invertible NNs [86, 87] and to improve the
generalization abilities of NNs [180, 179, 239]. In the context of image reconstruc-
tion, Lipschitz-constrained NN denoisers are also widely used within plug-and-play
algorithms to provide stability and convergence guarantees [83, 240, 81, 241, 242,
89]. This specific application is discussed at length in Chapter 6. The design and
training of Lipschitz-constrained NNs is unfortunately very challenging since the
computation of the Lipschitz constant of NNs is related to NP-hard problems [48]
and not feasible in practice.

Regularization techniques offer a first way to bypass the exact computation of
the Lipschitz constant [182, 88, 243, 75, 76, 78]. In practice, the training loss is
augmented with a penalty term that promotes NNs with lower Lipschitz constants.
For instance, one can penalize the norm of the Jacobian of the NN at well-chosen
locations [75, 76]. While regularization improves stability and maintains good per-
formance, it does not offer any theoretical guarantees on the Lipschitz constant.

Theoretical guarantees can be obtained by controlling upper bounds on the
Lipschitz constant. A simple upper bound is given by the product of the Lipschitz
constant of each layer, but it is usually a very coarse estimate. There exist more
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precise estimators based on semidefinite programming [244, 245], adversarial train-
ing [243, 246], or the derivation of sharper estimates for the composition of layers
[48]. Unfortunately, these methods are either computationally expensive or do not
provide a proper upper bound. A common strategy in practice is therefore to design
the model architecture so that the fast-to-evaluate bounds become sharper. A gen-
eral overview of NN architectures and, in particular, Lipschitz-constrained ones can
be found in [247]. The most common approach toward Lipschitz-constrained archi-
tectures, referred to as the layer-wise approach, is to control the norm of each linear
layer, typically with the spectral or other p-norms [160, 80, 209], or by enforcing
orthogonality of the weight matrices [248, 83, 249]. In combination with 1-Lipschitz
activations, this results in architectures with a Lipschitz constant bounded by the
product of the norms of the weights. However, this estimate is in general quite
pessimistic, especially for deep models. Consequently, this additional structural
constraint often leads to vanishing gradients [250] and a seriously reduced expres-
sivity of the model. Remarkably, the commonly used rectified linear-unit (ReLU)
activation aggravates the situation. For instance, it is shown in [251] that ReLU
NNs with 1-norm weight constraints have a second-order total variation that is
bounded independently of the depth. In addition, it is proven in [82] that, un-
der spectral norm constraints, any scalar-valued ReLU NN � with kr�k2 = 1
a.e. is necessarily linear. To circumvent the described issues, several new activation
functions have been proposed recently, such as GroupSort [82] or the related House-
holder [84] activation functions. Note that, contrary to ReLU, all these activation
functions are multivariate. Analyzing the expressivity of the resulting NNs and
determining their applicability in practice is an active area of research.

It is by no means trivial to specify which class of functions can be approx-
imated by a generic NN with 1-Lipschitz layers. Ideally, given a compact set
D ⇢ Rd equipped with the p-norm, it is desirable to approximate all scalar-valued
1-Lipschitz functions, which are denoted by Lip

1,p
(D). The first result in this di-

rection was provided in [82], where the authors show that the use of the GroupSort
activation function and 1-norm-constrained weights indeed allows the universal
approximation of Lip

1,p
(D). The behavior of such NNs was then further investi-

gated in [252, 253]. Unfortunately, the proof strategies published so far cannot be
generalized to other norms. For instance, little is known for the 2-norm setting
which is the one relevant to many applications, including plug-and-play methods
for image reconstruction [81]. Therefore, being able to compare the approximation
capabilities of different architectures is an important first step. For example, the
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approximation of the absolute value function, for which an exact representation
with ReLU is impossible, provides a classic benchmark to compare architectures.
From a practical perspective, GroupSort NNs have yielded promising results and
compare favorably against ReLU NNs with similar architectures [82].

Currently, the most substantial results regarding layer-wise Lipschitz constraints
rely on multivariate activation functions. Although the ReLU activation function is
indeed too limiting, we claim that the class of component-wise activation functions
ought not to be dismissed off-hand. Following this idea, we analyze deep spline
NNs, whose activation functions are learnable linear splines (LLS) [254, 235, 215].
Since bounds on the Lipschitz constant of compositions are usually too pessimistic,
our rationale is to increase the expressivity of the activation function while still
being able to efficiently control its Lipschitz constant.

Outline and Contributions In Section 5.2, we revisit 1-Lipschitz continuous
piecewise-linear (CPWL) functions and we show that they can approximate any
function in Lip

1,p
(D). Since the construction of 1-Lipschitz NNs is nontrivial, we

then briefly discuss the layer-wise Lipschitz-constrained NNs along with the popular
activation functions used under Lipschitz constraints. Then, in Section 5.3, we
extend some known results on the limitations of weight-constrained NNs with ReLU
activation functions. More precisely, we show that ReLU-like NNs cannot represent
certain simple functions for any p-norm weight constraint. Based on a second-
order total variation argument, we further show that they cannot be universal
approximators for 1-norm weight constraints. We also prove that linear spline
activation functions with 2 linear regions have a limited representation power. Next,
in Section 5.4, we propose a representer theorem to show the optimality of learnable
linear splines for layer-wise Lipschitz-constrained NNs. We also prove that LLS-
NNs with 3 linear-region splines achieve the maximum expressivity among NNs
with component-wise activation functions. Finally, we discuss the relation between
LLS-NNs and GroupSort NNs and conclude in Section 5.6.
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5.2 Layer-wise Lipschitz-Constrained Neural Net-
works

5.2.1 Preliminaries

A function f : Rd ! Rn is said to be L-Lipschitz if

kf(x)� f(y)k  Lkx� yk, (5.1)

for any x,y 2 Rd, where the norm k · k in the input and output spaces shall
be specified when necessary. The Lipschitz constant Lip(f) of f is the smallest
constant L such that f is L-Lipschitz, and it is denoted by Lip

p
(f) when k · k is

chosen to be the p-norm k · kp for both the input and output space.
In this chapter, we investigate feedforward NN architectures that consist of

K 2 N layers with widths n1, . . . , nK that are given by mappings � : Rd ! RnK of
the form

� (x) := AK � �K�1,↵K�1 �AK�1 � �K�2,↵K�2 � · · · � �1,↵1 �A1(x). (5.2)

Here, the affine functions Ak : Rnk�1 ! Rnk are given by

Ak(x) := Wkx + bk, k = 1, . . . , K, (5.3)

with weight matrices Wk 2 Rnk,nk�1 , n0 = d and bias vectors bk 2 Rnk . For
multilayer perceptrons, Wk is learned as a full matrix, while for convolutional
NNs, Wk is parametrized via a convolution operator whose kernel is learned. The
model includes parameterized nonlinear activation functions �k,↵k

: Rnk ! Rnk

with corresponding parameters ↵k, k = 1, . . . , K � 1. For the case of component-
wise activation functions, we have that �k,↵k

(x) = (�k,↵k,j(xj))
nk

j=1
. We sometimes

drop the index k in the activation function �k,↵k
to simplify the notation. The

complete parameter set of the NN is denoted by ✓ := (Wk,bk,↵k)K

k=1
and the NN

by �(·,✓) whenever the dependence on the parameters is explicitly needed. For an
illustration, see Figure 5.1. Architecture (5.2) results in a CPWL function whenever
the activation functions themselves are CPWL functions such as the ReLU. Next,
we investigate the approximation properties of this architecture under Lipschitz
constraints on �(·,✓).
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Figure 1: Model of a feed forward NN with three hidden layers, i.e., d = 4, K = 4, n1 = n2 =
n3 = 5, n4 = 2.

among NNs with component-wise activation functions. Further, we discuss the relation between
deep spline and Groupsort NNs. Finally, we draw conclusions in Section 5.

2 Lipschitz-Constrained Neural Networks
In this paper, we investigate general NN architectures consisting of K 2 N layers with widths
n1, . . . , nK that are given by mappings � = �(· ; u) : Rd ! RnK of the form

� (x; u) := AK � �K�1,↵K�1 � AK�1 � �K�2,↵K�2 � · · · � �1,↵1 � A1(x). (1)

Here, the affine functions Ak : Rnk�1 ! Rnk are given by

Ak(x) := Wkx + bk, k = 1, . . . , K,

with weight matrices Wk 2 Rnk,nk�1 , n0 = d and bias vectors bk 2 Rnk . Further, the model
includes parametrized nonlinear activation functions �k,↵ : Rnk ! Rnk with corresponding param-
eters ↵k, k = 1, . . . , K � 1. For the case of component-wise activation functions, we have �k,↵(x) =
(�k,↵,j(xj))

nk

j=1
. The complete parameter set of the NN is denoted by u := (Wk, bk, ↵k)K

k=1
. For an

illustration see Figure 1. We sometimes drop the index k in the activation function �k,↵ and the
dependence on the parameter u in � to simplify the notation. Recall that the architecture (1)
results in a CPWL function whenever the activation functions themselves are CPWL functions such
as the ReLU. Next, we investigate the approximation properties of this architecture under Lipschitz
constraints on �(·, u).

2.1 Universality of 1-Lipschitz ReLU Networks
First, we briefly revisit the approximation of Lipschitz function by CPWL functions, for which we
give a precise definition with related notations below.

3

Figure 5.1: Feedforward NN with three hidden layers, where d = 4, K = 4, n1 =
n2 = n3 = 5, n4 = 2.

5.2.2 Universality of 1-Lipschitz ReLU Networks
First, we briefly revisit the approximation of Lipschitz functions by CPWL func-
tions, for which we give a precise definition.

Definition 5.1. A continuous function f : Rd ! Rn is called continuous and piece-
wise linear if there exist a finite set {fm : m = 1, . . . , M} of affine functions, also
called affine pieces, and closed sets (⌦m)M

m=1
⇢ Rd with nonempty and pairwise-

disjoint interiors, also called projection regions [221], such that [M

m=1
⌦m = Rd and

f |⌦m
= f

m

|⌦m
.

Assume that we are given a collection of tuples (xi, yi) 2 Rd ⇥ R, i = 1, . . . , N ,
which can be interpreted as samples from a function f : Rd ! R. Let

Lp

x,y
:= max

i 6=j

|yi � yj |
kxi � xjkp

(5.4)

denote the Lipschitz constant associated with these points. Then, a first natural
question is whether it is always possible to find an interpolating CPWL function g
with p-norm Lipschitz constant Lip

p
(g) = Lp

x,y
.
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Proposition 5.1. For the tuples (xi, yi) 2 Rd ⇥ R, i = 1, . . . , N and p 2 [1, +1],
there exists a CPWL function f with Lip

p
(f) = Lp

x,y
such that g(xi) = yi for all

i = 1, . . . , N .

Since we are unaware of proof, we provide one below.

Proof. Let q be such that 1/p + 1/q = 1. For p < +1, define ui,j 2 Rd as the
vector given by

(ui,j)k = sgn((xi � xj)k)|(xi � xj)k|p/q. (5.5)

If p = +1, we choose k0 with kxi � xjk1 = |(xi � xj)k0 |, and define (ui,j)k0 =
sgn(xi � xj)k0 with all other components of ui,j set to 0. This saturates Hölder’s
inequality with

hui,j ,xj � xii =
dX

k=1

|(ui,j)k(xj � xi)k| = kui,jkqkxj � xikp, (5.6)

where we used that ui,j and (xj � xi) have components with the same sign. For
i 6= j, we define the linear function

fi,j(x) = yi +
yj � yi

kxj � xikpkui,jkq
hui,j ,x� xii, (5.7)

which is such that fi,j(xi) = yi and Lip
p
(fi,j) = |yj � yi|/kxj � xikp, because

supkxkp1
hui,j ,xi = kui,jkq. Next, set fi(x) = maxj,j 6=i fi,j(x), for which it holds

that fi(xi) = yi and Lip
p
(fi) = maxj |yj � yi|/kxj � xikp. Then, we define f(x) =

mini fi(x) and directly obtain that f(xj)  yj for any j = 1, . . . , N . However, we
also have that

fi(xj) � fi,j(xj) = yi + yj � yi = yj , (5.8)

which then implies that f(xj) = yj for any j = 1, . . . , N . Further, we directly get
that Lip

p
(f) = Lp

x,y
. Finally, by recalling that the maximum and the minimum

of any number of CPWL functions is CPWL as well [221], we conclude that f is
CPWL and the claim follows.

Remark 5.1. The d-dimensional construction is more involved than the 1D case,
for which a simple interpolation is sufficient. A natural way to fit the data in
any dimension is to form a triangulation with vertices (xi)N

i=1
. Then, with the
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use of the CPWL hat basis functions of the triangulation, one can directly form an
interpolating CPWL function. Unfortunately, the Lipschitz constant of this function
can exceed Lp

x,y
. An example of this issue is provided in Figure 5.2.

Figure 5.2: Interpolation based on a Triangulation: Let x1,x2,x3 2 R2 be input
data points (blue dots) with corresponding target values y1 = 0, y2 = 1 and y3 = 1.
The gray curves depict the `p unit balls for p 2 {1, 2, 3, 4, +1}. For the left plot,
we set p > 1 and get Lp

x,y
= 1. On the right, we set p = 1 and also get Lp

x,y
= 1.

The unique affine function g : R2 ! R interpolating the data is the simplest CPWL
function that fits the data. On any point x lying between x2 and x3 (red dot),
it holds that g(x) = 1, hence |g(x1) � g(x)| = 1. However, in both settings, x
is in the unit ball for the according p which implies that kx1 � xkp < 1. Hence,
Lip

p
(g) > Lp

x,y
and g does not interpolate the data with the minimal Lipschitz

constant.

Since the maximum and minimum of finitely many affine functions can be rep-
resented by ReLU NNs, the same holds true for the CPWL function constructed
in Proposition 5.1. This directly leads us to a well-known corollary, Corollary 5.1.
Note that this Corollary can also be proven by noticing that 1-Lipschitz ReLU NNs
can represent any 1-Lipschitz affine function, and then by applying [82, Lemma 1].

Corollary 5.1. Let D ⇢ Rd be compact and p 2 [1, +1]. Then, the ReLU NNs
� : D ! R with Lip

p
(�)  1 are dense in Lip

1,p
(D).

Since computing the Lipschitz constant of a generic NN is NP-hard, Corol-
lary 5.1 has limited practical relevance. To circumvent this issue, one can either



5.2 Layer-wise Lipschitz-Constrained Neural Networks 161

design algorithms that provide tight estimates, or design special architectures for
which simple upper bounds are not too pessimistic. In this chapter, we pursue the
second direction. To this end, we introduce tools to build Lipschitz-constrained
architectures in the remainder of this section and investigate the universality of
these architectures in Section 5.4.

5.2.3 Layer-wise 1-Lipschitz NNs
The Lipschitz constant is known to be sub-multiplicative for the composition op-
eration and thus the Lipschitz constant Lip(�) of the NN (5.2) can be bounded as
in

Lip(�)  Lip(AK)
K�1Y

k=1

Lip(�k,↵k
)Lip(Ak). (5.9)

Layer-wise 1-Lipschitz NN A layer-wise 1-Lipschitz (LW 1-Lip) NN is defined
as a NN with 1-Lipschitz layers. Following (5.9), LW 1-Lip NNs are 1-Lipschitz.
The use of LW 1-Lip NNs is currently the most popular way to build 1-Lip NNs.
The bound (5.9) being not necessarily sharp, the design of the linear layers and
activation function of the NN requires special care to ensure good performance.
Note that while we are mainly interested in 1-Lip NNs, one can similarly build
LW L-Lipschitz NNs and most results for LW 1-Lip NN directly generalize to any
L > 0.

5.2.4 1-Lip Linear Layers
A first step toward Lipschitz-constrained NNs is to constrain the norm of the
weights.

Operator-Norm Constraints The p! q operator norm is given for W 2 Rn,m

and p, q 2 [1, +1] by

kWkp,q := max
x2Rm,kxkp=1

kWxkq, (5.10)

and k · kp := k · kp,p. Note that k · k1 and k · k1 correspond to the maximum `1
norm of the columns and rows of W, respectively. The norm k · k2, also known



162 Stable and Expressive Deep Neural Networks

as the spectral norm, corresponds to the largest singular value of W. To obtain a
non-expansive NN of the form (5.2) in the p-norm sense, the weight matrices can
be constrained as

kWkkp  1, k = 1, . . . , K, (5.11)

which we shall henceforth refer to as p-norm-constrained weights, since Lip
p
(Ak) =

kWkkp. For matrices W 2 R1,n it holds that kWkp = kWT kq with 1/p + 1/q = 1.
In other words, if we interpret these matrices as vectors, then we have to constrain
the q-norm instead. In the case of scalar-valued NNs, we can also constrain the
weights as kWkkq  1, k = 2, . . . , K, and kW1kp,q  1, since all standard norms
are identical in R. There exist several methods to enforce such constraints in the
training stage [160, 80, 209], see Remark 5.2 for more details.

Orthonormality Constraints Instead of imposing kWk2  1, we can also re-
quire that either WTW = I or WWT = I, depending on the shape of W. This
constraint corresponds to imposing that either W or WT lie in the so-called Stiefel
manifold. Compared to the spectral-norm constraint, the orthonormality constraint
enforces all singular values of W to be unity. From a computational perspective,
this approach is more challenging than the previous one but helps to mitigate the
problem of vanishing gradients in deep NNs. For more details, including possible
implementations, we refer to [248, 83, 249, 250, 255].

Remark 5.2. Many of the implementations for the schemes of Section 5.2.3 en-
force the p-norm constraint or orthonormality only approximately. For theoretical
guarantees, it is however necessary to ensure that the constraint is satisfied exactly.
In practice, this means that sufficient numerical accuracy or additional postprocess-
ing after training might be necessary.

5.2.5 1-Lip Activation Functions
While the quest for optimal activation functions in the last decade leaves us with
many choices, the 1-Lipschitz constraint is the game-changer and the relevance of
each activation function must be reassessed. In Section 5.3, we provide results
that explain why the ReLU activation function is not suited for LW Lipschitz-
constrained NNs. Hence, we need to resort to other activation functions that lead
to increased expressivity. In this context, the gradient norm preserving (GNP)
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property is desirable: the Jacobian of a GNP mapping has all eigenvalues equal
to one a.e. In the following, we briefly discuss activation functions with promising
theoretical and/or empirical results in constrained settings, both element-wise and
multivariate ones.

GroupSort (GS) The sort operation takes a vector of dimension n and simply
outputs its components sorted in ascending order. This operation has complexity
O(n log(n)), which is slightly worse than the linear complexity of component-wise
activation functions. The GS activation function [82] is a generalization of this
operation: it splits the pre-activation into groups of prescribed length and performs
the sort operation within each group. This results in near-linear complexity when
the group length is small enough. If the group length is two, then the activation
function is known as the MaxMin or norm-preserving orthogonal-permutation linear
unit [256]. Let us remark that any arbitrary GS activation function can be written
as a composition of MaxMin activation functions, i.e., larger group lengths do not
increase the theoretical expressivity. Although not obvious at first glance, the GS
activation function is a CPWL operation. The rationale for this activation function
is to perform a nonlinear and norm-preserving operation, which mitigates the issue
of vanishing gradients in deep constrained architectures. More precisely, we have
that the Jacobian of the GS activation function is a.e. given by a permutation
matrix, which is indeed an orthogonal matrix, and hence GS is GNP.

Householder (HH) The GS activation was recently generalized with the House-
holder activation function [84] �v : Rd ! Rd with v 2 Rd, kvk2 = 1, given by

�v(z) =

(
z if vT z > 0,

(I� 2vvT )z otherwise.
(5.12)

On the hyperplane that separates the two cases (i.e., vT z = 0) we have that (I �
2vvT )z = z� 2(vT z)v = z. Thus, �v is continuous and, moreover, the Jacobian is
either I or (I�2vvT ), which are both square orthogonal matrices, and hence HH is
GNP. For practical purposes, the authors of [84] recommend using groups of size 2.
This construction can be iterated to obtain higher-order HH activation functions
with more linear regions.
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Absolute Value (AV) The absolute value activation function is component-
wise, 1-Lipschitz, and arguably the simplest GNP activation.

Parametric ReLU (PReLU) The parametric ReLU activation function [172]
is a learnable and component-wise activation that generalizes both ReLU and the
AV activation. It is given by PReLUa(x) = (max(anxn, xn))N

n=1
with learnable

parameters (an)N

n=1
. It holds that Lip(PReLUa) = max(max1nN |an|, 1). Hence,

to be 1-Lip one must clip the parameters (an)N

n=1
in [�1, 1].

Learnable Linear Splines (LLS) The so-called deep spline NNs [257, 235, 215],
also referred to as LLS-NNs, uses learnable component-wise linear-spline activation
functions, see Figure 5.3 for an illustration. It is known that deep spline NNs are
solutions to a functional optimization problem; namely, the training of a neural
network with free-form activation functions whose second-order total-variation is
regularized [215]. A linear-spline activation function is fully characterized by its
linear regions and the corresponding values at the boundaries. In the unconstrained
setting, any linear spline can be implemented by means of a scalar one-hidden-layer
ReLU NN as

x 7!
MX

m=1

umReLU(vmx + bm), (5.13)

where um, vm, bm 2 R and M 2 N. This parameterization, however, lacks expres-
sivity under p-norm constraints on the weights, as it is not able to produce linear
splines with second-order total variation greater than 1, as discussed in Lemma 5.1
and Section 5.3.1. Instead, it is more convenient to rely on local B-spline atoms
[235]. In practice, the linear-spline activation functions have a fixed number of uni-
formly spaced breakpoints—typically between 10 and 50—and are expressed as a
weighted sum of cardinal B-splines. This amounts to adding a learnable parameter
for each breakpoint and two additional ones to set the slope at both ends for a
linear extrapolation. This local parameterization yields an evaluation complexity
that remains independent of the number of breakpoints, in contrast, with (5.13).
The B-spline framework can be adapted to learn 1-Lipschitz activation functions
via the use of a suitable projector on the B-spline coefficients as proposed and fur-
ther discussed in Chapter 6. In the sequel LLSM refers to a LLS with no more than
M linear regions.
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Figure 5.3: LLS8: Linear spline with 7 knots (also known as breakpoints) and 8
linear regions.

Representation Power of Layer-wise 1-Lipschitz Neural Net-
works
All activation functions discussed in this chapter are CPWL, and hence the corre-
sponding LW 1-Lip NNs parameterize a subset of the 1-Lip CPWL functions. We
now introduce the representation sets

Sd,n

p
(X) (5.14)

of functions corresponding to a given activation function “X”, which is defined as
the Rd ! Rn functions that can be expressed by a LW 1-Lip NN of the form (5.2)
with p-norm constraints and 1-Lip activation of type “X”.

One of the main goals of this chapter is to compare the following sets

Sd,n

p
(ReLU), Sd,n

p
(AV), Sd,n

p
(PReLU), Sd,n

p
(LLSM ), Sd,n

p
(GS), and Sd,n

p
(HH).

While for unconstrained NNs all sets are equal to the set of CPWL functions, the
situation is radically different with the LW Lipschitz constraints. In the sequel, we
are mainly interested in the case p = 2, which is the most relevant for PnP methods
(see Chapter 6), but whenever the result also holds for a generic p � 1, we state
the more general result, and if the result is valid for any d, n > 0, we drop the
superscripts and simply use the notation Sp(X) for readability.



166 Stable and Expressive Deep Neural Networks

The following relations are either already known, or obvious:

• S2(ReLU) is included in and distinct from all the other sets of interest, see
[82] and Section 5.3 for a further characterization;

• S2(GS) = S2(HH);

• S2(GS) ✓ S2(AV), the reverse is also true on compact sets [82];

At this point, we know that

S2(ReLU) ( S2(GS)
q

S2(HH)

✓ S2(AV) ✓ S2(PReLU) ✓ S2(LLS2) ✓ S2(LLSM>2).

(5.15)

The goal is now to determine which inclusions are strict, and which ones are equal-
ities.

5.3 2 Linear Regions are not Enough
In this section, we discuss the representation power of LW 1-Lip NN with 2-linear
region spline activations (LLS2), which includes ReLU, AV, PReLU and indirectly
GS and HH. We first provide results that explain why an activation should have
more than one region with slope one. We then show that LLS with 2 linear regions
also have some limited representation power compared to LLS with more linear
regions.

5.3.1 Limitations of ReLU
Limited Representation Power

Component-wise and monotone activation functions are detrimental to the expres-
sivity of NNs with spectral-norm-constrained weights [82, Theorem 1]. Here, we
generalize this result to NNs with p-norm-constrained weights and certain CPWL
activation functions, along with a more precise characterization. In particular, we
also cover the case where kJ�kp is not 1 a.e.
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Proposition 5.2. Let p 2 (1, +1], let I ⇢ R be a closed interval, and let � : R! R
be a CPWL activation function satisfying

• �(x) = x + b, b 2 R, for x 2 I,

• |�0(x)| < 1 for x /2 I.

Then, any LW 1-Lip NN � : Rd ! R of the form (5.2) with p-norm-constrained
weights and component-wise activation function of the form �, has at most one
affine region ⌦i with kJ{�}|⌦i

kp = 1, where J{�}|⌦i
denotes the Jacobian of �

over ⌦i.

Proof. We proceed via induction over the number K of layers of �. For K = 1, the
mapping is affine and the statement holds trivially. Now, assume that the result
holds for some K > 1. Let

�K+1 = AK+1 � � �AK � · · · � � �A1, (5.16)

which we decompose as �K+1 = �K � h with �K = AK+1 � � �AK � · · · � � �A2

and h = � � A1. The induction assumption implies that kJ{�K}kp < 1 on all
affine regions except possibly one. The corresponding affine function f1

K
: Rn1 ! R

with projection region ⌦K ⇢ Rn1 takes the form x 7! vTx + c, where v 2 Rn1 is
such that kvkq  1, 1/p + 1/q = 1, and c 2 R. Now, we define the set

⌦K+1 = {x 2 Rd : (A1(x))l 2 I for any l s.t. vl 6= 0} \ h
�1(⌦K). (5.17)

By construction, �K+1 is affine on ⌦K+1 and coincides with �K � (A1 + b) on this
set. Any other affine piece of �K+1 can be written in the form of f i

K
� hj , where

f i

K
and h

j are affine pieces of �K and h, respectively. For this composition, either
of the following holds.

i) It holds that f i

K
6= f1

K
, which results in kJ{f i

K
�hj}kp < 1 due to kJ{f i

K
}kp <

1.

ii) It holds that f i

K
= f1

K
. Further, note that J{hj} = diag(d)W1 for some

d 2 Rn1 with entries |dl|  1. Due to the definition of ⌦K+1, there exists l⇤

such that vl⇤ 6= 0 and |dl⇤ | < 1. Hence, the Jacobian of the affine piece is given
by ṽTW1 with ṽ = diag(d)v. Since p 6= 1, we get that q < +1 and kṽkq <
kvkq  1. Consequently, kJ{f i

K
� hj}kp = kṽTW1kp  kṽkqkW1kp < 1.
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This concludes the induction argument.

For p > 1, Proposition 5.2 implies that ReLU NNs with p-norm constraints
on the weights can reproduce neither the absolute value nor a whole family of
simple functions, including the triangular hat function (also known as the B-spline
of degree 1) and the soft-thresholding function. Further, this result suggests that
activation functions with more than one linear region with maximal slope are better
suited within the scope of this approximation framework. Typically, learnable spline
activation functions are capable of having this property.

Limited Approximation Power

A meaningful metric for the expressivity of a model is its ability to produce functions
with high variations. In this section, we investigate the impact of the Lipschitz
constraint on the maximal second-order total variation of such a NN. Note that we
partially rely on results from [251] for our proofs. The second-order total variation
of a function f : R ! R is defined as TV(2)(f) := kD2fkM, where k · kM is the
total-variation norm related to the space M of bounded Radon measures, and D
is the distributional derivative operator. The space of functions with bounded
second-order total variation is denoted by

BV(2)(R) = {f : R! R s.t. TV(2)(f) < +1}. (5.18)

For more details, we refer the reader to Section 5.7 and [258, 215]. Further, we
recall that TV(2) is a seminorm that, for a CPWL function on the real line, is given
by the finite sum of its absolute slope changes. Based on Lemma 5.1, we infer for
the p-norm-constrained setting that, in general, a linear-spline activation function
cannot be replaced with a one-layer ReLU NN without losing expressivity.

Lemma 5.1. Let f : R ! R be parameterized by a one-hidden-layer NN with
component-wise activation function � and p-norm-constrained weights, p 2 [1, +1].
If � 2 BV(2)(R), then

TV(2)(f)  TV(2)(�). (5.19)

Proof. Let f be a R! R function given by x 7! uT�(wx + b) =
P

N

n=1
un�(wnx +

bn) with u := (u1, . . . , uN ) 2 RN , w := (w1, . . . , wN ) 2 RN and b := (b1, . . . , bN ) 2
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RN . The p-norm weight constraints imply that kwkp  1 and kukq  1 with
1/p + 1/q = 1. Since TV(2) is a semi-norm, we get

TV(2)(f) 
NX

n=1

|un|TV(2)(�(wn · +bn)) 
NX

n=1

|unwn|TV(2)(�)  TV(2)(�),

(5.20)

where the last step follows from Hölder’s inequality.

In principle, the composition operation suffices to increase the second-order total
variation of a mapping exponentially. For instance, the n-fold composition fn of
f : R! R with x 7! 2|x� 1/2| yields the sawtooth function with 2n linear regions
and

TV(2)(fn) = 2(2n � 1). (5.21)

This highly desirable property is, however, not achievable by ReLU NNs with 1-
norm-constrained weights [251, Theorem 1]. As shown in Proposition 5.3, this has
a drastic impact on the size of the class of functions that can be approximated by
ReLU NNs.

Proposition 5.3. Let D ⇢ Rd be compact with a nonempty interior. Then, there
exists f 2 Lip

1,1(D) that cannot be approximated by ReLU NNs � : Rd ! R with
Architecture (5.2), and 1-norm-constrained weights.

Proof. By [251, Theorem 1], we know that, for any u 2 Rd with kuk1 = 1 and any
ReLU NN � with 1-norm weight constraints, it holds that

TV(2)(� �'u)  2, (5.22)

where 'u : R ! Rd with t 7! tu. Let (�n)n2N be a sequence of ReLU NNs with
1-norm-constrained weights that converges uniformly to � on D. Since D has
nonempty interior, we can pick u 2 Rd with kuk1 = 1 such that '�1

u (D) contains
an open interval I ⇢ R. Then, (�n � 'u)n2N converges uniformly to � � 'u on
I. Since TV(2) is lower semicontinuous with respect to uniform convergence [258,
Prop. 3.14], we infer that the restriction to I satisfies

TV(2)(� �'u)  2. (5.23)
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In other words, any f 2 Lip
1,1(D) with TV(2)(f �'u) > 2 cannot be approximated

by1-norm-constrained ReLU NNs. However, there exist sawtooth-like functions on
I that have this property, with an explicit example constructed in Proposition 5.4.

Unlike ReLU networks, deep spline networks can produce arbitrarily complex
mappings thanks to the composition operation, even in the norm-constrained set-
ting.

Proposition 5.4. Let C > 0, p 2 [1, +1], I ⇢ R open and u 2 Rd. Then, there
exists a NN � : Rd ! R with Architecture (5.2), p-norm-constrained weights, and 1-
Lipschitz linear-spline activation functions with one knot such that, for 'u : I ! Rd

with '(t) = tu, it holds that

TV(2)(� �'u) > C. (5.24)

Proof. Pick b 2 R, c > 0 such that [b�c, b+c] ⇢ I. Let �1 with x 7! (|x�b|�c/2),
�k with x 7! (|x|� c/2k), k = 2, . . . , m, and Fm = �m � · · ·��1. The function Fm is
a sawtooth-like CPWL function with 2m linear regions all contained in [b� c, b+ c].
Further, it holds for all t 2 R that |F 0

m
(t)| = 1, and the sign of the slope is different

for neighboring regions. From this, we directly infer that

TV(2)(Fm) = 2(2m � 1). (5.25)

Now, we build a deep spline NN �K : Rd ! R with K hidden layers of widths
n1, . . . , nK = d and nK+1 = 1. The activation function used in the k-th hidden
layer is �k for the first neuron and zero otherwise, the weight matrices are chosen
as the identity matrix except for the last layer, where it is chosen such that

�K(x) = FK(x1). (5.26)

This construction results for 'e1
: I ! Rd in

TV(2)(�K �'e1
) = 2(2K � 1), (5.27)

and the claim follows for u = e1 by taking K sufficiently large. The general case
u 6= e1 follows by using an appropriate weight matrix in the first layer.



5.3 2 Linear Regions are not Enough 171

5.3.2 Representation Power of 2-Linear Region Splines
We now focus on LW 1-Lip NN with any LLS2 activation functions.

Proposition 5.5. There exist Rp ! Rq CPWL functions that can be represented by
a LW 1-Lip NN with 2-norm-constrained weights and with linear spline activations
with 3 linear regions but not by any LW 1-Lip NN with 2-norm-constrained weights
and with linear-spline activations with 2 linear regions. In other words,

S2(LLS2) ( S2(LLSM>2). (5.28)

Proof. • One-dimensional functions (p = q = 1).
We first show that LW 1-Lip NN with spline activations with 2 linear regions
cannot represent nonaffine R! R CPWL functions that have a slope of one
at both ends, for instance, the soft-thresholding function. Let f be a R! R
LW 1-Lip NN (with 2-norm constraints) with L > 0 hidden layers so that
f(x) = wT

'(fL�1(x)), where ' is an element-wise activation function with
2-linear region splines components 'k, k = 1, . . . , d. In the sequel we use the
notation g = '�fL�1 and h0(±1) = limt!±1 h0(t), which is well-defined for
any R ! R CPWL function. We now suppose that f 0(+1) = f 0(�1) = 1.
The LW 1-Lip assumption implies that kwk2  1 and kg0(x)k2  1. Given
that f 0 = wT

g
0, the Cauchy–Schwarz inequality implies that f 0(x)  1, and,

for any x0 2 R such that f 0(x0) = 1, it must hold that g
0(x0) = µw for some

µ 2 R�0 and since we also have that kwk2 = kg0(x0)k2 = 1, we conclude
that g

0(x0) = w. Without loss of generality, we can suppose that wk 6= 0
for k = 1, . . . , d, otherwise the corresponding neuron can be removed. We
infer that g0

k
(±1) = wk 6= 0, which means, for a CPWL function, that it

is surjective. Given that gk = 'k � fL�1

k
, the activation 'k must also be

surjective, which, for a linear spline with 2 linear regions implies that 'k is
bijective. Hence, for gk to be surjective, fL�1

k
also needs to be surjective. We

now note that g
0(x) = '

0(fL�1(x))� (fL�1)0(x), where � is the Hadamard
product. Let a = '

0(fL�1(+1)). From the assumptions, it holds that
kak1  1 (1-Lip activations), and since fL�1

k
is surjective, fL�1

k
(+1) =

±1. Let b = (fL�1)0(+1). It holds that kbk2  1 and b has nonzero
entries since fL�1

k
is surjective. Recalling that kg0(+1)k2 = 1, it holds

1 = ka � bk2
2

=
P

k
a2

k
b2

k
 kak21kbk22  1. Since the last inequality is an

equality, it must hold that ak = ±1 since bk 6= 0 for k = 1, . . . , d. With a
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similar reasoning at �1, we eventually infer that '0
k
(fL�1

k
(±1)) = 1. Given

the surjectivity of fL�1

k
, fL�1

k
(+1) = �fL�1

k
(�1) = ±1, and hence the

2-linear spline 'k has similar slopes at both ends and hence is affine. In other
words, the last layer can be replaced by an affine one. By iterating over the
depth of the NN depth, we obtain that the function is affine.

• Multi-dimensional functions
Let u 2 Rp,v 2 Rq with kuk2 = kvk2 = 1, where and p, q 2 N. Let
h : x 7! f(uTx)v, where f is a nonaffine function with slopes of one at both
ends as considered in the first part of the proof. By contradiction, suppose
that h can be represented by a LW 1-Lip NN with LLS2 activations. Then,
by the addition of linear layers at both ends of this NN, there exists a LW
1-Lip NN with LLS2 activations that can represent f since f(x) = vTh(xu),
which is a contradiction.

5.4 3 Linear Regions Suffice
In this section, we investigate the representation and approximation of 1-Lipschitz
functions using LW 1-Lip NNs with LLS with more than 2 linear regions.

As a first step, we study the representation and approximation power of LLS
with no restriction on the number of linear regions and then show that, in theory,
3 linear regions are enough to reach optimal representation power.

5.4.1 A Representer Theorem
Among LW 1-Lip NNs with component-wise activation functions, LLS-NNs achieve
the optimal representation and approximation power.

Lemma 5.2. Let xm 2 Rd, m = 1, . . . , N , and � : Rd ! Rp a NN with K layers,
parameter set ✓, p-norm weight constraints and 1-Lipschitz activation functions.
Then, there exists an LLS-NN  with the same architecture as �, where the acti-
vation functions are replaced by 1-Lipschitz linear splines with no more than (M�1)
linear regions such that

�(xm,✓) =  (xm,✓⇤) for m = 1, . . . , M. (5.29)
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Proof. On the data points (xm)M

m=1
, the activation functions of � are evaluated

for at most M different values. Hence, the result directly follows by interpolating
these values using a linear spline, which yields 1-Lipschitz linear-spline activation
functions with at most (M � 1) linear regions.

Lemma 5.2 is somehow unsatisfying as the number of linear regions of each spline
may be as large as the number of training points. In the unconstrained case, i.e. no
control of the Lipschitz constant of the NN, it was proposed in [215] to penalize the
second-order total variation of the LLS during training to favor activations with
few linear regions. We now extend the framework proposed in [215] to LW 1-Lip
NNs, and thereby derive an important result to motivate the universality of LLS.

Similar to the discussion in Section 5.3.1, we rely on the notion of second-
order total variation, defined as TV(2)(f) = kD2fkM, where D is the distributional
derivative operator and k · kM is the total-variation norm. For any function f in
the space L1(R) of absolutely integrable functions, it holds that kfkM = kfkL1 .
However, unlike the L1 norm, the total-variation norm is also well-defined for any
shifted Dirac impulse with k�(· � ⌧)kM = 1, ⌧ 2 R (see Section 5.7 and [215] for
more technical details). In the sequel, we consider activation functions in the space

BV(2)(R) = {f : R! R s.t. TV(2)(f) < +1}

of functions with bounded second-order total variation.
Given a series (xm,ym), m = 1, . . . , M , of data points and an NN

 (·,✓) : Rn0 ! RnK with  (·,✓) = �K � �(·,✓), where �(·,✓) : Rn0 ! RnK has
architecture (5.2) but with free-form element-wise activation functions �k in BV(2),
and where ✓ denotes the set of learnable elements, including the weights, the bi-
ases and the nonparametric activation functions. We now propose the constrained
regularized training problem

arg min
Wk,bk,�k,n2BV

(2)
(R)

s.t. Lip(�k,n)1, kWkk1

 
MX

m=1

E
�
ym, (xm,✓)

�
+ �

KX

k=1

nkX

n=1

TV(2) (�k,n)

!
,

(5.30)
where E : Rnk ⇥ Rnk ! R+ is proper, lower-semicontinuous. Theorem 5.1 states
that a neural network with linear-spline activation functions suffices to find a solu-
tion of (5.30).
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Theorem 5.1. A solution of (5.30) always exists and can be chosen as a neural
network with linear spline activation functions with no more than (M � 1) linear
regions each.

Proof. Without loss of generality, all biases are assumed to be zero as they can be
incorporated into the activation functions.

• Existence.
First, we show that Problem (5.30) has a nonempty solution set. For k =
1, . . . , (K � 1) and �̄1 = �1, we can iteratively replace the activation �̄k by
uk without changing the output as in

�k+1

�
Wk+1�̄k(z)

�
= �k+1

�
Wk+1(�̄k(z)� �̄k(0)) + Wk+1�̄k(0)

�
(5.31)

= �̄k+1

�
Wkuk(z)

�
, (5.32)

where uk(·) = �̄k(·)� �̄k(0) 2 BV(2)(R) and �̄k+1(·) = �k+1( ·+Wk�̄k(0)).
For the last layer, we set

�̄K

�
WKuK�1(z)

�
= uK

�
WKuK�1(z)

�
+ aK , (5.33)

where uK(·) = �̄K(·) � �̄K(0) 2 BV(2)(R) and aK = �̄K(0) =  (0,✓) 2
RnK . It holds that TV(2) (uk,n) = TV(2) (�k,n), and uk(0) = 0, for k =
1, . . . , K. Therefore, a solution of (5.30) exists if the restricted problem

arg min
Wk,�k,n2BV

(2)
(R)

Lip(�k,n)1, kWkk1

�k,n(0)=0,|�k,n(1)|1

aK2RnK

 
MX

m=1

E
�
ym, (xm,✓) + aK

�
+ �

KX

k=1

nkX

n=1

TV(2) (�k,n)

!

(5.34)
has a nonempty solution set. Since  (·,✓) is 1-Lipschitz, it holds that

k (xm,✓)� aKk = k (xm,✓)� (0,✓)k  kxmk. (5.35)

In addition, we have that

2kaKk = k( (xm,✓)� aK)� ( (xm,✓) + aK)k (5.36)
 k (xm,✓)� aKk+ k (xm,✓) + aKk (5.37)



5.4 3 Linear Regions Suffice 175

and, hence, that

k (xm,✓) + aKk � 2kaKk � kxmk. (5.38)

The fact that E is coercive and positive implies that

lim
kaKk!+1

MX

m=1

E
�
ym, (xm,✓) + aK

�
= +1. (5.39)

We conclude that there exists a constant A > 0 such that it suffices to min-
imize over kaKk  A in (5.34). Now, the remaining steps for the proof of
existence are the same as in the proof of Theorem 3 in [254].

• LLS-NN solution. For the second part of the claim, we follow the reasoning
in [215]. Let the NN  ̃ be a solution of (5.30) with weights W̃k, biases b̃k,
and activation functions �̃k,n. When evaluating  ̃ at the data point xm, we
iteratively generate a series of vectors zm,k, ỹm,k 2 Rnk as follows.

1. Initialization (input of the network): ỹm,0 = xm.
2. Iterative update: For k = 1, . . . , K, calculate

zm,k = (zm,k,1, . . . , zm,k,nk
) = W̃kỹm,k�1 + b̃k (5.40)

and define ỹm,k = (ỹm,k,1, . . . , ỹm,k,nk
) 2 Rnk as

ỹm,k,n = �̃k,n (zm,k,n) , n = 1, . . . , nk. (5.41)

We directly observe that ỹm,k only depends on the values of �̃k,n : R! R at
the locations zm,k,n. Hence, the optimal �̃k,n are the 1-Lipschitz interpola-
tions between these points with minimal second-order total variation, as the
regularizers for �̃k,n in (5.34) do not depend on each other. More precisely,
the �̃k,n solve the problem

�̃k,n 2 arg min
f2BV

(2)
(R)

s.t. Lip(f)1

TV(2)(f) s.t. f (zm,k,n) = ỹm,k,n, m = 1, . . . , M.

(5.42)
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We assume that zm,k,n are distinct for m = 1, . . . , M . Otherwise, we can
remove the duplicates as zm1,k,n = zm2,k,n implies that ỹm1,k,n = ỹm2,k,n.
The unconstrained problem

min
f2BV

(2)
(R)

TV(2)(f) s.t. f (zm,k,n) = ỹm,k,n, m = 1, . . . , M, (5.43)

has a linear-spline solution vk,n with no more than M�2 knots [259, Proposi-
tion 5]. It can be shown [260] that the Lipschitz constant of this canonical so-
lution is given by maxm1 6=m2 |ỹm1,k,n�ỹm2,k,n|/|zm1,k,n�zm2,k,n|  Lip(�̃k,n).
Hence, there exists a linear-spline vk,n with �̃k,n(zm,k,n) = vk,n(zm,k,n) for all
m = 1, . . . , M , Lip(vk,n)  Lip(�̃k,n), and TV(2)(vk,n) = TV(2)(�̃k,n).

The result proposed in Theorem 5.1, which is closely related to the represen-
ter theorems in [215] and [254], shows that there exists an optimal solution with
linear-spline activation functions. The important point in the statement of the
theorem is that each neuron has its own free parameters, including the (a priori
unknown) number of linear regions, the determination of which is part of the train-
ing procedure. Beside the strict control of the Lipschitz constant, which is not
covered by the representer theorems in [215], a noteworthy improvement brought
by Theorem 5.1 is the existence of a solution, which is still an open problem in the
unconstrained case. To this end, we have assumed that the last layer of the neural
network  consists of an activation function �K,↵K

only. This theoretical setup
for the proof is not a strong restriction since the freeform activation �K,↵K

has the
possibility to be the identity mapping in practice.

5.4.2 3 Linear Regions Suffice
The previous section illustrates the theoretical motivations for the use of linear-
spline activations, but the number of linear regions needed remains unclear. As the
first step, we restrict our attention to functions on the real line. In particular, we
show that any CPWL activation function � : R! R can be written as a composition
of linear splines with no more than 3 linear regions.

Proposition 5.6. Let g : R ! R be a 1-Lipschitz CPWL function. Then, there
exist n 2 N and 1-Lipschitz CPWL functions gi : R! R, i = 1, . . . , n, with at most
3 linear regions such that g = gn � · · · � g1.
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Proof. We proceed via induction over the number m of linear regions of g. For g
with up to 3 linear regions, the claim is true. Now, assume that it holds for some
m 2 N and let g be linear on the m + 1 > 3 intervals [ai, ai+1], i = 0, . . . , m, with
a0 = �1 and am+1 = +1, and let s± = limx!±1 g0(x). First, we can write
g = g1 � g2 with

g1(x) =

8
><

>:

g(a1) + sign(s�)(x� a1) for x < a1,

g(x) for a1  x  am,

g(am) + sign(s+)(x� am) otherwise,
(5.44)

and

g2(x) =

8
><

>:

a1 + |s�|(x� a1) for x < a1,

x for a1  x  am,

am + |s+|(x� am) otherwise.
(5.45)

Since g2 has three linear regions and g1 has the same number of linear regions as
g, we can limit our discussion to functions g with limx!±1 |g0(x)| = 1.

Case 1: There exists some aj , j 2 {2, . . . , m� 1}, such that the function g has
an extremum in aj when restricted to (�1, aj ] or [aj , +1). As all possible cases
are similar, we only provide the construction for g(aj) being a maximum of g on
(�1, aj). To this end, we define the functions g̃1, g̃2 as

g̃1(x) =

(
g(x) for x  aj ,

g(aj) + (x� aj) otherwise,
(5.46)

and

g̃2(x) =

(
x for x  g(aj),

g
�
x + aj � g(aj)

�
otherwise,

(5.47)

which are both 1-Lipschitz piecewise-linear functions with at most m linear regions
and satisfying limx!±1 |g̃0

i
(x)| = 1. Further, it holds that g = g̃2 � g̃1, so that we

can apply the induction assumption to conclude the argument.
Case 2: Case 1 does not apply and limx!+1 g0(x)/g0(�x) = 1. In the following,

we reduce this to Case 1. We only provide the construction for limx!�1 g0(x) = 1,
the other case being similar. Here, it holds that g(a1) � g(ai) � g(am) for all
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i = 1, . . . , m and we now define the functions g̃1, g̃2 as

g̃1(x) =

8
><

>:

g(x) for x < a1,

2g(a1)� g(x) for a1  x  am,

g(x) + 2
�
g(a1)� g(am)

�
otherwise,

(5.48)

and

g̃2(x) =

8
><

>:

x for x < g(a1),

2g(a1)� x for g(a1)  x  2g(a1)� g(am),

2
�
g(am)� g(a1)

�
+ x otherwise.

(5.49)

Clearly, both of the functions satisfy limx!±1 |g̃0
i
(x)| = 1 and are 1-Lipschitz. Here,

the first function has m + 1 linear regions and the second one has 3. Further, the
first function now fits Case 1 and it remains to show that g = g̃2 � g̃1. However,
this follows immediately from g(a1) � g̃1(x) � (g(a1)� g(am)) for x 2 [a1, am].

Case 3: Case 1 does not apply and limx!+1 g0(x)/g0(�x) = �1. This case can
be reduced to either Case 1 or Case 2. We assume that limx!�1 g0(x) = 1 and note
that the other case is again similar. Then, it holds that min{g(a1), g(am)} � g(ai)
for all i = 1, . . . , m and we choose a⇤ 2 arg max

x2R g(x) 2 {a1, am}. Next, we
define the functions g̃1, g̃2 as

g̃1(x) =

(
g(x) for x < a⇤,

2g(a⇤)� g(x) otherwise,
(5.50)

and

g̃2(x) =

(
x for x < g(a⇤),

2g(a⇤)� x otherwise.
(5.51)

Note that both functions satisfy limx!±1 |g̃0
i
(x)| = 1 and are 1-Lipschitz. Here,

the first function has m + 1 linear regions and the second one has 2. Further, the
first function now fits either Case 1 or Case 2 and, hence, it remains to show that
g = g̃2 � g̃1. However, this follows immediately from the definition of a⇤.

Remark 5.3. Proposition 5.6 can be interpreted as an approximation result for
NNs with one neuron per hidden layer. Note that a similar approximation result
for ResNets without Lipschitz constraints was given in [261].
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Proposition 5.6 implies that deep spline NNs with very simple activation func-
tions already suffice to achieve the maximum representation and approximation
power among LW 1-Lip NNs with element-wise activations.

Theorem 5.2. Let D ⇢ Rd be compact. Then, LW 1-Lip NNs with p-norm-
constrained weights, and linear spline activation functions with 3 linear regions
can approximate any LW 1-Lip NNs with p-norm-constrained weights and arbitrary
component-wise activation functions.

Proof. We proceed by induction over the number K of layers of �. For K = 1, the
NN � produces an affine mapping and there is nothing to show. Assume that the
statement holds for K layers. Let �K+1 : Rd ! RnK+1 be a NN of the form (5.2)
with p-norm-constrained weights and K+1 layers. Then, �K+1 = AK+1��↵K

��K

with a K-layer NN �K : Rd ! RnK of the same form. By application of the
induction assumption, for any ✏ 2 R>0 there exists a deep spline NN 1 : Rd ! RnK

with p-norm-constrained weights such that maxx2D k�K(x)� 1(x)kp  ✏/2. Due
to the finite diameter of D, the range of 1-Lipschitz functions is compact. Hence,
Proposition 5.6 implies that there exists a deep spline NN  2 : Rnk ! Rnk with all
affine transformations being identities such that maxx2�K(D) k�↵K

(x)� 2(x)kp 
✏/2. For the deep spline NN AK+1� 2� 1 with spectral-norm-constrained weights,
we can bound the error as

max
x2D

k�(x)�AK+1 � 2 � 1(x)kp  max
x2D

k�↵K
��K(x)� 2 � 1(x)kp

max
x2D

(k�↵K
��K(x)� 2 ��K(x)kp + k 2 ��K(x)� 2 � 1(x)kp)

✏/2 + max
x2D

k�K(x)� 1(x)kp  ✏. (5.52)

This concludes the proof.

Theorem 5.2 tells us that, among LW 1-Lip NNs with component-wise
1-Lipschitz activation functions, splines with 3 linear regions achieve the optimal
representation power. Meanwhile, the question of whether deep spline networks
with p-norm-constrained weights are universal approximators for Lip

1,p
(D) is part

of ongoing research, and it appears to be a very challenging problem.
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5.5 Comparison with GroupSort and Summary

In this Section, we discuss how GroupSort NNs and deep spline NNs can be ex-
pressed in terms of each other. Here, the situation differs depending on the norm
chosen to constrain the weights. First, we recall a framework specifically tailored
to GroupSort NNs, where the weights in Architecture (5.2) satisfy kWkk1  1,
k = 2, . . . , K, and kW1kp,1  1. Then, the expression of an arbitrary deep spline
NN using a GroupSort NN is made possible due to the following universality result
proved in [82, Theorem 3].

Proposition 5.7. Let D ⇢ Rd be compact and p 2 [1, +1]. The GroupSort NNs
with Architecture (5.2), group size at least 2, and weight constraints kWkk1  1,
k = 2, . . . , K, and kW1kp,1  1 are dense in Lip

1,p
(D).

Proposition 5.7, according to which density holds for all p 2 [1, +1], has unfor-
tunately some gap with the application relevant to us in which p = 2. The reasons,
as hinted by the authors of [82] are listed below.

• The norm constraint on the weight matrices (mixed norm and1-norm) makes
it more difficult to train the NN than 2-norm constraints, leading to a degra-
dation of the performance.

• The result heavily relies on the assumption that the NN is scalar-valued. For
multidimensional outputs, the result cannot be directly extended. Indeed,
the weight constraint scheme would not even guarantee the nonexpansiveness
of the NN, which would be problematic for image reconstruction for example,
where the DNN outputs and image.

Note that the proof of Proposition 5.7 relies heavily on the maximum opera-
tion and the chosen norms, which makes it difficult to generalize it to other norm
constraints or activation functions.

Now, we discuss the case of spectral-norm constraints, which are the usual choice
in practice. For this setting, let us recall that it holds that

max(x1, x2) =
x1 + x2 + |x1 � x2|

2
. (5.53)
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Hence, in the case of the spectral-constrained weights, the MaxMin activation func-
tion can be written as the deep spline NN MaxMin(x) = W2�1(W1x), where

W1 = W2 =
1p
2

✓
1 1
1 �1

◆
and �1(x) =

✓
x1

|x2|

◆
. (5.54)

This can be extended to any GroupSort operation since the MaxMin operation has
the same expressivity as GroupSort under any p-norm constraint [82]. We are not
aware of any results for the reverse direction, i.e., to express a deep spline NN using
a GroupSort NN with spectral-norm-constrained weights.

The representation power of LW 1-Lip NNs with 2-norm-constrained weights
with the activation functions discussed in this chapter is summarized in Figure 5.4
and mathematically reads:

S2(ReLU) ( S2(GS)
q

S2(HH)

✓ S2(AV) ✓ S2(PReLU) ✓ S2(LLS2) ( S2(LLS3)
q

S2(LLSM>3)

.

(5.55)

1-Lip CPWL

Linear-spline (3 regions or more) 

Linear-spline (2 regions) 

Absolute value / PReLU

Groupsort / Householder
ReLU / Leaky ReLU

Figure 5.4: Representation power of layer-wise Lipschitz-constrained NNs with 2-
norm-constrained weights for various activation functions. The name of the activa-
tion function is reported in the box representing the function space it generates (see
(5.14)). The boundary between two spaces is a full line if the spaces are distinct.
Otherwise, it is not known whether the spaces are distinct or not.
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5.6 Conclusions and Open Problems
In this chapter, we have shown that neural networks (NNs) with linear-spline ac-
tivation functions with at least three linear regions can approximate the maximal
class of functions among all NNs with p-norm weight constraints and component-
wise activation functions. However, it remains an open question whether these NNs
are universal approximators of Lip

1,p
(D), D ⇢ Rd compact. While this problem

appears to be very challenging, our result could be a first step toward its solution.
There also remain other open questions. Some of the proposed results, e.g.

Proposition 5.1, pertain to scalar-valued functions f : Rd ! R, and their exten-
sion to vector-valued functions is not straightforward. Additionally, many of the
proposed results pertain to representation power, leaving many unsolved questions
regarding the approximation power.

In the next chapter, we will confirm the superiority of LLS over the other acti-
vation functions discussed in this chapter with empirical evidence.
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5.7 Appendix – Second-Order Total Variation
Here, we mainly follow the exposition from [215]. Let S(R) denote the Schwartz
space of smooth and rapidly decaying test functions equipped with the usual
Schwartz topology, see [262]. The topological dual space of distributions is denoted
by S 0(R) and can be equipped with the total-variation norm

kfkM := sup
'2S(R):k'k11

hf,'i. (5.56)

As S(R) is dense in C0(R), the associated space M(R) = {f 2 S 0(R) : kfkM <1}
can be identified as the Banach space of Radon measures. Next, we require the
second-order distributional derivative D2 : S 0(R)! S 0(R) defined via the identity

hD2f,'i =
D
f,

d2

dx2
'
E

8' 2 S(R). (5.57)

Based on this operator, the second-order total variation of f 2 S 0(R) is defined as

TV(2)(f) = kD2fkM = sup
'2S(R):k'k11

D
f,

d2

dx2
'
E
. (5.58)

In order to make things more interpretable, we introduce the space of continuous
functions Cb,1(R) = {f 2 C(R) : kfk1,1 <1} that grow at most linearly, which is
equipped with the norm kfk1,1 := sup

x2R |f(x)|(1 + |x|)�1. Now, we are ready to
define the space of distributions with bounded second-order total variation as

BV(2)(R) = {f 2 S 0(R) : TV(2)(f) <1} = {f 2 Cb,1(R) : TV(2)(f) <1}.
(5.59)

Note that TV(2)(f) = 0 if f is affine and, consequently, TV(2) is only a seminorm.
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Chapter 6

Spline Activations for Stable

Plug-and-Play Image

Reconstruction

This chapter is the implementation counterpart of Chapter 5. A general introduc-
tion to the use and design of Lipschitz-constrained neural networks (NNs) can be
found in Chapter 5, and we now mostly focus on plug-and-play image reconstruction
methods. A higher-level introduction to the state-of-the-art in image reconstruc-
tion beyond plug and play can be found in Part III of this thesis. The text of this
chapter is mostly taken from

S. Ducotterd, A. Goujon, P. Bohra, D. Perdios, S. Neumayer and M. Unser
“Improving Lipschitz-constrained neural networks by learning activation functions”,
submitted to Journal of Machine Learning Research,

and also related to
P. Bohra, D. Perdios, A. Goujon, S. Emery and M. Unser, “Learning Lipschitz-

controlled activation functions in neural networks for plug-and-play image recon-
struction methods”, NeurIPS 2021 Workshop on Deep Learning and Inverse Prob-
lems.
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Summary
Lipschitz-constrained neural networks give rise to convergent and stable plug-and-
play methods. Unfortunately, it has been shown both theoretically and empiri-
cally that they perform poorly when equipped with ReLU activation functions. By
contrast, neural networks with learnable 1-Lipschitz linear splines have promising
theoretical advantages in this setup, as proven in Chapter 6. To put the theory
into practice, we propose an efficient method to train learnable 1-Lipschitz linear
splines. In particular, we show that the constraint is best handled via a repa-
rameterization method compared to projected gradient methods. Our numerical
experiments show that learnable linear splines improve the performance over the
other existing 1-Lipschitz activation functions for denoising, and plug-and-play im-
age reconstruction for CT and MRI.

6.1 Introduction to Plug-and-Play Methods

6.1.1 Motivations
Many image-reconstruction tasks can be formulated as linear inverse problems, with
applications in medical-imaging [16], including magnetic resonance imaging (MRI)
and X-ray computed tomography (CT). Specifically, the task is to recover an image
x 2 Rn from the noisy measurement

y = Hx + n 2 Rm, (6.1)

where H 2 Rm⇥n is a measurement operator and n 2 Rm represents an additive
noise. Problem (6.1) is nondeterministic and often ill-posed, in the sense that mul-
tiple images yield the same measurements. To make (6.1) well-posed, one usually
incorporates regularization, which leads to the reconstruction problem

min
x2Rn

1

2
kHx� yk2

2
+ g(x), (6.2)

where the regularizer g : Rn ! R+ allows for enforcing some prior knowledge on
the solution to counteract the ill-posedness and the noise. Popular choices of regu-
larizer include the Tikhonov [19] or total-variation (TV) [22, 30, 263] ones. These
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classical regularizers are convex, which makes it possible to numerically approxi-
mate a global minimum of Problem (6.1) to arbitrary precision. To do so, there
exist various iterative algorithms, including the forward-backward splitting (FBS)
algorithm [264], also known as proximal gradient descent, and the vanilla gradient
descent (GD). The update rule of these iterative methods reads

xk+1 = prox
↵g

�
xk � ↵(HTHxk �HTy)

�
, (FBS) (6.3)

xk+1 = xk � ↵(HTHxk �HTy + rg(xk)
�
, (GD) (6.4)

where the proximal operator of g is defined as prox
g
(z) = arg minx2Rd

1

2
kx� zk2 +

g(x), and ↵ is the stepsize. Both algorithms target a solution of (6.2), but FBS
can handle nonsmooth regularizers, including the TV one [27]. For simplicity, we
have only given the explicit update rule of two canonical algorithms, but there exist
many other solvers. In particular, both FBS and GD have variants that seek to
improve convergence speed and/or allow for enforcing constraints on the solution.
In some applications, e.g. MRI reconstruction, other algorithms that resort to
the proximal operator of both the data-fidelity term and g are popular, including
the Douglas–Rachford splitting (DRS) method [265] and the alternating directions
method of multipliers (ADMM) [266].

Classical regularizers typically come with theoretical guarantees but they remain
too simple to compete with deep-learning-based methods. The idea behind PnP
algorithms [89, 93] is to extend classical algorithms by replacing g with an implicit
regularization prior built from an off-the-shelf denoiser D : Rn ! Rn, which is
typically data-driven. For instance, in FBS, prox

↵g
can be interpreted as a denoiser,

and hence directly replaced with D. In GD, the gradient rg of the regularizer
can be interpreted as a noise extractor, and hence directly replaced with (Id �
D). The latter approach is often referred to as regularization by denoising (RED)
[90, 267, 268]. The update rules of the PnP versions of GD and FBS are given
below.

xk+1 = D�

�
xk � ↵(HTHxk �HTy)

�
, (PnP-FBS) (6.5)

xk+1 = xk � ↵
�
HTHxk �HTy + �(Id�D�)(xk)

�
, (PnP-GD) (6.6)

where � is a noise level that controls the strength of the denoiser and, along with
� 2 R, it can be tuned to adapt the strength of the regularization.
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PnP methods rely on implicit regularization because D� is not necessarily the
proximal operator of a g : Rn ! R or, similarly, (Id � D�) might not be the
gradient of some g : Rn ! R. Consequently, all the theoretical properties given by
classical methods to solve (6.2) are not automatically transferred to PnP methods.
A careful analysis is therefore needed to build trustworthy PnP methods, all the
more for deep-learning-based denoisers which are black boxes. Indeed, it is now well-
documented that deep-learning-based reconstruction methods may be unstable [57]
and they are prone to hallucinations, which may lead to diagnosis errors in medical
imaging, for instance, [61, 60].

In this chapter, we propose to build trustworthy PnP methods based on two
types of theoretical guarantees.

• Convergence of the iterates. All PnP methods are iterative, and hence a
minimal requirement is to have theoretical convergence guarantees to ensure
stability throughout the iterations.

• Properties of the reconstruction map (data consistency and sta-
bility). Convergence only pertains to the stability of the iterations, not to
the stability of the measurement-to-reconstruction map y 7! x

+1, also re-
ferred to as the reconstruction map. Trust can be greatly improved if one
can prove some theoretical properties of the reconstruction map, for instance,
Lipschitz continuity, which ensures that perturbations in the measurements
have limited effects on the reconstruction.

6.1.2 Convergent Plug-and-Play Methods
We now briefly review the popular convergent PnP methods and discuss the corre-
sponding reconstruction map. The three most popular strategies to ensure conver-
gence are summarized below.

• Iterative relaxation. Given a bounded denoiser1, a convergent variant of
PnP-ADMM can be designed with an iteration-dependent denoiser strength
�k that is iteratively decreased whenever a certain condition is violated [93].
This approach can be generalized to an unconstrained denoiser with the re-
laxed projected gradient descent (RPGD) [94]. There, a relaxed version

1D� is said to be bounded if there exists C 2 R such that kD�(x) � xk2  C�2n for any

x 2 Rn
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D�,k = µkD� + (1 � µk)D� of the denoiser is used and µk is iteratively
decreased whenever a condition is violated. Unfortunately, as discussed in
[94], the catch with iterative relaxation methods is that the reconstruction is
not necessarily the fixed point of an operator and, even if it is, the operator of
interest cannot be known a priori and depends on the measurement and the
initialization. Hence, it is highly nontrivial to infer properties of the recon-
struction map and, in particular, we are not aware of any data consistency
and stability guarantees.

• Lipschitz constraints. The most widespread strategy to ensure convergence
is to constrain the Lipschitz constant of the residual (Id�D�) [81, 101, 269,
242, 270, 75]. The prescribed Lipschitz bound is a function of the smallest
eigenvalue of HTH [81]. This approach allows for residual learning, which is
known to boost the performance of data-driven denoisers [271]. For most in-
verse problems, H is noninvertible, and the usual sufficient condition becomes
that D� must be nonexpansive. This strong constraint causes a performance
drop and, hence, most works prefer to relax it, at the cost of losing all guar-
antees. For instance, it is common to use non-1-Lipschitz learning modules,
such as batch normalization [81], or to only constrain the residual (Id�D�)
to be nonexpansive [81, 101, 83], with the caveat that Lip(D�) can be as
large as 2. Another relaxation approach consists of penalizing during training
either the norm of the Jacobian of D� at a finite set of locations [75, 76]
or of another local estimate of the Lipschitz constant [77, 78]. If one sticks
to the constraint, not only convergence is granted, but also it confers strong
properties to the reconstruction map, including some data consistency and
stability results, as we further detail in Section 6.3.

• Non-convex optimization. Many recent PnP methods parameterize D�

as the gradient of some Rn ! R CNN, for both gradient-based [272, 99] and
prox-based PnP [102, 76, 98]. Then, convergence can be proven with classic
non-convex optimization results [96, 97]. In this case, the fixed-point equation
satisfied by the reconstruction is known, but the non-convexity makes it hard
to prove any property of the reconstruction map, which is typically not single-
valued and highly dependent on the initialization of the algorithm.

Among the three strategies that provide convergence guarantees, only the second
one seems able to offer stability guarantees for the reconstruction map. Hence,
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for the remainder of the chapter, we concentrate on PnP methods with Lipschitz-
constrained denoisers, for which we will detail the general convergence and stability
results.

Outline and Contributions In Section 6.2, we recall some mathematical con-
cepts concerning averaged operators, fixed-point iterations and convergence of PnP
algorithms. To further motivate the use of Lipschitz-constrained NNs in PnP meth-
ods, we show in Section 6.3 that they yield reconstruction maps with some stabil-
ity and consistency guarantees. In Section 6.4, we propose a reparameterization
technique to learn efficiently Lipschitz-constrained learnable linear spline (LLS) ac-
tivation functions. In this way, the constraints are embedded into the forward and
backward passes of the model. In Section 6.5, we first illustrate our method on
toy problems, including 1-dimensional function fitting and image generation with
Wasserstein GANs. Finally, we design Lipschitz-constrained denoisers in Section
6.6 and show in various MRI and CT setups that LLS yield superior performance
than the other popular activation functions, including ReLU, GroupSort (GS) and
householder (HH).

6.2 Preliminaries: Averaged Operators and Fixed-
point Iterations

Averaged Operators An operator T : Rn ! Rn is said to be

• contractive if Lip(T ) < 1,

• nonexpansive if Lip(T )  1,

• �-averaged for � 2 (0, 1) if T = �U + (1 � �)Id where U is a nonexpansive
operator,

where Lip(T ) is the Lipschitz constant of T as defined in Chapter 5. Note that
throughout this chapter we only consider the Lipschitz constant with respect to the
2-norm.
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Fixed-Point Iterations In PnP methods, the reconstruction is computed as
a fixed point of an update operator, say T : Rn ! Rn, with the Banach-Picard
iterations xk+1 = T (xk). For a contractive T , there exists a unique fixed point,
and the iterates converge to it regardless of the initialization x0 (Banach fixed-point
theorem). For an averaged operator T , the fixed-point set is known to be convex
and, if it is nonempty, convergence of the iterates is ensured. For a nonexpansive
operator with a nonempty fixed-point set, convergence can be ensured via the use of
the Krasnosel’skǐı-Mann algorithm, which performs updates based on an averaged
relaxation of T .

Convergence of Lipschitz-constrained PnP Methods To prove the con-
vergence of PnP methods, one can rely on the following fundamental properties
[273, 83]

• the composition of averaged operators is averaged,

• the convex combination of averaged operators is averaged,

• x 7! x�↵HTHx is averaged for ↵ 2 [0, 2/kHTHk), where k ·k is the spectral
norm,

• x 7! x� µ(x�D(x)) is averaged for Lip(D)  1 and µ 2 [0, 1). In addition,
if D is �-averaged, the second condition can be relaxed to µ 2 [0, 1/�).

All in all, the use of a �-averaged denoiser yields convergent2 PnP methods for
[273, 83]

• 0  ↵ < 2/kHTHk, (PnP-FBS)

• 0  ↵ < 2/(kHTHk+ 2��)). (PnP-GD)

6.3 Properties of the Reconstruction Map for PnP
with Lipschitz-Constrained Denoisers

The efforts in the past decade to improve the reliability of PnP methods have mostly
been concentrated on the convergence guarantees, leaving many open questions on

2
If a fixed point exists.
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the properties of the reconstruction map. In convex optimization, there exist exten-
sive stability results, see [274, 275, 31, 276], but they do not necessarily generalize to
PnP methods. The stability of gradient-based PnP was recently studied in see [78].
Similar to our approach, the authors of [78] rely on Lipschitz-constrained operators,
but their results are quite different since they concentrate on learning monotone
operators, while we focus on learning averaged operators and, the constraints are
relaxed in [78] for the experiments, which is not the case in our framework.

To theoretically motivate the use of Lipschitz-constrained denoisers in PnP
methods, we now provide a stability analysis of the reconstruction map given by
PnP-GD and PnP-FBS. For completeness, we also provide the proofs in Section
6.8.1, but recall that our principal contributions pertain to the implementation of
Lipschitz-constrained LLS, as given in Section 6.4 and illustrated in Sections 6.5
and 6.6. Note that the PnP versions of DRS and ADMM share the same fixed point
as PnP-FBS [240], and hence the stability results derived for PnP-FBS also apply
to PnP-DRS and PnP-ADMM. In the sequel, for a reconstruction map f , even if
it is not single-valued, we use the notation f(y) to represent any solution corre-
sponding to the measurement y. This slight abuse of notation aims at improving
readability and only concerns Equations (6.8) and (6.11).
Proposition 6.1 (Stability of PnP-GD). Let L� = Lip(D�), f

GD
be the recon-

struction map of PnP-GD (6.6) with regularization parameter � 2 R+, and �max

and �min be the largest and smallest eigen values of HTH.
• If L� < 1 + �min/�, then f

GD
is Lipschitz continuous as in

kf
FBS

(y2)� f
FBS

(y1)k2 
kHk

(�(1� L�) + �min)
ky2 � y1k2, (6.7)

for any y1,y2 2 Rm.

• If L�  1, then f
GD

is Lipschitz continuous in the measurement domain as
in

kHf
GD

(y2)�Hf
GD

(y1)k2  ky2 � y1k2, (6.8)
for any y1,y2 2 Rm.

The result on the stability of PnP-FBS relies on the spectral norm of I�↵HTH,
which can be expressed in terms of the largest and smallest eigenvalues �max and
�min of HTH as

L↵ = kI� ↵HTHk = max(|1� ↵�min|, |1� ↵�max|). (6.9)
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Proposition 6.2 (Stability of PnP-{FBS, DRS, ADMM}). Let L� = Lip(D�),
L↵ = kI� ↵HTHk and f

FBS
be the reconstruction map of PnP-FBS (6.5).

• If L�L↵ < 1, then f
FBS

is Lipschitz continuous as in

kf
FBS

(y2)� f
FBS

(y1)k2 
↵L�

1� L�L↵

kHkky2 � y1k2, (6.10)

for any y1,y2 2 Rm.

• If D� is half-averaged, then f
FBS

is Lipschitz continuous in the measurement
domain as in

kHf
FBS

(y2)�Hf
FBS

(y1)k2  ky2 � y1k2, (6.11)

for any y1,y2 2 Rm.

Overall, the theoretical properties of the reconstruction map proven in this
section tell us that if two sets of measurements are close to each other, then the
corresponding reconstructions must also be close to each other. While this property
seems to be a minimal requirement, it usually does not hold for standard PnP
methods. The Lipschitz continuity of the reconstruction map is also a sufficient
condition for the solution to be unique for a given set of measurements, and hence
independent of the initialization of the solver.

6.4 Implementing Lipschitz Constraints on Learn-
able Linear Splines

Following our theoretical results given in Chapter 5, we propose to use layer-wise
(LW) 1-Lipschitz NNs with learnable linear spline activation to build convergent
and stable PnP methods for ill-posed inverse problems.

6.4.1 Learnable Linear Splines
Similar to [235, 188], we use learnable linear splines (LLS) �c : R! R with (M +1)
uniform knots ⌫m = (m � M/2)�, m = 0, . . . , M , where � is the spacing of
the knots. For simplicity, we assume that M is even. The learnable parameter
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c = (cm)M

m=0
2 RM+1 defines the value �c(⌫m) = cm of �c at the knots. To fully

characterize �c, we use affine extensions on (�1, ⌫0] and [⌫M , +1). Additional
details on the implementation of learnable linear splines can be found in [235]. An
illustration of LLS can be found in Figure 6.1. Within LLS-NNs, the LLS can
be initialized in many ways, some including popular activation functions such as
ReLU, leaky ReLU, PReLU, or MaxMin. In addition, the LLS can also be shared
by several neurons to save memory, and we usually use one activation function per
channel in convolutional neural networks.

breakpoints
affine extrapolation

Δ

c0

c1 c2

c3

c4

c5

c6

0

Figure 6.1: A LLS activation function with 7 learnable parameters (ck)6
k=0

.

In practice, we choose a high number M and a small spacing �. We then ensure
that a simple activation function is learned by using TV(2) regularization, similar
to [235]. Let DM+1 2 RM⇥(M+1) be the one-dimensional finite-difference matrix
with (Dc)m = cm+1�cm for m = 0, . . . , (M�1). For our parameterization of LLS,
it can be shown that TV(2)(�c) = 1

�2 kDMDM+1ck1, which simply quantifies the
total change of slope of the spline.
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6.4.2 Constrained and Learnable Linear Splines
Lipschitz Constant

The LLS activation �c has an easily computable Lipschitz constant, namely

Lip(�c) =
kDM+1ck1

�
. (6.12)

This formula is a clear motivation for the use of LLS: while they bring additional
expressivity compared to nonlearnable splines, they still have an efficiently com-
putable Lipschitz constant.

Learning Linear Spline under Lipschitz Constraint

To optimize over the set CLip = {c 2 RM+1 : ��  DM+1c  �}, we propose two
general approaches, namely a projected-gradient method, and a reparameterization
strategy. To simplify the explanation, we only show how to learn a single LLS under
the Lipschitz constraint, but the approach readily extends to multiple LLS deployed
in CNNs.

In the sequel, PCLip : RM+1 ! RM+1 denotes a projection on CLip, loss : RM+1 !
R denotes a loss function that measures the performance of the spline on the prob-
lem of interest, e.g. interpolation, optimizer : RM+1 ! RM+1 denotes a generic
gradient-based optimizer, which updates a parameter ck based on the loss loss(ck).

PG-LLS (Projected-gradient Method) This method stems from constrained
convex optimization methods, and we introduced it in the published paper [235].
The two-step update rule reads

c̃k = optimizer(loss(ck)), (PG-LLS) (6.13)
ck+1 = PCLip(c̃k). (6.14)

Given an appropriate convex loss function, and well-chosen optimizer and projec-
tion, this method allows one to find the optimal parameter ck with guarantees that
the Lipschitz constraint is met. For the PG-LLS, we will use the simple projector

PCLip : c 7! �

kck1
c, (6.15)
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as used in our first work on the topic [235]. In deep learning, the optimization being
highly non-convex, PG-LLS is not necessarily well-suited.

R-LLS (Reparameterization Method) The reparameterization method that
we now propose relies on a radically different philosophy. The idea is to parametrize
directly CLip as {PCLip(c) : c 2 RM+1}, and to use the update rule

ck+1 = optimizer(loss(PCLip(ck))) (R-LLS). (6.16)

The key observation here is that the spline used it not �c, but rather the repa-
rameterized version �PCLip

(c). In other words, the constraint is embedded into the
forward pass of the computation of the loss. This way, the optimizer makes the
update of the parameters with knowledge of the constraints, since it resorts to
@loss(PCLip

(ck))

@ck

. This strategy is in line with the popular spectral normalization
given in [80], where the weight matrices are unconstrained and parameterized using
an approximate projection.

Regarding the choice of the projection, the textbook approach would be to use
the least-squares projection onto CLip. This operation preserves the mean of c, as
shown in Appendix 6.8.2. Unfortunately, its computation is very expensive as it
requires solving a quadratic program and it is not trivial to make it differentiable.
As a substitute, we introduce a simpler projection SplineProj that also preserves
the mean while being much faster to compute. In brief, SplineProj computes the
finite differences, clips them, sums them and adds a constant to preserve the mean.

Let us denote the Moore–Penrose pseudoinverse of D by D† and the vector of
ones by 1 2 RM+1, and we define the component-wise operation

Clip
�

(x) =

8
><

>:

��, x < ��

x, x 2 [��, �]

�, x > �.

(6.17)

Proposition 6.3. The operation SplineProj defined as

SplineProj(c) = D† Clip
�

(Dc) +
1

M + 1
11T c (6.18)

has the following properties:
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1. it is a projection onto CLip;

2. it is differentiable with respect to c almost everywhere;

3. it preserves the mean of c.

The proof of Proposition 6.3 can be found in Appendix 6.8.2.
For our reparameterization approach, Property 2 of Proposition 6.3 is very im-

portant as it allows us to back-propagate through SplineProj during the optimiza-
tion process. To compute SplineProj efficiently, we calculate D† in a matrix-free
fashion with a cumulative sum. The computational cost of SplineProj is negligible
compared to the cost of constraining the linear layer to be 1-Lipschitz.

Scaling Parameter

We propose to increase the flexibility of our LLS activation functions by the intro-
duction of an additional trainable scaling factor µ 6= 0. Specifically, we propose the
new activation function

�̃(x) = �(µx)/µ. (6.19)

With this scaling, �̃ has breakpoints within the interval [⌫0/µ, ⌫M/µ] and the Lip-
schitz constant

Lip(�̃) = sup
x1 6=x22R

|�(µx1)/µ� �(µx2)/µ|
|x1 � x2|

= sup
x1 6=x22R

|�(µx1)� �(µx2)|
|µx1 � µx2|

= Lip(�)

(6.20)
is left unchanged. As detailed in Appendix 6.8.3, the second-order total variation
is preserved as well. Basically, µ allows us to potentially decrease the training loss
without violating the constraints, and it comes with a negligible computational
overhead. Experimentally, we indeed found that the performance of LLS-NNs im-
proves if we also optimize over µ. In contrast, the ReLU, AV, PReLU, GS, and
HH activation functions are invariant to this parameter and do not benefit from it.
In practice, the scaling parameter µ is initialized as one and can be updated via
any classical stochastic gradient-based method. Throughout our experiments, one
scaling factor is learned for each LLS activation function.



198 Spline Activations for Stable PnP Image Reconstruction

6.5 Illustration on Toy Problems

We evaluate the performance of LLS-NNs on a variety of tasks. In this section,
we propose two toy experiments to test our framework. The image reconstruction
experiments are presented in the next section.

For all experiments, we compare the performance of LLS and the five activa-
tion functions: GroupSort (GS), householder (HH), absolute value (AV), RelU and
PReLU, see discussion and details on these activations in Chapter 5. For all the
experiments, we tune the initialization of PReLU, the group size of GS, and the
initialization, range, number of linear regions, and TV(2) regularization of LLS for
best performance. To train the respective networks, we use the Adam optimizer
[43] and the default hyperparameters of its PyTorch implementation. The LLS-NNs
are optimized with 3 learning rates, one for the weights (with learning rate ⇠), one
for the scaling parameters (with learning rate ⇠/4) and one for parameters of the
activation functions (with learning rate ⇠/40). These ratios remain fixed through-
out this section and, hence, only ⇠ is going to be stated. Our implementation is
available on Github3.

6.5.1 One-Dimensional Function Fitting

�� � �
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Figure 6.2: Target 1-Lipschitz functions for the first toy problem.

In this section, LW 1-Lipschitz NNs are trained to approximate 1-Lipschitz func-
tions f : R! R on the interval [�1, 1]. The aim of this experiment is twofold. First,
we want to probe the impact of the two methods to constrain the splines (PG-LLS

3
https://github.com/StanislasDucotterd/Lipschitz_DSNN

https://github.com/StanislasDucotterd/Lipschitz_DSNN
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and R-LLS) on the performance. Second, we want a simple but challenging experi-
ment to compare all activation functions. The three target 1-Lipschitz functions are
depicted in Figure 6.2, and we now briefly comment on the choice of these functions.
The function f1 satisfies |f 0

1
| = 1 almost everywhere. Hence, the GNP activation

functions are expected to perform well and serve as a baseline against which we
compare LLS activation functions. The function f2 has both portions with |f 0

2
| = 1

and with f 0
2

= 0. It was designed to test the ability of LLS to fit functions with
flat portions. Lastly, we benchmark all methods on the highly varying function
f3 = sin(7⇡·)/(7⇡), which is challenging to fit under Lipschitz constraints.

For each method, we consider two common approaches to learn nonexpansive
linear layers, namely orthonormalization, and spectral normalization of the weights.
In both cases, we use the mean squared error (MSE) as the loss function. The
train loss is computed over 1000 random points sampled uniformly from [�1, 1].
The test loss is computed over a uniform partition of [�1, 1] with 10000 points.
This experiment lets us assess the expressivity of the models and put the problem
generalization aside. For each activation function, we tuned the width and the depth
of the neural network for best performance leading to 10 layers and a width of 50 for
ReLU-NN; 8 layers and a width of 20 for AV-, PReLU-, and HH-NN; 7 layers and
a width of 20 for GS-NNs; 4 layers and a width of 10 for LLS-NNs. Concerning the
activation functions, we initialized the PReLU as the absolute value, we used GS
with a group size of 5, and the LLS was initialized as ReLU with range [�0.5, 0.5],
100 linear regions, and we set ⌘ = 10�7 for the TV(2) regularization strength. The
learning rate is set to ⇠ = 2 ·10�3 for LLS-NNs and for the other NNs to ⇠ = 4 ·10�3

for f1, f2 and ⇠ = 10�3 for f3. All weights were initialized according to the Kaiming
initialization [172]. Each NN was trained for 25 independent runs with a batch size
of 10 for 1000 epochs. We report the median and the two quartiles of the test losses
in Figure 6.3.

For the spectral normalization, we observe that AV, PReLU, and HH tend to get
stuck in local minima when fitting f3 (the associated upper quartile of the MSE loss
is quite large). In return, we observe that LLS consistently outperforms the other
activation functions in all experiments. Particularly striking is the improvement
of R-LLS over PG-LLS, which demonstrates the beneficial role of the reparame-
terization technique. Accordingly, from now on, we drop PG-LLS and only retain
R-LLS.



200 Spline Activations for Stable PnP Image Reconstruction

Figure 6.3: Fitting performance for the functions from Figure 6.2. The red markers
represent the median performance. The black bars represent the lower and upper
quartiles, respectively.

6.5.2 Wasserstein GAN Training

As the second toy problem, we propose to train Wasserstein GANs to generate
MNIST images. To this end, we use the same framework and optimization pro-
cess as [82], where the discriminators have strict Lipschitz constraints instead of
the commonly used gradient penalty. Note that, on the contrary, the generators
themselves do not need to be Lipschitz constrained. Thus, we use ReLUs as their
activation functions and only plug our different activation functions into the dis-
criminator. Here, after tuning, we used GS with a group size of 2, PReLU with half
of the activations initialized as identity and half with absolute value, LLS initialized
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as the absolute value, range [�0.1, 0.1], 20 linear regions, and ⌘ = 10�6. Note that
the spline coefficients only increase the total number of parameters in the neural
network by 0.2%. The Wasserstein GANs were trained on the MNIST training set
with 60000 images. We report the inception score on the MNIST test set of 10000
images using the implementation from [277] in Table 6.1.

As expected, the limited expressivity of the ReLU leads to the lowest inception
score. LLS yields the best score with an improvement over the other schemes.
The ability of LLS to generate realistic digits can also be appreciated visually, as
illustrated in Figure 6.4.

	�� �� �	��

�
 �� ��


Figure 6.4: Images generated by the Wasserstein GAN models used in the experi-
ments of Section 6.5.2.
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Table 6.1: Inception scores for MNIST image generation

ReLU AV PReLU GS HH LLS

Inception score 1.88 2.19 2.13 2.17 2.07 2.38

6.6 Image Reconstruction: from Denoising to MRI
and CT

6.6.1 Denoising

The state-of-the-art image denoising architectures [271, 278, 279] are not natively
1-Lipschitz. They rely on dedicated modules designed to improve performance,
including skip connections, downsampling and upsampling layers, batch normaliza-
tion, and attention modules. These can either make it challenging to build provably
averaged denoisers or, if they can be easily constrained, their effectiveness remains
to be demonstrated in a constrained setting. For this reason, we use a simple CNN
architecture without batch normalization.

We train D as a 1-Lipschitz denoiser that is composed of 8 orthogonal convo-
lutional layers parameterized with the BCOP framework [250]. For LLS-NN, we
use 64 channels and, to compensate for the additional spline parameters, we use
for every other model 68 channels. We use kernels of size (3⇥ 3).

The training dataset consists of 238400 patches of size (40 ⇥ 40) taken from
the BSD500 dataset [280]. We report the results on the BSD68 test set. All
images take values in [0, 1]. For our experiment, we add Gaussian noise with � =
5/255, 10/255, 15/255 and build one denoiser per noise level. We train all CNNs
for 50 epochs with a batch size of 128 and the MSE loss function. The PReLU
activation functions were initialized as the absolute value. GS has a group size of
2. The LLS activation functions have M = 50 linear regions, a range � = 0.2,
and were initialized as the identity. We set ⇠ = 4 · 10�5 for every noise level
and every model. In this experiment, we also investigated the effect of the TV(2)

regularization parameter ⌘ on the performance and the number of linear regions in
all the activation functions. The performance results are provided in Table 6.2. As
expected, ReLU is doing worse than the other activation functions. For each noise
level, LLS is outperforming every other activation function.
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The number of linear regions for the LLS activation function �`,n is equal to
1

T
kLc`,nk0 + 1. This metric can lead to an overestimation of the number of linear

regions due to numerical imprecisions. Instead, we define the effective number of
linear regions as (|{1  k  K`,n : |(Lc`,n)k| > 0.01}| + 1). For each LLS-NN, we
report in Table 6.3 the average number of effective linear regions (AELR) of all the
LLS activation functions. An AELR close to one indicates that the large majority
of neurons perform an affine transform, which corresponds to a simplification of
the network. Without regularization, the LLS activation functions have an AELR
of 8.07 to 9.24 out of the 50 available linear regions. The TV(2) regularization
drastically sparsifies the LLS activation functions. With ⌘ 2 [10�6, 10�4], the
AELR is between 1.07 and 1.44, which is a large decrease without degradation in
the denoising performances. For ⌘ = 10�3, the LLS are even further sparsified at
the cost of a small loss of performance. We observe a significant loss of performance
when ⌘ is increased to 10�2 where the network is almost an affine mapping. Notice
that the AELR is 2 for ReLU and AV, meaning that LLS outperforms them while
being simpler. Another interesting observation is that, despite being very sparse on
average, the LLS-NNs with ⌘ 2 [10�6, 10�3] have at least one activation function
with at least three linear regions. This suggests that most of the common activation
functions might be suboptimal as they have only two linear regions.

Table 6.2: PSNR and SSIM for the denoising experiment.

Noise level � = 5/255 � = 10/255 � = 15/255
Metric PSNR SSIM PSNR SSIM PSNR SSIM

ReLU 36.10 0.9386 31.92 0.8735 29.76 0.8203
AV 36.58 0.9499 32.33 0.8889 30.09 0.8375
PReLU 36.58 0.9498 32.25 0.8887 30.11 0.8367
GS 36.54 0.9489 32.23 0.8845 30.11 0.8346
HH 36.47 0.9476 32.25 0.8866 30.11 0.8350
LLS 36.86 0.9546 32.55 0.8962 30.38 0.8479
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Table 6.3: PSNR and SSIM for the denoising experiment with LLS-NNs and various
spline regularization strength ⌘.

� = 5/255 � = 10/255 � = 15/255
⌘ PSNR SSIM AELR PSNR SSIM AELR PSNR SSIM AELR

0 36.85 0.954 9.24 32.59 0.898 8.76 30.35 0.846 8.07
10�6 36.86 0.955 1.21 32.55 0.896 1.24 30.38 0.848 1.44
10�5 36.86 0.954 1.11 32.55 0.896 1.15 30.34 0.846 1.24
10�4 36.82 0.953 1.07 32.57 0.897 1.14 30.36 0.847 1.25
10�3 36.63 0.950 1.02 32.47 0.892 1.06 30.31 0.844 1.10
10�2 35.15 0.914 1.00 32.00 0.878 1.01 29.73 0.816 1.01

6.6.2 Medical Image Reconstruction
The Gaussian denoisers are now plugged into the PnP-FBS algorithm 6.5 to recon-
struct medical images. For each setup, we use a relaxed denoiser D̃ = �D + (1 �
�)Id, where the parameter � 2 [0, 1) is tuned4 along with the stepsize and noise
level � 2 {5/255, 10/255, 15/255} on a validation set that shall be defined in the
sequel. We notice that for every model the optimal � is less than 0.5, meaning that
the effective denoiser D̃ is half-averaged and the stability result (6.11) holds.

The goal of this chapter is to compare the various activation functions in
Lipschitz-constrained PnP. For comparison with other reconstruction methods, we
refer the reader to Chapters 7 and 8, which also cover the same inverse problems.

MRI

The ground-truth images for our MRI experiments are proton-density weighted
knee MR images from the fastMRI dataset [281] with fat suppression (PDFS) and
without fat suppression (PD). They are generated from the fully-sampled k-space
data. For each of the two categories (PDFS and PD), we create validation and test
sets consisting of 10 and 50 images, respectively, where every image is normalized
to have a maximum value of one. To gauge the performance of LLS-NNs in various
regimes, we experiment with single- and multi-coil setups with several acceleration

4
The hyperparameter tuning is performed with the coarse-to-fine approach detailed in Sec-

tion 7.8.1
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factors. In the single-coil setup, we simulate the measurements by masking the
Fourier transform of the ground-truth image. In the multi-coil case, we consider 15
coils, and the measurements are simulated by subsampling the Fourier transforms
of the multiplication of the ground-truth images with 15 complex-valued sensitivity
maps (these were estimated from the raw k-space data using the ESPIRiT algorithm
[282] available in the BART toolbox [283]). For both cases, the subsampling in the
Fourier domain is performed with a Cartesian mask that is specified by two param-
eters: the acceleration Macc 2 {2, 4, 8} and the center fraction Mcf = 0.32/Macc.
A fraction of Mcf columns in the center of the k-space (low frequencies) is kept,
while columns in the other region of the k-space are uniformly sampled so that
the expected proportion of selected columns is 1/Macc. In addition, Gaussian noise
with standard deviation �n = 2 · 10�3 is added to the real and imaginary parts of
the measurements. The PSNR and SSIM values for each method are computed on
the (320⇥ 320) centered ROI.

The performance in terms of PSNR and SSIM can be found in Tables 6.4 and
6.5 and are summarized in Figures 6.5 and 6.6. Examples of reconstructed images
are given in Figures 6.7, 6.8, 6.9 and 6.10. We observe a clear and systematic gap
between LLS and the other activation functions in all setups in terms of PSNR and
SSIM. In challenging setup, e.g. Macc = 8, it can be observed aliasing artifacts that
result from the subsampling in the horizontal direction in Fourier space. These are
significantly reduced in the LLS reconstruction.

Table 6.4: Test results for single-coil MRI.

2-fold 4-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

ReLU 38.15 37.41 0.938 0.918 30.62 31.45 0.818 0.786
AV 38.99 38.05 0.946 0.925 31.34 32.02 0.832 0.797
PReLU 38.97 38.09 0.946 0.925 31.22 32.22 0.832 0.800
GS 38.80 37.92 0.944 0.924 31.27 31.93 0.829 0.796
HH 38.72 37.89 0.944 0.924 31.22 31.94 0.830 0.796
LLS 40.06 38.63 0.955 0.931 32.81 33.04 0.859 0.817
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Table 6.5: Test results for multi-coil MRI.

4-fold 8-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

ReLU 37.21 37.06 0.929 0.915 31.37 32.57 0.837 0.822
AV 37.81 37.48 0.935 0.919 31.82 32.95 0.845 0.829
PReLU 37.71 37.51 0.934 0.919 31.67 33.11 0.845 0.832
GS 37.76 37.41 0.933 0.919 31.79 32.9 0.843 0.829
HH 37.66 37.39 0.933 0.919 31.68 32.91 0.843 0.829
LLS 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835

Figure 6.5: Test results for the MRI experiments (PSNR).
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Figure 6.6: Test results for the MRI experiments (SSIM).

Figure 6.7: Reconstructed images for the MRI experiment (2-fold acceleration with
a single coil). The reported metrics are PSNR and SSIM.
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Figure 6.8: Reconstructed images for the MRI experiment (4-fold acceleration with
a single coil). The reported metrics are PSNR and SSIM.

Figure 6.9: Reconstructed images for the MRI experiment (4-fold acceleration with
multiple coils). The reported metrics are PSNR and SSIM.

Figure 6.10: Reconstructed images for the MRI experiment (8-fold acceleration
with multiple coils). The reported metrics are PSNR and SSIM.
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CT

For the CT experiment, the data consists of human abdominal CT scans for 10
patients provided by Mayo Clinic for the low-dose CT Grand Challenge [284]. The
validation set consists of 6 images taken uniformly from the first patient, and for
test, we use 128 that correspond to another patient, see [285]. All images are
(512 ⇥ 512) and independently normalized in [0, 1]. The projections of the data
are simulated using a parallel-beam acquisition geometry with 200 angles and 400
detectors. Lastly, Gaussian noise with standard deviation �n 2 {0.5, 1, 2} is added
to the measurements.

The quantitative results for the CT experiments can be found in Table 6.6 and
in Figure 6.11. An example of a reconstructed image is given in Figure 6.12. It can
be seen that LLS-NN yields the best performance with some margin over competing
frameworks. Visually, LLS-NNs remove more noise than NNs equipped with the
other activation functions and lead to fewer aliasing artifacts in challenging setups.

Table 6.6: Test result for the CT experiments.

�n=0.5 �n=1 �n=2
PSNR SSIM PSNR SSIM PSNR SSIM

FBP 32.14 0.697 27.05 0.432 21.29 0.204

ReLU 36.94 0.914 33.65 0.860 30.34 0.782
AV 37.15 0.926 34.19 0.885 31.07 0.813
PReLU 37.18 0.927 34.21 0.887 30.87 0.812
GS 36.95 0.920 33.99 0.877 30.87 0.806
HH 36.94 0.918 34.11 0.877 30.92 0.809
LLS 38.19 0.931 35.15 0.897 31.85 0.844

The reconstruction performances over the test set are reported in Table 6.6.

6.7 Conclusion
In this chapter, we have proposed a framework to efficiently train Lipschitz-
constrained neural networks with learnable linear-spline activation functions. Our
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Figure 6.11: Test results for the CT experiments.

Figure 6.12: Reconstructed images for the CT experiment with �n = 0.5. The
reported metrics are PSNR and SSIM.

implementation embeds the Lipschitz constraint on the activation functions directly
into the forward pass and adds learnable scaling factors, which preserves the Lip-
schitz constant of the activation functions and enhances the overall expressivity
of the model. Empirically, our approach outperforms Lipschitz-constrained neural
networks with activation functions such as GroupSort and Householder, which are
the state of the art in this context. These observations are a starting point for the
exploration of other architectural constraints and learnable non-component-wise ac-
tivation functions within the framework of Lipschitz-constrained neural networks.
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6.8 Appendix

6.8.1 Properties of the Reconstruction Maps
Stability of PnP-GD

Proof of Proposition 6.1. The reconstructions satisfy the fixed-point equation

HTHx⇤
i
�HTyi + �(Id�D�)(x⇤

i
) = 0, (6.21)

for i = 1, 2, and where we use the notation x⇤
i

= f
GD

(yi). We subtract (6.21) for
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2
� x⇤

1
to infer that

kH(x⇤
2
� x⇤

1
)k2

2
+ �(kx⇤

2
� x⇤

1
k2
2
� (x⇤

2
� x⇤

1
)T (D�(x⇤

2
)�D�(x⇤

1
)) (6.22)

= (x⇤
2
� x⇤

1
)THT (y2 � y1). (6.23)

To prove (6.8), we use that kx⇤
2
� x⇤

1
k2
2
� (x⇤

2
� x⇤

1
)T (D�(x⇤

2
)�D�(x⇤

1
)) � 0 which

holds since for a nonexpansive denoiser we have that

|(x⇤
2
� x⇤

1
)T (D�(x⇤

2
)�D�(x⇤

1
))|  kx⇤

2
� x⇤

1
k2kD�(x⇤

2
)�D�(x⇤

1
)k2  kx⇤

2
� x⇤

1
k2
2
.

(6.24)
Equation (6.8) then follows from the inequality (x⇤

2
� x⇤

1
)HT (y2 � y1)  kH(x⇤

2
�

x⇤
1
)k2ky2 � y1k2.
To prove (6.10), we use that

(x⇤
2
�x⇤

1
)T (D�(x⇤

2
)�D�(x⇤

1
))  kx⇤

2
�x⇤

1
k2kD�(x⇤

2
)�D�(x⇤

1
)k2  L�kx⇤

2
�x⇤

1
k2
2
.

(6.25)
We also use that kH(x⇤

2
�x⇤

1
)k2

2
� �minkx⇤

2
�x⇤

1
k2
2

and that (x⇤
2
�x⇤

1
)HT (y2�y1) 

kHkkx⇤
2
� x⇤

1
k2ky2 � y1k2.

Stability of PnP-FBS

Proof of Proposition 6.2. The reconstructions satisfy the fixed-point equation

D�((I � ↵HTH)x⇤
i

+ ↵HTyi) = x⇤
i
, (6.26)

for i = 1, 2, and where we use the notation x⇤
i

= f
FBS

(yi).
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To prove (6.11), we recall that since D� is half-averaged, 2D��I is 1-Lipschitz
[273, Proposition 4.4]. We then use this property at the locations (I�↵HTH)x⇤

i
+

↵HTyi for i = 1, 2 and rely on the fixed-point equation 6.26 to find that

k2(x⇤
2
� x⇤

1
)� (I � ↵HTH)(x⇤

2
� x⇤

1
)� ↵HT (y2 � y1)k22 (6.27)

 k(I � ↵HTH)(x⇤
2
� x⇤

1
) + ↵HT (y2 � y1)k22. (6.28)

We then develop on both sides and, after simplification find that

kH(x⇤
2
� x⇤

1
)k2

2
 (x⇤

2
� x⇤

1
)HT (y2 � y1). (6.29)

The announced result is then obtained with the Cauchy-Schwarz inequality.
To prove (6.10), we now subtract (6.26) for i = 1 and i = 2 and use the L�-

Lipschitzness of the denoiser to find that

kx⇤
2
� x⇤

1
k2  L�k(I � ↵HTH)(x⇤

2
� x⇤

1
) + ↵HT (y2 � y1)k2 (6.30)

 L�L↵kx⇤
2
� x⇤

1
k2 + ↵L�kHkky2 � y1k2. (6.31)

6.8.2 Properties of SplineProj
The Least-Square Projection onto CLip Preserves the Mean: Let x 2
RM+1 and y 2 CLip. We express the two vectors as x = x̄ + µx1, y = ȳ + µy1,
where x̄ and ȳ have zero mean. It holds that

kx� yk2
2

= kx̄� ȳ + 1(µx � µy)k2
2

= kx̄� ȳk2
2

+ (µx � µy)2(M + 1)2. (6.32)

Hence, adding (µx � µy)1 to y decreases the distance without violating the con-
straints.

SplineProj Maps RM+1 to CLip: We have, for any c 2 RM+1, that

kD SplineProj(c)k1 = kDD† Clip
�

(Dc) + D1
1

M + 1
1T ck1 (6.33)

= kClip
�

(Dc)k1  �. (6.34)

Here, we used the fact that DD† is the identity matrix in RM,M and that D1 = 0.
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SplineProj is a Projection: Using the same properties as above, it holds that

SplineProj(SplineProj(c)) = D† Clip
�

✓
DD† Clip

�
(Dc) +

D11T c

M + 1

◆
+

11T c

M + 1

= D† Clip
�

(Clip
�

(Dc)) +
11T

M + 1
c

= D† Clip
�

(Dc) +
11T

M + 1
c = SplineProj(c). (6.35)

SplineProj Preserves the Mean of c: From the properties of the Moore-
Penrose inverse, we have that ker((D†)T ) = ker (D), therefore, 1TD† = 0 and

1T SplineProj(c) = 1TD† Clip
�

(Dc) + 1T1
1

M + 1
1T c = 1T ck. (6.36)

SplineProj is Differentiable Almost Everywhere with Respect to c: The
Clip

�
function is differentiable everywhere except at T and �T . Therefore, the

operation D† Clip
�

(Dc) is differentiable everywhere except on

S =
M[

k=1

�
x 2 RM+1 : |(Dx)k| = �

 
, (6.37)

which is the finite union of hyperplanes, and hence has measure zero in RM+1.

6.8.3 Scale Invariance of TV(2)

For µ 6= 0 and any � 2 BV(2)(R), it holds that �̃ = �(µ·)/µ 2 BV(2)(R) and

TV(2)(�̃) = sup
'2S(R):k'k11

Z

R
(�(µx)/µ)'00(x)dx (6.38)

= sup
'2S(R):k'k11

Z

R
�(x)('00(x/µ)/µ2)dx

= sup
'2S(R):k'k11

Z

R
�(x)'00(·/µ)(x)dx = TV(2)(�), (6.39)

namely, that TV(2) is invariant with respect to this scaling.
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Part III

From Convex to Weakly-convex

Data-driven Regularization
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The previous part of this thesis was concerned with plug-and-play (PnP) meth-
ods that deploy convolutional neural network (CNN) denoisers as regularization
engines to solve image reconstruction tasks. Such methods perform implicit regu-
larization because there might not exist an underlying regularization function. In
this part, we propose to move from implicit to explicit regularization through the
learning of regularizers.

The frameworks introduced in this part share common features with the one
of Part II. First, they comply with the plug-and-play philosophy and build a reg-
ularization prior based on an image-denoising task and, second, they rely on our
learnable-spline toolbox. In Chapter 7, the learned regularizer is constrained to
be convex. While it can be shown that the reconstruction algorithm is a special
instance of PnP with a nonexpansive regularization operator, the interpretability
is greatly improved, and, remarkably, the reconstruction quality is also enhanced.
In Chapter 8, the convexity constraint is slightly relaxed to learn weakly convex
regularizers. We then propose a theoretical and experimental perspective to show
that such regularizers offer an excellent tradeoff between performance, number of
parameters, guarantees, and interpretability when compared to other data-driven
approaches.
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Chapter 7

A Neural-Network-Based

Convex Regularizer for Image

Reconstruction

The text of this chapter is adapted from the published article
A. Goujon, S. Neumayer, P. Bohra, S. Ducotterd and M. Unser “A neural-

network-based convex regularizer for inverse problems”, IEEE Transactions on
Computational Imaging, volume 9, page 781-795, August 2023.

Summary
The emergence of deep-learning-based methods to solve image-reconstruction prob-
lems has enabled a significant increase in quality. Unfortunately, these new methods
often lack reliability and explainability, and there is a growing interest in address-
ing these shortcomings while retaining the boost in performance. In this chapter,
we tackle this issue by revisiting regularizers which are the sum of convex-ridge
functions. The gradient of such regularizers is parameterized by a neural network
that has a single hidden layer with increasing and learnable activation functions.
This neural network is trained within a few minutes as a multistep Gaussian de-
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noiser. The numerical experiments for denoising, CT, and MRI reconstruction show
improvements over methods that offer similar reliability guarantees.

7.1 Introduction

7.1.1 Linear Inverse Problems
In natural science, it is common to indirectly probe an object of interest by collecting
a series of linear measurements [18]. After discretization, this can be formalized as

y = Hx + n, (7.1)

where H 2 Rm⇥d acts on the discrete representation x 2 Rd of the object and
models the physics of the process. The vector n 2 Rm accounts for additive noise
in the measurements. Given the measurement vector y 2 Rm, the task is then
to reconstruct x. Many medical-imaging applications fit into this class of inverse
problems [16], including magnetic resonance imaging (MRI) and X-ray computed
tomography (CT).

In addition to the presence of noise, which makes the reconstruction challenging
for ill-conditioned H, it is common to have only a few measurements (m < d),
resulting in underdetermined problems. In either case, (7.1) is ill-posed, and solving
it poses serious challenges. To overcome this issue, a reconstruction x⇤ is often
computed as

x⇤ 2 arg min
x2Rd

kHx� yk2
2

+ R(x), (7.2)

where R : Rd ! R is a convex regularizer that incorporates prior information about
x to counteract the ill-posedness of (7.1). Popular choices are the Tikhonov [19] or
total-variation (TV) [22, 30, 263] regularizers.

7.1.2 Deep-Learning Methods
Deep-learning-based methods have emerged in the past years for the inversion of
(7.1) in a variety of applications; see [286, 287] for an overview. Such approaches
offer a significantly improved quality of reconstruction as compared to classical
variational models of the form (7.2). Unfortunately, most of them are not well
understood and lack stability guarantees [57, 288].
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For end-to-end approaches, a pre-trained model outputs a reconstruction di-
rectly from the measurements y or from a low-quality reconstruction [34, 33, 289,
290, 183]. These approaches are often much faster than iterative solvers that com-
pute (7.2). Their downside is that they offer no control of the data-consistency
term kHx � yk2. In addition, they are less universal since a model is specifically
trained per H and per noise model. End-to-end learning can also lead to serious
stability issues [57].

A remedy for some of these issues is provided by the convolutional-neural-
network (CNN) variants of the plug-and-play (PnP) framework [89, 93, 90, 81].
PnP methods are discussed at length in Chapter 6, and we now simply give a
summary. The inspiration for PnP methods comes from the interpretation of the
proximal operator

prox
R
(y) = arg min

x2Rd

1

2
ky � xk2

2
+ R(x) (7.3)

used in many iterative algorithms for the computation of (7.2) as a denoiser. The
idea is to replace (7.3) with a more powerful CNN-based denoiser D. However, D
is usually not a proper proximal operator, and the convergence of the PnP iterates
is not guaranteed. It was shown in [81] that, for an invertible H, convergence can
be ensured by constraining the Lipschitz constant of the residual operator (Id�D),
where Id is the identity operator. For a noninvertible H, this constraint, however,
does not suffice. Instead, one can constrain D to be an averaged operator which,
unfortunately, degrades the performance [188]. Hence, in practice, one usually
only constrains (Id �D), even if the framework is deployed for noninvertible H
[81, 248, 83]. While this results in good performances, it leaves a gap between theory
and implementation. Following a different route, one can also ensure convergence
with relaxed algorithms [94, 102]. There, D is replaced with the relaxed version
�D + (1 � �)Id, � 2 (0, 1]. At each iteration, � is decreased if some condition is
violated. Unfortunately, without particular constraints on D, the evolution of � is
unpredictable. Hence, the associated fixed-point equation for the reconstruction is
unknown a priori, which reduces the reliability of the method.

Another data-driven approach arising from (7.2) is the learning of R instead of
prox

R
. Pioneering work in this direction includes the fields of experts [291, 292, 293],

where R is parameterized by an interpretable and shallow model, namely, a sum
of nonlinear one-dimensional functions composed with convolutional filters. Some
recent approaches rely on more sophisticated architectures with much deeper CNNs,
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such as with the adversarial regularization (AR) [294, 295], NETT [296], and the
total-deep-variation frameworks [297], or with regularizers for which a proximal
operator exists [272, 102, 76, 298]. There exists a variety of strategies to learn
R, including bilevel optimization [292], unrolling [297, 293], gradient-step denoising
[272, 102], and adversarial training [294, 295]. When R is convex, a global minimizer
of (7.2) can be found under mild assumptions. As the relaxation of the convexity
constraint usually boosts the performance [292, 299], it is consequently the most
popular approach. Unfortunately, one can then expect convergence only to a critical
point.

7.1.3 The Quest for Trustworthiness
In many sensitive applications such as medical imaging, there is a growing interest
to improve the trustworthiness of the reconstruction methods. The available frame-
works used to learn a (pseudo) proximal operator or regularizer result in a variety
of neural architectures that differ in the importance attributed to the following
competing properties:

• good reconstruction quality;

• independence on H, noise model, and image domain;

• convergence guarantees and properties of the fixed points of the reconstruction
algorithm;

• interpretability, which can include the existence of an explicit cost or a mini-
mal understanding of what the regularizer is promoting.

To foster the last two properties, one usually has to impose structural constraints
on the learned regularizer/proximal operator. For instance, within the PnP frame-
work, there have been some recent efforts to improve the expressivity of averaged
denoisers, either with strict Lipschitz constraints on the model, [188, 300] or with
regularization of its Lipchitz constant during training [75, 76] which, in turn, im-
proves the convergence properties of the reconstruction algorithm. In the same
vein, the authors of [285, 301] proposed to learn a convex R parameterized by a
deep input convex neural network (ICNN)[302] and to train it within an adversarial
framework as in [294].
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In the present chapter, we prioritize the reliability and interpretability of the
method. Thus, we revisit the family of learnable convex-ridge regularizers [291,
292, 299, 293, 303]

R : x 7!
X

i

 i(w
T

i
x), (7.4)

where the profile functions  i : R ! R are convex, and wi 2 Rd are learnable
weights. A popular way to learn R is to solve a non-convex bilevel optimization
task [304, 305] for a given inverse problem. It was reported in [292] that these
learned regularizers outperform the popular TV regularizer for image reconstruc-
tion. As bilevel optimization is computationally quite intensive, it was proposed in
[299] to unroll the forward-backward splitting (FBS) algorithm applied to (7.2) with
a regularizer of the form (7.4). Accordingly, R is optimized so that a predefined
number t of iterations of the FBS algorithm yields a good reconstruction. Unfortu-
nately, on a denoising task with learnable profiles  i, the proposed approach does
not match the performance of the bilevel optimization.

To deal with these shortcomings, we introduce an efficient framework1 to learn
some R of the form (7.4) with free-form convex profiles. We train this R on a
generic denoising task and then plug it into (7.2). This yields a generic recon-
struction framework that is applicable to a variety of inverse problems. The main
contributions of the present chapter are as follows.

• Interpretable and Expressive Model: We use a one-hidden-layer neural
network (NN) with learnable increasing linear-spline activation functions to
parameterize rR. We prove that this yields the maximal expressivity in the
generic setting (7.4).

• Embedding of the Constraints into the Forward Pass: The structural
constraints on rR are embedded into the forward pass during the training.
This includes an efficient procedure to enforce the convexity of the profiles,
and the computation of a bound on the Lipschitz constant of rR, which is
required for our training procedure.

• Ultra-Fast Training: The regularizer R is learned via the training of a
multi-gradient-step denoiser. Empirically, we observe that a few gradient

1
All experiments can be reproduced with the code published at https://github.com/axgoujon/

convex_ridge_regularizers

https://github.com/axgoujon/convex_ridge_regularizers
https://github.com/axgoujon/convex_ridge_regularizers
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steps suffice to learn a best-performing R. This leads to training within a few
minutes.

• Best Reconstruction Quality in a Constrained Scenario: We show that
our framework outperforms recent deep-learning-based approaches with com-
parable guarantees and constraints in two popular medical imaging modalities
(CT and MRI). This includes the PnP method with averaged denoisers and
a variational framework with a learnable deep convex regularizer. This even
holds for a strong mismatch in the noise level used for the training and the
one found in the inverse problem.

7.2 Architecture of the Regularizer
In this section, we introduce the notions required to define the convex-ridge regu-
larizer neural network (CRR-NN).

7.2.1 General Setting
Our goal is to learn a regularizer R for the variational problem (7.2) that performs
well across a variety of ill-posed problems. Similar to the PnP framework, we view
the denoising task

x⇤ = arg min
x2Rd

1

2
kx� yk2

2
+ �R(x) (7.5)

as the underlying base problem for training, where y is the noisy image. Since we
prioritize interpretability and reliability, we choose the simple convex-ridge regular-
izer (7.4) and use its convolutional form. More precisely, the regularity of an image
x is measured as

R : x 7!
NCX

i=1

X

k2Z2

 i

�
(hi ⇤ x)[k]

�
, (7.6)

where hi is the impulse response of a 2D convolutional filter, (hi ⇤x)[k] is the value
of the k-th pixel of the filtered image hi ⇤ x, and NC is the number of channels.
In the sequel, we mainly view the (finite-size) image x as the (finite-dimensional)
vector x 2 Rd, and since (7.6) is a special case of (7.4), we henceforth use the
generic form (7.4) to simplify the notations. We use the notation R✓ to express
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the dependence of R on the aggregated set of learnable parameters ✓, which will
be specified when necessary. From now on, we assume that the convex profiles  i

have Lipschitz continuous derivatives, i.e.  i 2 C1,1(R).

7.2.2 Gradient-Step Neural Network

Given the assumptions on R✓, the denoised image in (7.5) can be interpreted as
the unique fixed point of TR✓,�,↵ : Rd ! Rd defined by

TR✓,�,↵(x) = x� ↵
�
(x� y) + �rR✓(x)

�
. (7.7)

Iterations of the operator (7.7) implement a gradient descent with stepsize ↵, which
converges if ↵ 2 (0, 2/(1 + �L✓)), where L✓ = Lip(rR✓) is the Lipschitz constant
of rR✓. In the sequel, we always enforce this constraint on ↵. The gradient of the
generic convex-ridge expression (7.4) is given by

rR✓(x) = WT
�(Wx), (7.8)

where W = [w1 · · ·wp]T 2 Rp⇥d and � is a pointwise activation function whose
components (�i =  0

i
)p

i=1
are Lipschitz continuous and increasing. In our imple-

mentation, the activation functions �i are shared within each channel of W. The
resulting gradient-step operator

TR✓,�,↵(x) = (1� ↵)x + ↵
�
y � �WT

�(Wx)
�

(7.9)

corresponds to a one-hidden-layer convolutional NN with a bias and a skip connec-
tion. We refer to it as a gradient-step NN. The training of a gradient-step NN will
give a CRR-NN.

7.3 Characterization of Good Profile Functions

In this section, we provide theoretical results to motivate our choice of the profiles  i

or, equivalently, of their derivatives �i =  0
i
. This will lead us to the implementation

presented in Section 7.4.
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7.3.1 Existence of Minimizers and Stability of the Recon-
struction

The convexity of R✓ is not sufficient to ensure that the solution set in (7.2) is
nonempty for a noninvertible forward matrix H. With convex-ridge regularizers,
this shortcoming can be addressed under a mild condition on the functions  i

(Proposition 7.1). The implications for our implementation are detailed in Sec-
tion 7.4.2.

Proposition 7.1. Let H 2 Rm⇥d and  i : R! R, i = 1, . . . , p, be convex functions.
If arg min

t2R  i(t) 6= ; for all i = 1, . . . , p, then

; 6= arg min
x2Rd

1

2
kHx� yk2

2
+

pX

i=1

 i(w
T

i
x). (7.10)

Proof. Set Si = arg min
t2R  i(t). Then, each ridge  i(wT

i
·) partitions Rd into the

three (possibly empty) convex polytopes

• ⌦i

0
= {x 2 Rd : wT

i
x 2 Si};

• ⌦i

1
= {x 2 Rd : wT

i
x  inf Si};

• ⌦i

2
= {x 2 Rd : wT

i
x � sup Si}.

Based on these, we partition Rd into finitely many polytopes of the form
T

p

i=1
⌦i

mi
,

where mi 2 {0, 1, 2}. The infimum of the objective in (7.10) must be attained in
at least one of these polytopes, say, P =

T
p

i=1
⌦i

mi
.

Now, we pick a minimizing sequence (xk)k2N ⇢ P . Let M be the matrix whose
rows are the rows of H and the wT

i
with mi 6= 0. Due to the coercivity of k · k2

2
,

we get that Hxk remains bounded. As the  i are convex, they are coercive on the
intervals (�1, inf Si] and [sup Si, +1) and, hence, wT

i
xk also remains bounded.

Therefore, the sequence (Mxk)k2N is bounded and we can drop to a convergent
subsequence with limit u 2 ran(M). The associated set

Q = {x 2 Rd : Mx = u} = {M†u} + ker(M) (7.11)

is a closed polytope. It holds that

dist(xk, Q) = dist
�
M†Mxk + Pker(M)(xk), Q

�

 dist(M†Mxk,M†u)! 0 (7.12)



7.3 Characterization of Good Profile Functions 227

as k ! +1 and, thus, that dist(P, Q) = 0. The distance of the closed polytopes P
and Q is 0 if and only if P \Q 6= ; [306, Theorem 1]. Note that  i(wT

i
·) is constant

on P if mi = 0. Hence, any x 2 P \Q is a minimizer of (7.10).

The proof of Proposition 7.1 directly exploits the properties of ridge functions.
Whether it is possible to extend the result to more complex or even generic convex
regularizers is not known to the authors. The assumption in Proposition 7.1 is
rather weak as neither the cost function nor the one-dimensional profiles  i need
to be coercive. The existence of a solution for Problem (7.2) is a key step towards
the stability of the reconstruction map in the measurement domain, which is given
in Proposition 7.2.

Proposition 7.2. Let H 2 Rm⇥d and  i : R ! R, i = 1, . . . , p, be convex, con-
tinuously differentiable functions with arg min

t2R  i(t) 6= ;. For any y1,y2 2 Rm

let

xq 2 arg min
x2Rd

1

2
kHx� yqk22 +

pX

i=1

 i(w
T

i
x) (7.13)

with q = 1, 2 be the corresponding reconstructions. Then,

kHx1 �Hx2k2  ky1 � y2k2. (7.14)

Proof. Proposition 7.1 guarantees the existence of xq. Since the objective in (7.10)
is smooth, it holds that HT (Hxq � yq) + rR(xq) = 0. From this, we infer that

HTH(x1 � x2) + (rR(x1)�rR(x2)) = HT (y1 � y2). (7.15)

Taking the inner product with (x1 � x2) on both sides gives

kHx1 �Hx2k22 + (x1 � x2)
T (rR(x1)�rR(x2))

=(H(x1 � x2))
T (y1 � y2). (7.16)

To conclude, we use the fact that the gradient of a convex map is monotone, i.e.
(x1 � x2)T (rR(x1) �rR(x2)) � 0, and apply the Cauchy-Schwarz inequality to
estimate

(H(x1 � x2))
T (y1 � y2)  kHx1 �Hx2kky1 � y2k. (7.17)
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7.3.2 Expressivity of Profile Functions
The gradient-step NN TR✓,�,↵ introduced in (7.9) is the key component of our
training procedure. Here, we investigate its expressivity depending on the choice
of the activation functions �i used to parametrize rR✓.

Let C0,1

" (R) be the set of scalar Lipschitz-continuous and increasing functions
on R, and let LSm

" (R) be the subset of increasing linear splines with at most m
knots. We also define

E(Rd) =
�
WT

�(W·) : W 2 Rp⇥d,�i 2 C0,1

" (R)
 

(7.18)

and, further, for any ⌦ ⇢ Rd,

E(⌦) =
�
f |

⌦
: f 2 E(Rd)

 
. (7.19)

In the following, we set kfkC(⌦) := supx2⌦
kf(x)k and kfkC1(⌦) := supx2⌦

kf(x)k+
supx2⌦

kJf (x)k.
The popular ReLU activation function is Lipschitz-continuous and increasing.

Unfortunately, it comes with limited expressivity, as shown in Proposition 7.3.

Proposition 7.3. Let ⌦ ⇢ Rd be compact with a nonempty interior. Then, the set
�
WT ReLU(W ·�b) : W 2 Rp⇥d,b 2 Rp

 
(7.20)

is not dense with respect to k · kC(⌦) in E(⌦).

Proof. Since ⌦ has a nonempty interior, there exists v 2 Rd with kvk2 = 1, a 2 R,
and � > 0 such that for lv : R! Rd with lv(t) = tv, it holds that lv((a��, a+�)) ⇢
⌦. Now, we prove the statement by contradiction. If the set (7.20) is dense in E(⌦),
then the set

�
(Wv)T ReLU(Wv ·�b) : W 2 Rp⇥d,b 2 Rp

 

=

⇢ pX

i=1

wiReLU(wi ·�bi) : wi, bi 2 R
�

(7.21)

is dense in E((a� �, a + �)). Note that all functions f in (7.20) can be rewritten in
the form

f(x) =
p1X

i=1

ReLU(wix� bi) +
p2X

i=1

(�ReLU(�w̃ix� b̃i)), (7.22)
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where wi, w̃i 2 R+, bi, b̃i 2 R, and p1 + p2 = p. Every summand in this decomposi-
tion is an increasing function. For the continuous and increasing function

g : t 7! ReLU(t� a + �/2)� ReLU(t� a� �/2), (7.23)

the density implies that there exists f of the form (7.22) with kg�fkC((a��,a+�)) 
�/16. The fact that g(a+�/2) = g(a+�) implies that (f(a+�)�f(a+�/2))  �/8.
In addition, it holds that

f(a + �)� f(a + �/2)

�
p1X

i=1

ReLU
�
wi(a + �)� bi

�
� ReLU

�
wi(a + �/2)� bi

�

�
X

{i:biwi(a+�/2)}

wi(a + � � a� �/2)

=
X

{i:biwi(a+�/2)}

wi�/2. (7.24)

Hence, we conclude that
P

{i:biwi(a+�/2)} wi  1/4. Similarly, we can show thatP
{i:b̃i�w̃i(�/2�a)} w̃i  1/4. Using these two estimates, we get that

7

8
� = g(a + �/2)� g(a� �/2)� 1

8
�

 f(a + �/2)� f(a� �/2)


X

{i:biwi(a+�/2)}

�wi +
X

{i:b̃i�w̃i(�/2�a)}

�w̃i 
�

2
, (7.25)

which yields a contradiction. Hence, the set (7.20) cannot be dense in E(⌦).

Remark 7.1. Any increasing linear spline s with one knot is fully defined by the
knot position t0 and the slope on its two linear regions (s� and s+). This can be ex-
pressed as s = uT ReLU(u(t� t0)) with u = (

p
s+,�ps�). Hence, among one-knot

spline activation functions, the ReLU already achieves the maximal representation
power for CRR-NNs. We infer that increasing PReLU and leaky ReLU induce the
same limitations as the ReLU when plugged into CRR-NNs.
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In contrast, with Proposition 7.4, the set E(⌦) can be approximated using in-
creasing linear-spline activation functions.

Proposition 7.4. Let ⌦ ⇢ Rd be compact and m � 2. Then, the set
�
WT

�(W·) : W 2 Rp⇥d,�i 2 LSm

" (R)
 

(7.26)

is dense with respect to k · kC(⌦) in E(⌦).

Proof. First, we consider the case d = 1. By rescaling and shifting, we can assume
that S ⇢ [0, 1] without loss of generality. Let f 2 C0,1

" ([0, 1]), and 'n be the linear-
spline interpolator of f at locations 0, 1/2n, . . . , (1� 1/2n), 1. Since f is increasing
and 'n is piecewise linear, 'n is also increasing. Further, we get that

kf � 'nkC([0,1])  max
k2{1,...,2n}

f(k/2n)� f((k � 1)/2n). (7.27)

Continuous functions on compact sets are uniformly continuous, which directly
implies that kf �'nkC([0,1]) ! 0. Now, we represent 'n as a linear combination of
increasing linear splines with 2 knots

'n(x) = f(0) +
2

nX

k=1

ak,ng
�
2n ·�(k � 1)

�
, (7.28)

where ak,n = (f(k/2n)� f((k � 1)/2n)) and g is given by

g(x) =

8
><

>:

0, x  0

x, 0 < x  1

1, otherwise.
(7.29)

Finally, (7.28) can be recast as 'n(x) = wT

n
�n(xwn), where each �n,i is an in-

creasing linear spline with 2 knots and w 2 R2
n

. This concludes the proof for
d = 1.

Now, we extend this result to any d 2 N+. Let � : Rd ! Rd be given by x 7!
WT�(Wx) with components �i 2 C0

"(R). Let Si = {wT

i
x : x 2 ⌦}, where wi 2 Rd

is the ith row of W. Using the result for d = 1, each �i can be approximated
in C(Si) by a sequence of functions (uT

n,i
'

n
(un,i·))n2N, where '

n
has components
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'n,i 2 LS2

"(R) and un,i are vectors with a size that does not dependend on i.
Further, the un,i can be chosen such that the jth component is only nonzero for
a single i. Let Un be the matrix whose columns are un,i. Then, we directly have
that

lim
n!1

max
x2{y2Rd:yi2Si}

��UT

n
'

n
(Unx)� �(x)

��
2

= 0. (7.30)

Hence, the sequence of functions ((UnW)T
'

n
(UnW·))n2N converges to� in C(⌦).

This concludes the proof.

In the end, Propositions 7.3 and 7.4 imply that using linear-spline activation
functions instead of the ReLU for the �i enables us to approximate more convex
regularizers R✓.

Corollary 7.1. Let ⌦ ⇢ Rd be convex and compact with a nonempty interior.
Then, the regularizers of the form (7.4) with Jacobians of the form (7.26) are dense
in

⇢ pX

i=1

 i(w
T

i
x) :  i 2 C1,1(R) convex,wi 2 Rd

�
(7.31)

with respect to k · kC1(⌦). The density does not hold if we only consider regularizers
with Jacobians of the form (7.20).

Proof. Let R be in (7.31). Consequently, its Jacobian is in E(⌦). Due to Proposi-
tion 7.3, the regularizers with Jacobians of the form (7.20) cannot be dense with
respect to k·kC1(⌦). Meanwhile, by Proposition 7.4, we can choose x0 2 ⌦ and corre-
sponding regularizers Rn of the form (7.4) with JRn

2 (7.26), kJRn
�JRkC(⌦) ! 0

as n ! 1, and Rn(x0) = R(x0). Now, the mean-value theorem readily implies
that kRn �RkC1(⌦) ! 0 as n!1.

Motivated by these results, we propose to parameterize the �i with learnable
linear-spline activation functions. This results in profiles  i that are splines of
degree 2, being piecewise polynomials of degree 2 with continuous derivatives.
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7.4 Implementation

7.4.1 Training a Multi-Gradient-Step Denoiser
Let {xm}M

m=1
be a set of clean images and let {ym}M

m=1
= {xm + nm}M

m=1
be

their noisy versions, where nm is the noise realisation. Given a loss function L, the
natural procedure to learn the parameters of R✓ based on (7.5) is to solve

✓
⇤
t
,�⇤

t
2 arg min

✓,�

MX

m=1

L
�
T

t

R✓,�,↵
(ym),xm

�
(7.32)

for the limiting case t = 1 and an admissible stepsize ↵. Here, T t

R✓,�,↵
denotes

the t-fold composition of the gradient-step NN given in (7.9). In principle, one can
optimize the training problem (7.32) with t =1. This forms a bilevel optimization
problem that can be handled with implicit differentiation techniques [292, 307,
308, 78]. However, it turns out that it is unnecessary to fully compute the fixed-
point T1

R✓,�,↵
(ym) to learn R✓ in our constrained setting. Instead, we approximate

T
1
R✓,�,↵

(ym) in a finite number of steps. This specifies the t-step denoiser NN
T

t

R✓,�,↵
, which is trained such that

T
t

R✓,�,↵
(ym) ' xm (7.33)

for m = 1, . . . , M . This corresponds to a partial minimization of (7.5) with initial
guess ym or, equivalently, as the unfolding of the gradient-descent algorithm for
t iterations with shared parameters across iterations [309, 104]. For small t, this
yields a fast-to-evaluate denoiser. Since it is not necessarily a proximal operator,
its interpretability is, however, limited.

Once the gradient-step NN is trained, we can plug the corresponding R✓ into
(7.5), and fully solve the optimization problem. This yields an interpretable prox-
imal denoiser. In practice, turning a t-step denoiser into a proximal one requires
the adjustment of � and the addition of a scaling parameter, as described in Sec-
tion 7.4.4. Our numerical experiments in Section 7.6.1 indicate that the number of
steps t used for training the multi-gradient-step denoiser has little influence on the
test performances of both the t-step and proximal denoisers. Hence, training the
model within a few minutes is possible. Note that our method bears some resem-
blance with the variational networks (VN) proposed in [299], but there are some
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fundamental differences. While the model used in [299] also involves a sum of con-
vex ridges with learnable profiles, these are parameterized by radial-basis functions
and only the last step of the gradient descent is included in the forward pass. The
authors of [299] observed that an increase in t deters the denoising performances,
which is not the case for our architecture. More differences are outlined in Section
7.4.2.

7.4.2 Implementation of the Constraints

Our learning of the t-step denoiser is constrained as follows.

(i) The activation functions �i must be increasing (convexity constraint on  i).

(ii) The activation functions �i must take the value 0 somewhere (existence con-
straint).

(iii) The stepsize in (7.9) should satisfy ↵ 2 (0, 2/(1+�L✓)) (convergent gradient-
descent).

Since the methods to enforce these constraints can have a major impact on the final
performance, they must be designed carefully.

Monotonic Splines Here, we address Constraints (i) and (ii) simultaneously.
Similar to [235, 188], we use learnable linear splines �ci : R ! R with (M + 1)
uniform knots ⌫m = (m � M/2)�, m = 0, . . . , M , where � is the spacing of
the knots. For simplicity, we assume that M is even. The learnable parameter
ci = (ci

m
)M

m=0
2 RM+1 defines the value �ci(⌫m) = ci

m
of �ci at the knots. To

fully characterize �ci , we extend it by the constant value ci

0
on (�1, ⌫0] and ci

M

on [⌫M , +1). This choice results in a linear extension for the corresponding indef-
inite integrals that appear for the regularizer R✓ in (7.5). Further details on the
implementation of learnable linear splines can be found in [235].

Let D 2 RM⇥(M+1) be the one-dimensional finite-difference matrix with
(Dci)m = ci

m+1
� ci

m
for m = 0, . . . , (M � 1). As �ci is piecewise-linear, it holds

that
�ci is increasing, Dci � 0. (7.34)
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In order to optimize over {�c : Dc � 0}, we reparameterize the linear splines as
�P "(ci), where

P " = CD†ReLU(D ·) (7.35)

is a nonlinear projection operator onto the feasible set. There, D† denotes the
Moore-Penrose inverse of D and C = (IdM+1 � 1M+1eT

M/2+1
) shifts the output

such that the (M/2+1)th element is zero. In effect, this projection simply preserves
the nonnegative finite differences between entries in ci and sets the negative ones
to zero. As the associated profiles  i are convex and satisfy  0

i
(0) = �i(0) = 0,

Proposition 7.1 guarantees the existence of a solution for Problem (7.2).
The proposed parameterization �P "(ci) of the splines has the advantage of using

unconstrained trainable parameters ci. The gradient of the objective in (7.32) with
respect to ci directly takes into account the constraint via P ". This approach
differs significantly from the more standard projected gradient descent—as done in
[299] to learn convex profiles—where the ci would be projected onto {ci : Dci � 0}
after each gradient step. While the latter routine is efficient for convex problems,
we found it to perform poorly for the non-convex problem (7.32). For an efficient
forward and backward pass with auto-differentiation, P " is implemented with the
cumsum function instead of an explicit construction of the matrix D†, and the
computational overhead is very small.

Sparsity-Promoting Regularization The use of learnable activation functions
can lead to overfitting and can weaken the generalizability to arbitrary operators
H. Hence, the training procedure ought to promote simple linear splines. Here, it
is natural to promote the better-performing splines with the fewest knots. This is
achieved by penalizing the second-order total variation kLP "(ci)k1 of each spline
�P "(ci)

, where L 2 R(M�1)⇥(M+1) is the second-order finite-difference matrix. The
final training loss then reads

MX

m=1

L
�
T

t

R✓,�,↵
(ym),xm

�
+ ⌘

pX

i=1

kLP "(ci)k1, (7.36)

where ⌘ 2 R+ allows one to tune the strength of the regularization. We refer to
[215] for more theoretical insights into second-order total-variation regularization
and to [235] for experimental evidence of its relevance for machine learning.
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Convergent Gradient Steps Constraint (iii) guarantees that the t-fold com-
position of the gradient-step NN T

t

R✓,�,↵
computes the actual minimizer of (7.5)

for t ! 1. Therefore, it should be enforced in any sensible training method. In
addition, it brings stability to the training. To fully exploit the model capacity,
even for small t, we need a precise upper bound for Lip(rR✓). The estimate that
we provide in Proposition 7.5 is sharper than the classical bound derived from the
sub-multiplicativity of the Lipschitz constant for compositional models. It is easily
computable as well.

Proposition 7.5. Let L✓ denote the Lipschitz constant of rR✓(x) = WT
�(Wx)

with W 2 Rp⇥d and �i 2 C0,1

" (R).
With the notation ⌃1 = diag(k�0

1
k1, . . . , k�0

p
k1), it holds that

L✓  kWT⌃1Wk = k
p
⌃1Wk2, (7.37)

which is tighter than the naive bound

L✓  L�kWk2. (7.38)

Proof. The bound (7.38) is a standard result for compositional models. Next, we
note that the Hessian of R✓ reads

HR✓ (x) = WT⌃(Wx)W, (7.39)

where ⌃(z) = diag(�0
1
(z1), . . . ,�0

p
(zp)). In addition, L✓  supx2Rd kHR✓ (x)k.

Since the functions �i are increasing, we have for every x 2 Rp that
⌃1 �⌃(Wx) ⌫ 0 and, consequently,

WT
�
⌃1 �⌃(Wx)

�
W ⌫ 0. (7.40)

Using the Courant-Fischer theorem, we now infer that the largest eigenvalue of
WT⌃1W is greater than that of WT⌃(Wx)W.

The bounds (7.37) and (7.38)are in agreement when the activation functions
are identical, which is typically not the case in our framework. For the 14 NNs
trained in Section 7.6, we found that the improved bound (7.37) was on average 3.2
times smaller than (7.38). As (7.37) depends on the parameters of the model, it is
critical to embed the computation into the forward pass. Otherwise, the training
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gets unstable. This is done by first estimating the normalized eigenvector u corre-
sponding to the largest eigenvalue of WT⌃1W via the power-iteration method in a
non-differentiable way, for instance under the torch.no_grad() context-manager.
Then, we directly plug the estimate L✓ ' kWT⌃1Wuk in our model and hence em-
bed it in the forward pass. This approach is inspired by the spectral-normalization
technique proposed in [80], which is a popular and efficient way to enforce Lips-
chitz constraints on fully connected linear layers. Note that a similar simplification
is also proposed and studied in the context of deep equilibrium models [310]. In
practice, the estimate u is stored so that it can be used as a warm start for the
next computation of L✓.

7.4.3 From Gradients to Potentials
To recover the regularizer R from its gradient rR, one has to determine the profiles
 i, which satisfy  0

i
= �P "(ci). Hence, each  i is a piecewise polynomial of degree

2 with continuous derivatives, i.e. a spline of degree two. These can be expressed
as a weighted sum of shifts of the rescaled causal B-spline of degree 2 [125], more
precisely as

 i =
X

k2Z
di

k
�2

+

✓
·� k

�

◆
. (7.41)

To determine the coefficients (di

k
)k2Z, we use the fact that (�2

+
)0(k) = (�1,k � �2,k),

where � is the Kronecker delta, see [125] for details. Hence, we obtain that di

k
�

di

k�1
= (P "(ci))k, which defines (di

k
)k2Z up to a constant. This constant can be

set arbitrarily as it does not affect rR. Due to the finite support of �2

+
, one can

efficiently evaluate  i and then R.

7.4.4 Boosting the Universality of the Regularizer
The learned R✓ depends on the training task (denoising) and on the noise level.
To solve a generic inverse problem, in addition to the regularization strength �, we
propose to incorporate a tunable scaling parameter µ 2 R+ and to compute

arg min
x2Rd

1

2
kHx� yk2

2
+ �/µR✓(µx). (7.42)

While the scaling parameter is irrelevant for homogeneous regularizers such as the
Tikhonov and TV, it is known to boost the performance within the PnP framework
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Algorithm 1 FISTA [28] to solve (7.42)
Input: x0 2 Rd, y 2 Rm, � � 0, µ > 0
Set k = 0, z0 = x0, ↵ = 1/(µ�Lip(rR) + kHk2), t0 = 1
while tolerance not reached do

xk+1 = (zk � ↵(HT (Hzk � y) + �rR(µzk)))+
tk+1 = (1 +

p
4t2

k
+ 1)/2

zk+1 = xk+1 + tk�1

tk+1
(xk+1 � xk)

k  k + 1
Output: xk

when applied to the input of the denoiser [269]. During the training of t-step
denoisers, we also learn a scaling parameter µ by letting the gradient step NN (7.7)
become

TR✓,�,µ,↵(x) = x� ↵
�
(x� y) + �rR✓(µx)

�
, (7.43)

with now ↵ < 2/(1 + �µLip(rR✓)).

7.4.5 Reconstruction Algorithm
The objective in (7.42) is smooth with Lipschitz-continuous gradients. Hence, a re-
construction can be computed through gradient-based methods. We found the fast
iterative shrinkage-thresholding algorithm (FISTA, Algorithm 1) to be well-suited
to the problem while it also allows us to enforce the positivity of the reconstruc-
tion. Other efficient algorithms for CRR-NNs include the adaptive gradient descent
(AdaGD) [311] and its proximal extension [312]; both benefit from a stepsize based
on an estimate of the local Lipschitz constant of rR instead of a more conservative
global one.

7.5 Connections to Deep-Learning Approaches
Our proposed CRR-NNs have a single nonlinear layer, which is rather unusual in
the era of deep learning. To further explore their theoretical properties, we briefly
discuss two successful deep-learning methods, namely, the PnP and the explicit
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design of convex regularizers, and state their most stable and interpretable versions.
This will clarify the notions of strict convergence, interpretability, and universality.
All the established comparisons are synthesized in Table 7.1.

Table 7.1: Properties of different regularization frameworks.

Explicit Provably Universal Shallow Smooth
cost convergent reg.

TV 3 3 3 3 7
ACR 3 3 7 7 7
DnICNN 3 3 3 7 3
PnP-�CNN 7 3 3 7 -
PnP-DnCNN 7 7 3 7 -
CRR-NN 3 3 3 3 3

7.5.1 Plug-and-Play and Averaged Denoisers
Convergent Plug-and-Play For a more general discussion on convergent PnP
methods, see the introduction of Chapter 6. The training procedure proposed for
CRR-NNs leads to a convex regularizer R✓, whose proximal operator (7.5) is a good
denoiser. Conversely, the proximal operator can be replaced by a powerful denoiser
D in proximal algorithms, which is referred to as PnP. In the PnP-FBS algorithm
derived from (7.2) [264, 28], the reconstruction is carried out iteratively via

xk+1 = D
�
xk � ↵HT (Hxk � y)

�
, (7.44)

where ↵ is the stepsize and D : Rd ! Rd is a generic denoiser. A standard set of
sufficient conditions2 to guarantee convergence of the iterations (7.44) is that

(i) D is averaged, namely D = �N+(1��)Id where � 2 (0, 1) and N : Rn ! Rn

is a nonexpansive mapping;

(ii) ↵ 2 [0, 2/kHk2);
2
Here, H can be noninvertible; otherwise, weaker conditions exist [81].
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(iii) the update operator in (7.44) has a fixed point.

In general, Condition (i) is not sufficient to ensure that D is the proximal
operator of some convex regularizer R. Hence, its interpretability is still limited.
Further, Condition (ii) implies that x 7!

�
x� ↵HT (Hx� y)

�
is averaged. Hence,

as averagedness is preserved through composition, the iterates are updated by the
application of an averaged operator (see [83] for details). With Condition (iii),
the convergence of the iterations (7.44) follows from Opial’s convergence theorem.
Beyond convergence, it is known that averaged denoisers with �  1/2 yield a
stable reconstruction map in the measurement domain [313], in the same sense as
given in Proposition 7.2 for CRR-NNs.

The nonexpansiveness of D is also commonly assumed to prove the convergence
of other PnP schemes. This includes, for instance, gradient-based PnP [78]. There,
the gradient rR of the regularizer used in reconstruction algorithms is replaced
with a learned monotone operator F = I�D. The operator D can be interpreted
as a denoiser and is assumed to be nonexpansive to prove convergence.

Constraint vs Performance As discussed in [93, 76], the performance of the
denoiser D is in direct competition with its averagedness. A simple illustration of
this issue is provided in Figure 7.1. Unsurprisingly, Condition (i) is not met by any
learned state-of-the-art denoiser, and it is usually also relaxed in the PnP literature.

Figure 7.1: The distance between the two noisy images (x1 + ✏1) and (x2 + ✏2)
can be smaller than that between their clean versions x1 and x2. This limits the
performance of a nonexpansive denoiser D since kD(x1 + ✏1) � D(x2 + ✏2)k 
kx1 + ✏1 � (x2 + ✏2)k < kx1 � x2k in the scenario depicted.

For instance, it is common to use non-1-Lipschitz learning modules, such as
batch normalization [81], or to only constrain the residual (Id�D) to be nonexpan-
sive, which enables one to train a nonexpansive NN in a residual way [81, 101, 83],
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with the caveat that Lip(D) can be as large as 2. Another recent approach consists
of penalizing during training either the norm of the Jacobian of D at a finite set of
locations [75, 76] or of another local estimate of the Lipschitz constant [77, 78]. In-
terestingly, even slightly relaxed frameworks usually yield significant improvements
in the reconstruction quality. However, they do not provide convergence guarantees
for ill-posed inverse problems, which is problematic for sensitive applications such
as biomedical imaging.

Averaged Deep NNs To leverage the success of deep learning, N is typically
chosen as a deep CNN of the form3

N = CK � � � · · · �C2 � � �C1, (7.45)

where Ck are learnable convolutional layers and � is the activation function [80,
81, 188]. To meet Condition (i), N must be nonexpansive, which one usually
achieves by constraining Ck and � to be nonexpansive. This is predicated on the
sub-multiplicativity of the Lipschitz constant with respect to composition; as in
Lip(f �g)  Lip(f)Lip(g). Unfortunately, this bound is not sharp and may grossly
overestimate Lip(f � g). For deep models, this overestimation aggravates since the
bound is used sequentially. Therefore, for averaged NNs, the benefit of depth is
unclear because the gain of expressivity brought by the many layers is reduced by
a potentially very pessimistic Lipschitz-constant estimate. Put differently, these
CNNs can easily learn the zero function while they struggle to generate mappings
with a Lipschitz constant close to one. For the same reason, the learning process
is also prone to vanishing gradients in this constrained setting. Under Lipschitz
constraints, the zero-gradient region of the popular ReLU activation function causes
provable limitations [251, 82, 210]. Some of these can be resolved by the use of other
activation functions instead, including PReLU, GroupSort (GS) and learnable linear
splines (LLS), see Part II for a detailed discussion.

In this chapter, CRR-NNs are compared against two variants of PnP.

• PnP-DnCNN corresponds to the popular implementation given in [81].
The denoiser is a DnCNN with 1-Lipschitz linear layers (the constraints

3
The benefit of standard skip connections combined with the preservation of the nonexpan-

siveness of the NN is unclear.
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are therefore enforced on the residual map only) and unconstrained batch-
normalization modules. Hence this method has no convergence and stability
guarantees, especially for ill-posed inverse problems.

• PnP-�CNN corresponds to PnP equipped with a provably averaged de-
noiser. This method comes with similar guarantees as CRR-NNs but less
interpretability. It is included to convey the message that the standard way
of enforcing Lipschitz constraints affects expressivity as reported for instance
in [314], and even makes it hard to improve upon TV. With that in mind,
CRR-NNs provide a way to overcome this limitation. We shall include aver-
aged denoisers equipped with various activation functions, including ReLU,
PReLU, GroupSort (GS), and learnable linear splines (LLS) as introduced
and discussed in Chapters 5 and 6.

Construction of Averaged Denoisers from CRR-NNs The training of CRR-
NNs offers two ways to build averaged denoisers. Since proximal operators are half-
averaged, we directly get that the proximal denoiser (7.5) is an averaged operator.
For the t-step denoiser, the following holds.

Proposition 7.6. The t-step denoiser (7.33) is averaged for ↵ 2 [0, 2/(2 + �L✓)]
with L✓ = Lip(rR✓).

Proof. The t-step denoiser is built from the gradient-step operator TR✓,�,↵. Here,
we use the more explicit notation

T (x,y) = x� ↵((x� y) + �rR✓(x)). (7.46)

This makes explicit the dependence on y and, for simplicity, the dependence on
R✓, �, and ↵ are omitted. It is known that T is averaged with respect to x for
↵ 2 (0, 2/(1 + �L✓)). This ensures convergence of gradient descent, but it does not
characterize the denoiser itself. The t-step denoiser depends on the initial value
x0 = y and is determined by the recurrence relation xk+1 = T (xk,y). For the map
Lk : y 7! xk, it holds that Lk+1 = U �Lk + ↵Id, where U = Id� ↵(Id + �rR✓).
The Jacobian of U reads JU = I�↵(I+�HR✓

) and satisfies that ((1�↵)�↵�L✓)I �
JU � (1� ↵)I. From this, we infer that

Lip(U)  max
�
↵�L✓ � (1� ↵), 1� ↵

�
. (7.47)
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Since ↵  2/(2 + �L✓), we then get that Lip(U)  (1� ↵). Hence, Lip(U �Lk) 
(1�↵)Lip(Lk). Since L0 = Id is averaged, the same holds by induction for all the
t-step denoisers Lt.

Note that for ↵ 2 (2/(2+�L✓), 2/(1+�L✓)), the 1-step denoiser is also averaged
but, for 1 < t < +1, it remains an open question. The structure of t-step and
proximal denoisers differs radically from averaged CNNs as in (7.45). For instance,
the t-step denoiser uses the noisy input y in each layer. Remarkably, these skip
connections preserve the averagedness of the mapping. While constrained deep
CNNs struggle to learn mappings that are not too contractive, both proximal and
t-step denoisers can easily reproduce the identity by choosing R✓ = 0. This seems
key to account for the fact that the proposed denoisers outperform averaged deep
NNs, while they can be trained two orders of magnitude faster, see Section 7.6.

7.5.2 Deep Convex Regularizers
Another approach to leverage deep-learning-based priors with stability and conver-
gence guarantees consists of learning a deep convex regularizer R. These priors are
typically parameterized with an ICNN, which is an NN with increasing and convex
activation functions along with positive weights for some linear layers [302]. There
exist various strategies to train the ICNN.

The adversarial convex regularizer (ACR) framework [285, 301] relies on the
adversarial training proposed in [294]. The regularizer is learned by minimizing its
value on clean images and maximizing its value on unregularized reconstructions.
This allows for learning non-smooth R and also avoids bilevel optimization. A key
difference with CRR-NNs and PnP methods is that ACR is modality-depend (it is
not universal). In addition, with R being non-smooth, it is challenging to exactly
minimize the cost function, but the authors of [285, 301] did not find any practical
issues in that matter using gradient-based solvers. To boost the performance of
R, they also added a sparsifying filter bank to the ICNN, namely, a convex term
of the form kUxk1, where the linear operator U is made of convolutions learned
conjointly with the ICNN.

In [272], the regularizer is trained so that its gradient step is a good blind
Gaussian denoiser. There, the authors use ELU activations in the ICNN4 to obtain

4
The authors also explore non-convex regularization but they offer no guarantees on computing

the global minimum.
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a smooth R.
The aforementioned ICNN-based frameworks [285, 301, 272] have major differ-

ences with CRR-NNs: (i) they typically require orders of magnitude more param-
eters; (ii) the computation of rR, used to solve inverse problems, requires one to
back-propagate through the deep CNN which is time-consuming; (iii) the role of
each parameter is not interpretable because of the depth of the model (see Section
7.6.4). As we shall see, CRR-NNs are much faster to train and tend to perform
better (see Section 7.6).

7.6 Experiments

7.6.1 Training of CRR-NNs
The CRR-NNs are now trained on a Gaussian-denoising task with noise levels � 2
{5/255, 25/255}. The same procedure as in [271, 81] is used to form 238,400 patches
of size (40⇥ 40) from 400 images of the BSD500 dataset [280]. For validation, the
same 12 images as in [271, 81] are used. The weights W in R✓ are parameterized as
the composition of two zero-padded convolutions with kernels of size (7⇥7) and with
8 and 32 output channels, respectively. This composition of two linear components,
although not more expressive theoretically, facilitates the patch-based training of
CRR-NNs. For inference, the convolutional layer can then be transformed back to a
single convolution. Similar to [292], the kernels of the convolutions are constrained
to have zero mean. Lastly, the linear splines have M +1 = 21 equally distant knots
with � = 0.01, and the sparsifying regularization parameter is ⌘ = 2 · 10�3(255�).
We initially set ci = 0.

The CRR-NNs are trained for 10 epochs with t 2 {1, 2, 5, 10, 20, 30, 50} gradient
steps. For this purpose, the `1 loss is used for L along with the Adam optimizer
with its default parameters (�1,�2) = (0.9, 0.999), and the batch size is set to 128.
The learning rates are decayed with rate 0.75 at each epoch and initially set to 0.05
for the parameters � and µ, to 10�3 for W, and to 5 · 10�5 for ci.

Recall that for a given t, the training yields two denoisers.

• t-Step Denoiser: This corresponds to T
t

R✓,�,↵
and is the denoiser optimized

during training. It is natural to compare it to properly constrained PnP
methods based on averaged deep denoisers as in [188, 300], which in general
also do not correspond to minimizing an energy.
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• Proximal Denoiser: The learned regularizer R✓ is plugged into (7.42) with
H = I, and the solution is computed using Algorithm 1 with small tolerance
(10�6 for the relative change of norm between consecutive iterates). The pa-
rameters � and µ are tuned on the validation dataset with the coarse-to-fine
method given in Appendix 7.8.1. This important step enables us to compen-
sate for the gap between (i) gradient-step training and full minimization, and
(ii) training and testing noise levels, if different.

7.6.2 Denoising: Comparison with Other Methods
Although not the final goal, image denoising yields valuable insights into the train-
ing of CRR-NNs. It also enables us to compare CRR-NNs to the related methods
given in Table 7.2 on the standard BSD68 test set.
Now, we briefly give the implementation details of the various frameworks. CRR-

Table 7.2: Convex models and averaged denoisers tested on BSD68.

� = 5/255 � = 25/255

TV*,‡ [315] 36.41 27.48
Higher-order MRFs*,‡ [292] NA 28.04
VN1,t†[299] NA 27.69
LLS-NN�

‡ (see Chapter 6) 36.86 27.93
DISTA

‡ [300] 36.54 NA
GS-DnICNN†[272] 36.85 27.76
DADMM

‡[300] 36.62 NA
CRR-NN-ReLU (t-step)†,‡ 35.50 26.75
CRR-NN (t-step)†,‡ 36.97 28.12
CRR-NN (proximal)*,‡ 36.96 28.11
* Full minimization of a convex function

†
Partial minimization of a convex function

‡
Stable steps (Lipschitz-constrained)

NN-ReLU models are trained in the same way as CRR-NNs but with ReLU acti-
vation functions (with learnable biases) instead of linear splines. To emulate [272],
we train a DnICNN with the same architecture (ELU activations, 6 layers, and 128
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channels per layer, 745 344 parameters) as a gradient step denoiser for 200 epochs,
separately for � 2 {5/255, 25/255}, and refer to it as GS-DnICNN. We also compare
the performance with the nonexpansive denoiser LLS-NN� introduced in Chapter 6
and trained on the same denoising task as the CRR-NNs with � 2 {5/255, 25/255}.
The other reported frameworks do not provide public implementations. Therefore,
the numbers are taken from the corresponding papers. Lastly, the TV denoising
is performed with the algorithm proposed in [315]. The results for all models are
presented in Table 7.2 and Figure 7.2.

• t-Step/Averaged Denoisers: The CRR-NN-ReLU models perform poorly
and confirms that ReLU is not well-suited to our setting. This limitation of
ReLU was also observed experimentally in [188] in the context of 1-Lipschitz
denoisers. Our models improve over the gradient-step denoisers parameterized
with ICNNs, even though the latter has many more parameters. The CRR-
NN implementation improves over the special instance VN1,t of variational-
network denoisers proposed in [299], which also partially minimizes a convex
cost. With a convex model similar to CRR-NNs (see Section 7.4 for a discus-
sion), it is shown that an increase in t decreases the performance (reported
as VN1,t

24
in [299, Figure 5]). The model VN1,t cannot compete with the

proximal denoiser trained with bilevel optimization in [292]. By contrast, for
� = 25/255 we obtain an improvement over VN1,t of 0.2dB for t = 1, and
more than 0.6dB as t increases. Note that, in [299], the layers of the t-step
VN1,t denoiser are not guaranteed to be averaged. Our models also improves
over the averaged LLS-NN� (+0.1dB for � = 5, +0.15dB for � = 25/255),
and the two averaged denoisers DISTA and DADMM [300] (+0.4/+0.3dB for
� = 5/255). In their simplest form, the latter are built with fixed linear layers
(patch-based wavelet transforms) and learnable soft-thresholding activation
functions.

• Proximal Denoisers: Our models yield improvements over the higher-order
Markov random field (MRF) model in the pioneering work [292] (28.04dB
vs 28.11dB for � = 25/255). With a similar architecture—but with fixed
smoothed absolute value  i—the latter approach involves a computationally
intensive bilevel optimization with second-order solvers. Here, we show that
a few gradient steps for training already suffice to be competitive. This leads
to ultrafast training and bridges the gap between higher-order MRF models
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and VN denoisers. Lastly, we remark that our proximal denoisers are robust
to a mismatch in the training and testing noise levels.
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Figure 7.2: Test denoising performance of CRR-NNs for noise level � = 5/255 and
� = 25/255 versus the number of gradient steps used for training, the denoiser type
(t-step vs proximal), and the noise level used for training.

7.6.3 Biomedical Image Reconstruction

The six CRR-NNs trained on denoising with t 2 {1, 10, 50} and � 2 {5/255, 25/255}
are used to solve the MRI and CT inverse problems that we now describe. Note
that the setups explored for both modalities are identical to those of Chapter 6.
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MRI The ground-truth images for our MRI experiments are proton-density
weighted knee MR images from the fastMRI dataset [281] with fat suppression
(PDFS) and without fat suppression (PD). They are generated from the fully-
sampled k-space data. For each of the two categories (PDFS and PD), we create
validation and test sets consisting of 10 and 50 images, respectively, where every
image is normalized to have a maximum value of one. To gauge the performance of
CRR-NNs in various regimes, we experiment with single-coil and multi-coil setups
with several acceleration factors. In the single-coil setup, we simulate the mea-
surements by masking the Fourier transform of the ground-truth image. In the
multi-coil case, we consider 15 coils, and the measurements are simulated by sub-
sampling the Fourier transforms of the multiplication of the ground-truth images
with 15 complex-valued sensitivity maps (these were estimated from the raw k-space
data using the ESPIRiT algorithm [282] available in the BART toolbox [283]). For
both cases, the subsampling in the Fourier domain is performed with a Cartesian
mask that is specified by two parameters: the acceleration Macc 2 {2, 4, 8} and the
center fraction Mcf = 0.32/Macc. A fraction of Mcf columns in the center of the k-
space (low frequencies) is kept, while columns in the other region of the k-space are
uniformly sampled so that the expected proportion of selected columns is 1/Macc.
In addition, Gaussian noise with standard deviation �n = 2 · 10�3 is added to the
real and imaginary parts of the measurements. The PSNR and SSIM values for
each method are computed on the (320⇥ 320) centered ROI.

CT To provide a fair comparison with the ACR method, we now target the CT
experiment proposed in [285]. The data consists of human abdominal CT scans
for 10 patients provided by the Mayo Clinic for the low-dose CT Grand Challenge
[284]. The validation set consists of 6 images taken uniformly from the first patient
of the training set from [285]. We use the same test set as [285], more precisely,
128 slices with size (512⇥ 512) that correspond to one patient. The projections of
the data are simulated using a parallel-beam acquisition geometry with 200 angles
and 400 detectors. Lastly, Gaussian noise with standard deviation �n 2 {0.5, 1, 2}
is added to the measurements.

Reconstruction Frameworks A reconstruction with isotropic TV regulariza-
tion is computed with FISTA [28], in which prox

R
is computed as in [27] to enforce

positivity. We also consider reconstructions obtained with the PnP method with
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Table 7.3: Single-coil MRI.

2-fold 4-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

Zero-fill 33.32 34.49 0.871 0.872 27.40 29.68 0.729 0.745
TV 39.22 37.73 0.947 0.917 32.44 32.67 0.833 0.781
PnP-�CNN (ReLU) 38.15 37.41 0.938 0.918 30.62 31.45 0.818 0.786
PnP-�CNN (PReLU) 38.97 38.09 0.946 0.925 31.22 32.22 0.832 0.800
PnP-�CNN (GS) 38.80 37.92 0.944 0.924 31.27 31.93 0.829 0.796
PnP-�CNN (LLS) 40.06 38.63 0.955 0.931 32.81 33.04 0.859 0.817
CRR-NN 40.95 38.91 0.961 0.934 33.99 33.75 0.880 0.831

PnP-DnCNN [81] 40.52 39.02 0.956 0.935 35.24 34.63 0.884 0.840

Table 7.4: CRR-NN: Single-coil MRI versus training setup.

2-fold 4-fold
PSNR SSIM PSNR SSIM

image �train t PD PDFS PD PDFS PD PDFS PD PDFS

BSD 5/255 1 40.55 38.71 0.959 0.932 33.32 33.37 0.866 0.819
BSD 5/255 10 40.52 38.69 0.959 0.932 33.30 33.36 0.865 0.817
BSD 5/255 50 40.50 38.67 0.958 0.931 33.29 33.32 0.865 0.816
BSD 25/255 1 40.75 38.84 0.960 0.934 33.62 33.60 0.875 0.828
BSD 25/255 10 40.78 38.81 0.960 0.933 33.63 33.59 0.875 0.826
BSD 25/255 50 40.71 38.77 0.960 0.932 33.57 33.54 0.872 0.824
MRI 5/255 10 40.95 38.91 0.961 0.934 33.99 33.75 0.880 0.831
MRI 25/255 10 40.61 38.73 0.959 0.932 33.93 33.71 0.878 0.830

(i) provably averaged denoisers �CNN� (� = 5, 15)—the one designed and trained
in Chapter 6 with various activation functions, including ReLU, PReLU, GS and
LLS—and (ii) the popular pertained DnCNNs [81] (� = 5, 15, 40). The latter are
residual denoisers with 1-Lipschitz convolutional layers and batch normalization
modules, which yield a non-averaged denoiser with no convergence guarantees for
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Table 7.5: Multi-coil MRI.

4-fold 8-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

HTy 27.71 29.94 0.751 0.759 23.80 27.19 0.648 0.681
TV 38.06 37.31 0.935 0.914 32.77 33.38 0.850 0.824
PnP-�CNN (ReLU) 37.21 37.06 0.929 0.915 31.37 32.57 0.837 0.822
PnP-�CNN (PReLU) 37.71 37.51 0.934 0.919 31.67 33.11 0.845 0.832
PnP-�CNN (GS) 37.76 37.41 0.933 0.919 31.79 32.9 0.843 0.829
PnP-�CNN (LLS) 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835
CRR-NN 39.54 38.29 0.950 0.927 34.29 34.50 0.881 0.852

PnP-DnCNN [81] 39.55 38.52 0.947 0.929 35.11 35.14 0.881 0.858

Table 7.6: CRR-NN: Multi-coil MRI versus training setup.

4-fold 8-fold
PSNR SSIM PSNR SSIM

image �train t PD PDFS PD PDFS PD PDFS PD PDFS

BSD 5/255 1 39.15 38.09 0.947 0.925 33.82 34.22 0.873 0.846
BSD 5/255 10 39.14 38.08 0.946 0.925 33.82 34.20 0.873 0.845
BSD 5/255 50 39.14 38.05 0.946 0.924 33.78 34.16 0.872 0.844
BSD 25/255 1 39.34 38.21 0.948 0.926 34.02 34.35 0.876 0.849
BSD 25/255 10 39.33 38.19 0.948 0.926 34.01 34.34 0.876 0.848
BSD 25/255 50 39.29 38.15 0.948 0.926 33.96 34.29 0.876 0.847
MRI 5/255 10 39.54 38.29 0.950 0.927 34.29 34.50 0.881 0.852
MRI 25/255 10 39.33 38.14 0.947 0.925 34.22 34.40 0.878 0.849

ill-posed problems. To adapt the strength of the denoisers, in addition to the train-
ing noise level, we use relaxed denoisers D� = �D + (1� �)Id for all denoisers D,
where � 2 (0, 1] is tuned along with the stepsize ↵ given in (7.44). We only report
the performance of the best-performing setting. The ACR framework [285, 301]
yields a convex regularizer for (7.2) that is specifically designed for the described



250 A Neural-Network-Based Convex Regularizer

Table 7.7: CT.

�n=0.5 �n=1 �n=2
PSNR SSIM PSNR SSIM PSNR SSIM

FBP 32.14 0.697 27.05 0.432 21.29 0.204
TV 36.38 0.936 34.11 0.906 31.57 0.863
PnP-�CNN (ReLU) 36.94 0.914 33.65 0.860 30.34 0.782
PnP-�CNN (PReLU) 37.18 0.927 34.21 0.887 30.87 0.812
PnP-�CNN (GS) 36.95 0.920 33.99 0.877 30.87 0.806
PnP-�CNN (LLS) 38.19 0.931 35.15 0.897 31.85 0.844
ACR [285, 301] 38.06 0.943 35.12 0.911 32.17 0.868
CRR-NN 39.30 0.947 36.29 0.916 33.16 0.878

PnP-DnCNN [81] 38.93 0.941 36.49 0.921 33.52 0.897

Table 7.8: CRR-NN: CT versus training setup.

�n=0.5 �n=1 �n=2
image �train t PSNR SSIM PSNR SSIM PSNR SSIM

BSD 5/255 1 38.84 0.943 35.70 0.907 32.48 0.860
BSD 5/255 10 38.90 0.943 35.73 0.908 32.49 0.860
BSD 5/255 50 38.82 0.940 35.64 0.904 32.47 0.855
BSD 25/255 1 39.01 0.945 35.91 0.913 32.72 0.867
BSD 25/255 10 39.07 0.945 35.95 0.911 32.71 0.867
BSD 25/255 50 39.04 0.944 35.89 0.912 32.71 0.860
CT 5/255 10 39.30 0.947 36.29 0.916 33.15 0.873
CT 25/255 10 38.89 0.945 36.11 0.917 33.16 0.878

CT problem. To be consistent with [285, 301], we apply 400 iterations of gradient
descent, even though the objective is nonsmooth, and tune the stepsize and �. The
results are consistent with those reported in [285, 301].

To assess the dependence of CRR-NNs on the image domain, we also train mod-
els for Gaussian denoising of CT and MRI images (t = 10, � 2 {5/255, 25/255}).
The training procedure is the same as for BSD image denoising, but a larger ker-
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Figure 7.3: Reconstructed images for the 4-fold accelerated multi-coil MRI experi-
ment. The reported metrics are PSNR and SSIM. The last row shows the squared
differences between the reconstructions and the ground-truth image.

nel size of 11 was required to saturate the performance. The learned filters and
activations are included in Appendix 7.8.3.

The hyperparameters for all these methods are tuned to maximize the aver-
age PSNR over the validation set with the coarse-to-fine method given in Ap-
pendix 7.8.1.

Results and Discussion For each modality, a reconstruction example is given
for each framework in Figures 7.3 and 7.4, and additional illustrations are given in
Appendix 7.8.4 Material. For PnP with average denoiser, we only show the recon-
struction obtained with the LLS activation, since it is always of superior quality
than with the other activations. The PSNR and SSIM values for the test set given
in Tables 7.3, 7.5, and 7.7 attest that CRR-NNs consistently outperform the other
frameworks with comparable guarantees. It can be seen from Tables 7.4, 7.6, and
7.8 that the improvements hold for all setups explored to trained CRR-NNs. The
training of CRR-NNs on the target image domain allows for an additional small
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Figure 7.4: Reconstructed images for the CT experiment with �n = 0.5. The
reported metrics are PSNR and SSIM. The last row shows the squared differences
between the reconstructions and the ground-truth image.

performance boost. The performances of CRR-NNs are close to the ones of PnP-
DnCNN, which has however no guarantees and little interpretability. PnP-DnCNN
typically yields artifact-free reconstructions but is more prone to over-smoothing
(Figure 7.3) or even to exaggeration of some details in rare cases (see Figures in Ap-
pendix 7.8.4). Lastly, observe that the properly constrained PnP-�CNN developed
in Chapter 6 is not competitive with CRR-NNs, which illustrates the benefit of
using explicit regularization in this setting. This confirms the difficulty of training
provably 1-Lipchitz CNN, which is also reported for MRI image reconstruction in
[314]. Convergence curves for CRR-NNs can be found in Appendix 7.8.2.

7.6.4 Under the Hood of the Learnt Regularizers

The filters and activation functions for learned CRR-NNs with � 2 {5/255, 25/255}
and t = 5 are shown in Figures 7.5 and 7.6.
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Filters

The impulse responses of the filters vary in orientation and frequency response.
This indicates that the CRR-NN decouples the frequency components of patches.
The learned kernels typically come in groups that are reminiscent of 2D steerable
filters [316, 317]. Interestingly, their support is wider when the denoising task is
carried out for � = 25/255 than for � = 5/255.

Activation Functions

The linear splines converge to simple functions throughout the training. The regu-
larization (7.36) leads to even simpler ones without a compromise in performance.
Most of them end up with 3 linear regions, with their shape being reminiscent of the
clipping function Clip(x) = sign(x) min(|x|, 1). The learned regularizer is closely
related to `1-norm based regularization as many of the learned convex profiles  i

resemble some smoothed version of the absolute-value function.

Pruning CRR-NNs

Since the NN has a simple architecture, it can be efficiently pruned before inference
by removal of the filters associated with almost-vanishing activation functions. This
yields models with typically between 3000 and 5000 parameters and offers a clear
advantage over deep models, which can usually not be pruned efficiently.

A Signal-Processing Interpretation

Given that the gradient-step operator x 7! (x�↵WT
�(Wx)) of the learned regu-

larizer is expected to remove some noise from x, the 1-hidden-layer CNN WT
�(W·)

is expected to extract noise. The response of x to the learned filters forms the high-
dimensional representation Wx of x. The clipping function preserves the small
responses to the filters, while it cuts the large ones. Hence, the estimated noise
WT

�(Wx) is reconstructed by essentially removing the components of x that ex-
hibit a significant correlation with the kernels of the filters. All in all, the learning of
the activation functions leads closely to wavelet- or framelet-like denoising. Indeed,
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the proximal operator of x 7! kDWT(x)k1 is given by

proxkDWT(·)k1
(x) = IDWT(soft(DWT(x)))

= x� IDWT(clip(DWT(x))), (7.48)

where soft(·) is the soft-thresholding function, DWT and IDWT are the orthogonal
discrete wavelet transform and its inverse, respectively. The equivalent formula-
tion with the clipping function follows from IDWT(DWT(x)) = x and soft(x) =
(x� clip(x)). The soft-thresholding function is used for direct denoising while the
clipping function is tailored to residual denoising. Note that the given analogy is,
however, limited since the learned filters are not orthonormal (WTW 6= I).

Figure 7.5: Impulse response of the filters and activation functions of the CRR-NN
trained with � = 5. The crosses indicate the knots of the splines. For the 8 missing
filters, the associated activation functions were numerically identically zero.
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Figure 7.6: Impulse response of the filters and activation functions of the CRR-NN
trained with � = 25/255.

Role of the Scaling Factor

To clarify the role of the scaling factor µ introduced in (7.42), we investigate a toy
problem on the space of one-dimensional signals. Since these can be interpreted
as images varying along a single direction, a signal regularizer R1 can be obtained
from R✓ by replacing the 2D convolutional filters with 1D convolutional filters whose
kernels are the ones of R✓ summed along a direction. Next, we seek a compactly
supported signal with fixed mass that has minimum regularization cost, as in

ĉ = arg min
c2Rd

R1(µc) s.t.

(
1T c = 1,

ck = 0, 8k 62 [k1, k2].
(7.49)

The solutions for various values of µ are shown in Figure 7.7. Small values of µ
promote smooth functions in a way reminiscent of the Tikhonov regularizer applied
to finite differences. Large values of µ promote functions with constant portions
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and, conjointly, allow for sharp jumps, which is reminiscent of the TV regularizer.
This reasoning is in agreement with the shape of the activation functions shown in
Figures 7.5 and 7.6. Indeed, an increase in µ allows one to enlarge the region where
the regularizer has constant gradients, while a decrease of µ allows one to enlarge
the region where the regularizer has linear gradients.

Figure 7.7: Solutions of the one-dimensional problem (7.49) for increasing values
of µ. The plotted functions are supported in [25, 175] and minimize the learned
regularizer given a unit sum of their values.

7.7 Conclusion

We have proposed a framework to learn universal convex-ridge regularizers with
adaptive profiles. When applied to inverse problems, it is competitive with those
recent deep-learning approaches that also prioritize the reliability of the method.
Not only CRR-NNs are faster to train, but they also offer improvements in image
quality. The findings raise the question of whether shallow models such as CRR-
NNs, despite their small number of parameters, already offer optimal performance
among methods that rely either on a learnable convex regularizer or on the PnP
framework with a provably averaged denoiser. In the future, CRR-NNs could be
fine-tuned on specific modalities via the use of H for training. This could further
improve the reconstruction quality, as observed when shifting from PnP to deep
unrolled algorithms while maintaining the guarantees.
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7.8 Appendix

7.8.1 Hyperparameter Tuning
The parameters � and µ used in (7.42) can be tuned with a coarse-to-fine approach.
Given the performance on the 3⇥ 3 grid {(��)�1�,�, ���}⇥ {(�µ)�1µ, µ, �µµ}, we
identify the best values �⇤ and µ⇤ on this subset and move on to the next iteration
as follows:

• if �⇤ = �, we refine the search grid by reducing �µ to (�µ)⇣ , ⇣ < 1;

• otherwise, � is updated to �⇤.

A similar update is performed for the scaling parameter. The search is terminated
when both �� and �µ are smaller than a threshold, typically, 1.01. In practice, we
initialized �� = �µ = 4 and set ⇣ = 0.5. The method usually requires between 50
and 100 evaluations on tuples (�, µ) on the validation set before it terminates. The
proposed approach is predicated on the observation that the optimization landscape
in the (�, µ) domain is typically well-behaved. The same principles apply to tune
a single hyperparameter, as found in the TV and the PnP-�CNN methods. Let
us remark that the performance was found to change only slowly with the scaling
parameter µ for the MRI and CT experiments. Hence, in practice, it is enough to
tune µ very coarsely.
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7.8.2 Convergence Curves
In this section, we present convergence curves for image denoising (Figure 7.8), MRI
reconstruction (Figure 7.9), and CT reconstruction (Figure 7.10) with CRR-NNs.
The underlying objective is minimized with FISTA5 6[28] and AdaGD5[311], which
both converge generally fast. Depending on the task and the desired accuracy, one
or the other might be faster. The observed gradient-norm oscillations for AdaGD
are typical for this method and unrelated to CRR-NNs [311]. Finally, note that the
initialization affects the convergence speed, but does not impact the reconstruction
quality. This differs significantly from PnP methods that deploy loosely constrained
denoisers.

Figure 7.8: Example of convergence curves (denoising).

5
For the plots, the positivity constraint is dropped, otherwise, the gradient does not necessarily

vanish at the minimum.

6
For denoising, the problem is 1-strongly convex. Hence, we use Nesterov’s rule (1�

p
L)/(1+p

L) instead of (tk � 1)/tk+1 for extrapolation [318].
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Figure 7.9: Example of convergence curves (MRI).

Figure 7.10: Example of convergence curves (CT).
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7.8.3 Activations and Filters
We provide the filters and activations of a CRR-NN trained for the denoising of CT
images (Figure 7.11) and of MRI images (Figure 7.12). Compared to the training on
the BSD500 dataset, larger kernel sizes were needed to saturate the performances.

Figure 7.11: Parameters of the CRR-NN trained to denoise CT images.

Figure 7.12: Parameters of the CRR-NN trained to denoise MRI images.
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7.8.4 Reconstructed images
MRI In Figures 7.13 and 7.14, we present reconstructions from multi- and single-
coil MRI measurements, and report their PSNR and SSIM as metrics. The recon-
struction task in Figure 7.14 is particularly challenging. In this regime, it can be
observed that the loosely constrained PnP-DnCNN exaggerates some structures,
even though the metrics remain acceptable.

Figure 7.13: Reconstructions for the 8-fold accelerated multi-coil MRI experiment.

Figure 7.14: Reconstructions for the 4-fold accelerated single-coil MRI experiment.
Note the unexpected behavior of DnCNN.
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CT In Figures 7.15 and 7.16, we provide reconstructions for the CT experiments
with noise levels �n = 1, 2 in the measurements. The reported metrics are PSNR
and SSIM.

Figure 7.15: Reconstructed images for the CT experiment with �n = 1.0.

Figure 7.16: Reconstructed images for the CT experiment with �n = 2.0.



Chapter 8

Learning Weakly Convex

Regularizers for Convergent

Image-Reconstruction

Algorithms

The text of this chapter is adapted from the in-press paper
A. Goujon, S. Neumayer and M. Unser “Learning weakly convex regularizers for

convergent image-reconstruction algorithms”, accepted in SIAM Journal on Imag-
ing Sciences, 2023.

8.1 Summary
We propose to learn non-convex regularizers with a prescribed upper bound on their
weak-convexity modulus. Such regularizers give rise to variational denoisers that
minimize a convex energy. They rely on a few parameters (less than 15,000) and
offer a signal-processing interpretation as they mimic classical sparsity-promoting
regularizers. Through numerical experiments, we show that such denoisers outper-
form convex-regularization methods as well as the popular BM3D denoiser. Ad-

263
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ditionally, the learned regularizer can be deployed to solve inverse problems with
iterative schemes that provably converge. For both CT and MRI reconstruction, the
regularizer generalizes well and offers an excellent tradeoff between performance,
number of parameters, guarantees, and interpretability when compared to other
data-driven approaches.

8.2 Introduction

8.2.1 Linear Inverse Problems
Linear inverse problems are ubiquitous in imaging, with applications in medical
imaging [16], including magnetic resonance imaging (MRI) and X-ray computed
tomography (CT). In a discretized linear inverse problem [18], the goal is to recon-
struct an (unknown) image of interest x 2 Rd from a given noisy observation

y = Hx + n 2 Rm, (8.1)

where H 2 Rm⇥d denotes the measurement operator and n 2 Rm is a noise term.
To overcome a possibly ill-conditioned H and the presence of noise, it is standard
to compute the reconstruction x̂ as a solution of the variational problem

x̂ = arg min
x2Rd

1

2
kHx� yk2

2
+ R(x), (8.2)

where the regularizer R : Rd ! R incorporates prior information about x. Convex
regularizers, such as the Tikhonov [19] or total-variation (TV) [22, 30] ones, are
popular as they allow one to efficiently solve (8.2). Unfortunately, such regulariz-
ers do not yield state-of-the-art reconstructions and have known limitations. For
instance, they typically struggle to preserve textures in the image x [319].

8.2.2 The Convex Non-Convex Framework for Denoising
The reliance on a well-chosen non-convex R leads to improved performance [291,
292], with the caveat that finding a global minimum of (8.2) becomes intractable in
general. A possible remedy is provided by the convex non-convex (CNC) framework.
It consists in the deployment of a non-convex RCNC such that the global objective

J (x) =
1

2
kHx� yk2

2
+ RCNC(x) (8.3)
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is convex, see [320] for an overview. Over the past years, the use of CNC approaches
has led to improved results in various settings, including dictionary learning [321],
plug-and-play (PnP) algorithms [322, 76], and matrix completion [323].

For the case of image denoising, namely H = I, the data-fidelity term 1

2
kx�yk2

2

is 1-strongly convex. Hence, to ensure the convexity of J , the regularizer RCNC

needs to be 1-weakly convex from the definition of weak convexity (see Section 8.3).
Various strategies have been proposed to design a weakly convex RCNC.

Explicit Design The commonly used k · k1-norm for sparse regularization can
be replaced by a non-convex penalty function that better mimics the behavior of
the k · k0-norm while ensuring that one remains within the CNC framework. This
includes properly scaled versions of the logarithm and the minimax concave penalty
[324]. Although non-convex, these functions are quasi-convex. In particular, they
are such that large values are more penalized than smaller ones. The potentials
are then combined with convolutional filters. This yields, for instance, TV-like
regularizers [325, 326], which extend and improve upon their convex counterparts.

Implicit Design with Moreau Envelopes There exists a systematic method
to convert any convex regularizer into a nonconvex but still 1-weakly convex one,
utilizing its (generalized) Moreau envelope [323, 320]. Such a regularizer, however,
does not admit a closed form, and the existing algorithms to solve (8.2) involve a
computationally intensive bilevel optimization task.

Implicit Design via the Learning of Proximal Operators Although RCNC

is non-convex, its proximity operator prox
RCNC

is well-defined under mild condi-
tions [97]. In [76], the authors propose to directly learn prox

RCNC
such that it is a

good Gaussian denoiser. To do so, they explicitly parameterize the proximal oper-
ator, in line with the recently introduced gradient-step denoisers [272, 102]. More
precisely, they express the residual map (prox

RCNC
�Id) as the gradient of a deep

convolutional neural network (CNN), and require that the residual is contractive
by enforcing that it has a Lipschitz constant smaller than 1. This yields excellent
performance, with the caveat that it is challenging to enforce strict Lipschitz con-
straints on the gradient of a CNN. For this reason, the authors of [76] propose to
regularize the spectral norm of the Jacobian of (prox

RCNC
�Id) at a finite number
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of locations. This method works well in practice but does not offer any provable
guarantee on the weak-convexity property of the underlying (implicit) objective J .

8.2.3 Extension to Ill-Posed Inverse Problems
The design of CNC models is difficult when the forward matrix H is noninvert-
ible. Since the data term 1

2
kHx� yk2

2
is not strongly convex anymore, the 1-weak

convexity of R is not sufficient. Then, the condition on R depends on H, and
CNC models are therefore usually tailored to a specific problem. One can par-
tially circumvent this limitation by combining a proximal algorithm with a generic
weakly convex regularizer, for which the proximal operator is well-defined. The
convergence to stationary points of the objective is established in [76, 98] for the
forward-backward splitting [28] based on the very general convergence result for
functions with the Kurdyka-Łojasiewicz (KL) property given in [96]. When R is
differentiable, as will be assumed in our setting, similar results can be obtained for
gradient descent applied to the non-convex objective (8.2), see [96]. From a stochas-
tic perspective, it is known that such first-order methods do not get trapped into
strict saddle points of the objective [327]. This is a possible explanation for the
good empirical performance of non-convex reconstruction frameworks.

8.2.4 Other Deep-Learning-Based Variational Methods with
Some Guarantees

The emergence of deep-learning-based methods has led to significant improvements
in the quality of reconstruction for inverse problems. Yet, due to the black-box
nature of deep NNs, this often comes with a loss of interpretability and reliabil-
ity. Thus, there is a growing interest to mitigate these limitations, see [328] for a
survey. In the following, we briefly comment on works that rely on the variational
formulation (8.2) with a learned regularizer R but that are not directly within the
CNC framework. To provide maximal theoretical guarantees within iterative image
reconstruction, it was proposed in [285] to learn a convex R based on a deep CNN,
and shown in [329] that a shallow model, namely, a convex ridge regularizer NN
(CRR-NN) with few parameters, was sufficient. The latter offers the opportunity
to learn a collection of filters and sparsity-promoting profile functions to build R.
This is inspired by the Fields-of-Experts (FoE) framework [291] and its many vari-
ants, such as [292], to design and learn a non-convex R. While [292] yields good
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performance, it does not guarantee that the objective is convex. Another popular
extension of FoE is trainable nonlinear reaction diffusion (TNRD) [330]. There,
the minimization scheme associated with (8.2) is unrolled and different filters and
potential functions are learned at each step. This improves the performance over
[292] but does not correspond to an energy minimization anymore. More recently,
all these frameworks have been unified in the context of variational networks [299].
The combination of these with recent findings in deep CNN research and early stop-
ping techniques has then led to the total deep variation framework [297]. Although
this model has several layers, some interpretability remains possible through an
eigenfunction analysis. Another deep-learning-based variational method with con-
vergence guarantees and a regularization scheme is found in [296].

8.2.5 Outline and Main Contributions
In this chapter, we propose a framework to learn a 1-weakly convex regularizer that
yields an interpretable proximal denoiser. The general framework is introduced in
Section 8.3. Then, the principal contributions are as follows.

• Denoising: In Section 8.4, we propose a scheme for the training of weakly-
convex-ridge-regularizer neural networks (WCRR-NN), with a significant in-
crease in performance over their convex counterparts but with the same
guarantees and interpretability. Based on a condition introduced in Proposi-
tion 8.2, the associated denoising problem is convex, which allows for global
minimization. Numerical experiments indicate that the learning of both the
profiles and the filters leads to a sparsity prior that is state-of-the-art in the
CNC framework across various noise levels for the BSD68 test set. In partic-
ular, it is the first convex-energy-based model that outperforms BM3D [331],
which has been one of the most popular benchmarks for nearly 15 years now.

• Inverse Problems: In Section 8.5, we deploy the learned regularizer to solve
generic inverse problems by minimizing (8.2) with an accelerated gradient-
descent (AGD) scheme that is tailored to our weakly convex regularizer (Al-
gorithm 2). Further, we prove that the algorithm reaches some critical point
of the objective (Theorem 8.1). Numerical experiments for CT and MRI
demonstrate that the regularizer empirically generalizes well. We find that
it outperforms several energy-based reconstruction methods that come with
convergence guarantees.
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Finally, conclusions are drawn in Section 8.6. The full implementation will be
released before publication and pre-trained models can be accessed upon request.

8.3 Weakly Convex Regularizers
Our goal is to construct a regularizer R for the variational reconstruction model
(8.2) that performs well across a variety of inverse problems while maintaining
the theoretical guarantees and interpretability of classical schemes. A particularly
promising direction is given by the CNC framework, where one can efficiently find
a global minimum of the objective in (8.2). As commonly done in practice, our
strategy is to design and train the regularizer based on the denoising task

x̂ = arg min
x2Rd

1

2
kx� yk2

2
+ R(x), (8.4)

where y is a noisy version of a clean image. The minimization of (8.2) for generic
inverse problems and weakly convex regularizers is then discussed in Section 8.5.

To obtain a CNC model in (8.4), R needs to be 1-weakly convex so that the
overall objective remains convex.

Definition 8.1. A function f : Rd ! R is

i) convex if f(�x + (1 � �)y)  �f(x) + (1 � �)f(y) for all x,y 2 Rd and
� 2 [0, 1];

ii) ⇢-strongly convex if (f � ⇢

2
k · k2) is convex with ⇢ � 0;

iii) and ⇢-weakly convex if f + ⇢

2
k · k2 is convex with ⇢ � 0.

Note that a ⇢-weakly convex function is also µ-weakly convex for any µ � ⇢.
A convex R is ⇢-weakly convex for any ⇢ � 0 and, in particular, 0-weakly convex.
For a differentiable R, convexity is equivalent to the monotonicity of rR. Hence,
a differentiable R is ⇢-weakly convex iff

(rR(y)�rR(x))T (y � x) � �⇢ky � xk2
2
, (8.5)

for any x,y 2 Rd. Given a twice-differentiable R, ⇢-weak convexity is equivalent to

HR(x) ⌫ �⇢I (8.6)
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for any x 2 Rd, where HR(x) denotes the Hessian of R at x. In other words, the
Hessian of a ⇢-weakly convex function has all its eigenvalues in the range [�⇢, +1).

Remark 8.1. Any differentiable function R with L-Lipschitz gradient is L-weakly
convex. This estimate is, however, not necessarily tight, in the sense that R might
also be ⇢-weakly convex for some 0  ⇢ ⌧ L all the way to zero. For instance,
any convex R with L-Lipschitz gradient is L-weakly convex but it is also trivially
0-weakly convex because it is equivalent to being convex.

Weak convexity provides more flexibility, while still maintaining most of the
desirable properties of usual convex-regularization frameworks. In particular, the
proximal operator

prox
R
(y) = arg min

x2Rd

1

2
kx� yk2

2
+ R(x) (8.7)

is well-defined for any ⇢-weakly convex R with ⇢ < 1. Indeed, the objective in (8.7)
is (1� ⇢)-strongly convex, which ensures the existence of a unique minimizer. The
properties of the proximal operator in a generic non-convex setting are characterized
in detail in [97]. The main implication here is the Lipschitz continuity of our
denoiser (8.7) (Proposition 8.1).

Proposition 8.1 ([97]). For any ⇢-weakly convex regularizer R with ⇢ < 1, there
exists a convex lower semi-continuous potential g : Rd ! R such that prox

R
(x) 2

@g(x) holds for every x 2 Rd. Conversely, the subgradient of any such g coincides
with prox

R
for some R that is 1-weakly convex on any convex subset of its domain.

Furthermore, prox
R

is ( 1

1�⇢
)-Lipschitz, in the sense that

k prox
R
(y2)� prox

R
(y1)k2 

1

1� ⇢ky2 � y1k2 (8.8)

for any y1,y2 2 Rd. More generally, Ck+1 regularity of the potential g leads to Ck

regularity of prox
R
. Finally, prox

R
is invertible on its range in this setting.

For a convex regularizer R, ⇢ = 0 and, hence, prox
R

is non-expansive (1-
Lipschitz). For a non-convex but weakly convex R, namely ⇢ > 0, this is not
necessarily the case anymore. We conjecture that this is key to the boost in per-
formance since non-expansive denoisers have intrinsic limitations, see for instance
[329, Fig. 1].
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8.4 Design of a Learnable and Provably 1-Weakly
Convex Regularizer for Denoising

In this section, we discuss the construction and training of R and compare it with
several other variational frameworks.

8.4.1 Regularizer Architecture
The weakly convex regularizer R is chosen as the sum of convolutional ridges

R : x[·] 7!
NCX

i=1

X

k2R2

 i

�
(hi ⇤ x)[k]

�
, (8.9)

where x[·] represents a 2D image, (hi[·])NC

i=1
are the impulse responses of a collection

of linear and shift-invariant filters, and ( i)
NC

i=1
are potential functions with Lipschitz

continuous derivative. In practice, the finite-size input images are zero-padded so
that the outputs of the convolutions have the same spatial size as the input image.
We also choose potential functions with a shared profile  , so that  i = ↵�2

i
 (↵i·)

with ↵i > 0. As the hi[·] can absorb the ↵i in the definition of  i, this is just a
different parameterization for adding weights ↵�2

i
in front of the profile  . The

advantage of our parameterization is that Lip( 0
i
) does not depend on ↵i, which

will simplify the reasoning throughout this section. The number NC of filters is
also referred to as the number of channels or feature maps of the model. The
motivations behind our choice are threefold.

• Interpretability. The model (8.9) includes many traditional compressed-
sensing regularizers. Consequently, it has a simple signal-processing interpre-
tation, see Section 8.4.5. The parameters for deeper CNN-based regularizers
are usually much harder to interpret than those in (8.9).

• Control of ⇢. The weak-convexity modulus of (8.9) can be upper-bounded
using Proposition 8.2. This is far less obvious for deeper CNN architectures.
There, weak convexity is usually promoted via regularization during training
[76]. While this works qualitatively, it does not generate provably ⇢-weakly
convex maps for some prescribed ⇢.
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• Model Expressivity. There is evidence that, in constrained settings, (8.9)
has good expressive power. For instance, when learning convex regularizers
for (8.2), architectures of the form (8.9) are on par with deep CNNs such as the
input convex NN (ICNN), all the while depending on much fewer parameters
[329].

To simplify the notation in the sequel, the regularizer (8.9) is written whenever
needed in the generic form

R : x 7!
d⇥NCX

j=1

 j(w
T

j
x), (8.10)

where x = (x[k])k2⌦ 2 Rd is the vectorized representation of x[·], the wj 2 Rd cor-
respond to shifted versions of the filter kernels, and j indexes at the same time along
the channels and the 2D shifts of the kernels. The gradient of this differentiable
regularizer R reads

rR(x) = WT
'(Wx), (8.11)

where W = [w1 · · ·wdNC
]T 2 RdNC⇥d and ' is the pointwise activation function

given by '(z) = ( 0
j
(zj))

dNC

j=1
= (↵�1

j
 0(↵jzj))

dNC

j=1
. Note that Wx is a multichan-

nel filtered version of the image x. Since  can absorb the spectral norm of W, we
enforce that kWk = 1, where k · k denotes the spectral norm, in order to remove
some redundancy from the model and simplify the explanations.

In the following, we use that the Lipschitz continuity of  0 implies differentiabil-
ity of  0 almost everywhere (Rademacher’s theorem) and that the essential infimum
ess inft2R  00(t) is well-defined and satisfies | ess inft2R  00(t)|  Lip( 0).

Lemma 8.1. Let  : R ! R have Lipschitz continuous derivative. Then  is
⇢-weakly convex for any ⇢ � sinf = max(0,� ess inft2R  00(t)).

Proof. The Lipschitz continuity of  0 implies that  0(t2)� 0(t1) =
R

t2

t1
 00(t)dt for

any t1, t2 2 R. From this, we infer that

( (t2)�  (t1))(t2 � t1) � (ess inf
t2R

 00(t))(t2 � t1)
2,

which is precisely condition (8.5).
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Proposition 8.2. Any R of the form (7.4) with kWk = 1 and a ⇢-weakly convex
 is ⇢-weakly convex. In particular, assuming that  0 is Lipschitz continuous, this
holds for any ⇢ � sinf as defined in Lemma 8.1.

Proof. Since ↵i > 0 and  i = ↵�2

i
 (↵i·), the convexity of t 7!  (t) + ⇢

2
t2 implies

the convexity of t 7!  i(t)+ ⇢

2
↵�2

i
(↵it)2. Thus, x 7!  j(wT

j
x)+ ⇢

2
(wT

j
x)2 and x 7!

R(x)+ ⇢

2
kWxk2

2
are also convex. Since kWk = 1 and ⇢ > 0, x 7! ⇢

2
(kxk2

2
�kWxk2

2
)

is convex, and we infer that x 7! R(x) + ⇢

2
kxk2

2
is convex.

Hence, we can obtain a 1-weakly regularizer R by enforcing that sinf  1.

Remark 8.2. The ridge decomposition (8.10) of R is also used within the CRR-NN
framework [329], which involves the learning of a convex-ridge regularizer R with
learnable spline potentials  j. For CRR-NNs, sinf = 0 is enforced to ensure that
the  j are convex. On the contrary, the present WCRR-NN model with sinf 2 [0, 1]
has more freedom and therefore extends upon [329].

Proposition 8.3 (Existence of a minimizer). Let H 2 Rm⇥d and  i : R ! R,
i = 1, . . . , p, be positive, continuous and piecewise-polynomial functions with finitely
many pieces. Then,

; 6= arg min
x2Rd

1

2
kHx� yk2

2
+

pX

i=1

 i(w
T

i
x). (8.12)

Proof. Each  i partitions R into finitely many closed1 intervals (I`

i
)Li

`=1
on which

it is a polynomial, and hence  i(wT

i
·) partitions Rd into Li closed convex regions

⌦`

i
= {x : wT

i
x 2 I`

i
}. Based on theses, we partition Rd into finitely many polytopes

of the form \p

i=1
⌦`i

i
, where `i 2 {1, . . . , Li}. Since the partition is finite, the

infimum of the objective is the infimum of the objective on (at least) one of these
closed polytopes, say P = \p

i=1
⌦`i

i
.

Now, we pick a minimizing sequence (xk)k2N ⇢ P . Due to the coercivity of
k · k2

2
, we get that the sequence (Hxk)k2N remains bounded. We now note that

if I`i

i
is bounded, i.e. 1 < `i < Li, then (wT

i
xk)k2N is bounded. Otherwise, the

interval I`i

i
is unbounded, and since  i is a positive polynomial on it, it is either

coercive or constant2. Let M be the matrix whose rows are the rows of H and the
1
Such a partition with closed interval exists because the profile functions are continuous.

2
A nonconstant polynomial cannot have a finite limit at ±1.
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wT

i
with i such that  i is not constant on I`i

i
. Given the previous arguments, the

sequence (Mxk)k2N is bounded. The situation is now the same as in the second
part of the proof of Proposition 7.1 given in Chapter 8, and one can follow the same
steps to conclude.

The present parameterization of R, is greatly inspired by [329]. However, instead
of its single (non-decreasing) spline non-linearity used in [329], we decompose the
activation ' =  0 into the difference of two splines as

' = µ'
+
� '�, (8.13)

where µ 2 R�0 is a learnable parameter and the '
+
, '� are trainable, non-

decreasing, non-expansive linear splines. Although theoretically equivalent to the
use of a single linear spline ' with sinf  1, we found the decomposition (8.13) to
be more effective for the training. Theoretical motivations for using splines in a
constrained NN have been proposed in [210], and a discussion of the expressivity
of the resulting NN architecture can be found in [332]. Our choice ensures that the
following properties are met:

• R is 1-weakly convex, which follows from Proposition 8.2;

• the Lipschitz constant is bounded as

Lip(rR)  kWk2 Lip(')  max(µ, 1). (8.14)

In the following, we provide more parameterization details regarding the parame-
terization.

Parameterization of Learnable Linear Splines Both linear splines '
+

and
'� are parameterized in the same way with our spline toolbox [235, 313]. In
the sequel, we abbreviate their respective learnable parameters c+ and c� by c.
We use 'c : R ! R with knots ⌧m = (m �M/2)�, m = 0, . . . , M , where � is
the spacing. For simplicity, we assume that M is even. The learnable parameter
c = (cm)M

m=0
2 RM+1 defines the values 'c(⌧m) = cm of 'c at the knots. To

fully characterize 'c, we extend it by the constant value c0 on (�1, ⌧0] and cM on
[⌧M , +1). Consequently, any primitive  of 'c is piecewise quadratic on [⌧0, ⌧M ]
with affine extensions.
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Constraints on the Linear Splines To ensure that the '
i

are non-decreasing
and non-expansive, we follow the strategy introduced in [329]. Let D 2 RM⇥(M+1)

be the one-dimensional finite-difference matrix with (Dc)m = (cm+1 � cm) for
m = 1, . . . , M . As 'c is piecewise-linear, it holds that

'c is non-decreasing and non-expansive, 0  (Dc)m  �, m = 1, . . . , M.
(8.15)

To optimize over {'c : 0  (Dc)m  �, m = 1, . . . , M}, we reparameterize the
linear splines as 'P "(c), where

P "(c) = SClip
[0,�]

(Dc) + 1T c (8.16)

is a nonlinear projection onto the feasible set (8.15). In (8.16), Clip
[0,�]

is the
pointwise clipping operation with Clip

[0,�]
(t) = min(max(0, t), �), and S denotes

the cumulative-sum operation with (Sd)m+1 =
P

m

k=1
dk for m = 0, . . . , M and any

d 2 Rm. In words, P " clips the finite differences between entries in c that are
either greater than � or negative and sets them to the closest admissible value,
while it preserves the mean due to the additional term 1T c.

Further, we enforce that '
+

and '� are odd, which is natural for imaging
as it results in even potentials. To get this symmetry while still satisfying (8.15),
we use the change of variable c ! 1

2
(P "(c) � reverse(P "(c)), where reverse

flips the order of the entries of c. Hence, all constraints are embedded into the
parameterization, and the parameter c that is learned remains unconstrained.

Parameterization of Convolutional Filters The learnable convolution layer
W is required to be of unit norm. Hence, we parameterize W as W = U/kUk,
where U represents a convolutional layer with the same dimensions as W. The com-
putation of the spectral norm kUk will be described in Section 8.4.3. To efficiently
explore a large field of view, see also [329], we decompose U into a composition
of three zero-padded convolutions with kernels of size (ks ⇥ ks), ks odd, and an
increasing number of output channels. Similar to [292], the convolution kernels are
constrained to have zero means. The equivalent (up to boundary effects) single-
convolution layer would have a kernel of size (Ks ⇥Ks) with Ks = 3ks � 2.
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8.4.2 Multi-Noise-Level Denoiser
So far, we only introduced a generic R that is not adapted to diverse noise levels.
To obtain a denoiser for various noise levels �, a common approach is to incorporate
an adjustable parameter �� 2 R as in

x̂ = arg min
x2Rd

1

2
kx� yk2

2
+ ��R(x). (8.17)

In principle, this leads to a noise-level-dependent regularizer R� = ��R, but this
dependence on � turns out to be too simple to ensure good performance across mul-
tiple noise levels. Another limitation in this setting is that R� is ��-weakly convex.
Hence, for �� > 1, one is not guaranteed to remain within the CNC framework and,
for �� < 1, we might not exploit the full freedom given by CNC models. Therefore,
we instead express the parameters ↵i

3 introduced in Section 8.4.1 as functions of
the noise level

↵i(�) = es↵i
(�)/(� + ✏), (8.18)

where we set ✏ = 1 ·10�5 to prevent instabilities for small �. Here, s↵i
is a learnable

linear spline with underlying parameter ci

↵
, which is parameterized similarly to '±

but without constraints. The exponential parameterization in (8.18) allows for
efficiently exploring a large range at training and such a scheme is quite common
in learning, e.g. in the popular TNRD framework [330]. The scaling by � in (8.18)
allows for normalizing the noise distribution before the activation and was found to
be very helpful in practice. Ultimately, our noise-level-dependent profile functions
 i(t,�) = (1/↵i(�))2 (↵i(�)t) satisfy

@2 i

@t2
(t,�) = µ'0

+
(↵i(�)t)� '0

�(↵i(�)t) 2 [�1, +1). (8.19)

Remark 8.3. The bound on the weak-convexity modulus given in Proposition 8.2
does not depend on the parameters ↵i. Consequently, the addition of the ↵i as
learnable parameters does not compromise the weak-convexity guarantees on R.

3
In preliminary investigations, we also attempted the learning of the parameter µ as a function

of the noise level but it did not improve performance. Hence, µ is chosen to be constant across

noise levels.
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In the remainder of this chapter, ✓ represents the aggregated set of learnable
parameters (as detailed in Section 8.4.3) and we use the notation R✓ whenever
an explicit reference to the parameters is needed. Likewise, with a slight abuse
of notation, we use R✓(�) to denote the regularizer at noise level �. This noise-
dependent regularizer R✓(�) then yields the proximal denoiser

D✓(�)(y) = prox
R✓(�)

(y) = arg min
x2Rd

1

2
kx� yk2

2
+ R✓(�)(x). (8.20)

In general, D✓(�) does not have a closed-form expression but, due to the convexity
and smoothness of the underlying objective, D✓(�)(y) can be computed efficiently
with gradient-based solvers. In practice, we use AGD [333] combined with the stan-
dard gradient-based restart technique introduced in [334]. The stepsize is chosen as
1/(1+max(1, µ)), which ensures convergence to a global minimizer as a consequence
of the Lipschitz bound (8.14).

8.4.3 Training Procedure
In this section, we detail how the parameters ✓ are learned so that D✓(�)(y) is a
good Gaussian denoiser across multiple noise levels.

Training Problem

Let {xm}M

m=1
be a set of clean images. Each image xm is corrupted as ym =

xm + �mnm with Gaussian noise nm ⇠ N (0, I) and a noise level �m ⇠ U [0,�max].
Then, we define the following multi-noise-level training problem

✓̂ 2 arg min
✓

MX

m=1

E(nm,�m)

�
kD✓(�m)(y

m)� xmk1
�
. (8.21)

Here, the `1 loss is chosen because it is known to be robust and well-performing
for the training of CNNs [335, 299].

Optimization

For clarity, we briefly recall the various parameters contained in ✓ before outlining
the actual optimization procedure.
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Profile-Related Parameters The linear splines '+ and '� are parameterized
by c+ and c� via the constrained coefficients c̃± = 1

2
(P "(c±)� reverse(P "(c±)))

so that they are odd, non-decreasing, and non-expansive. Together with µ > 0,
(8.13) then leads to the linear-spline activation function '. Recall that its primitive
defines the profile  . The parameters ci

↵
specify the linear-spline functions ↵i(�),

which rescale the profile  across the channels in (8.10) and across the noise levels.

Spectral Normalization The convolution operation represented by W is pa-
rameterized as W = U/kUk, U consisting in the composition of 3 zero-padded
convolutions. Here, kUk is computed as follows.

• For an efficient optimization, it is necessary to embed the estimation of kUk
into the forward pass. By assuming circular boundary conditions instead of
zero-padding, we can consider U as a single-convolution layer. Then, UTU
encodes a 2D convolution from a one-channel input to a one-channel output.
Hence, it can be represented by a kernel KUT U 2 R(2Ks�1)⇥(2Ks�1). In this
setting, the spectrum of UTU can be computed using the 2D discrete Fourier
transform (DFT) [209] as

spec(UTU) =
�
|DFT(Padp

d
(KUT U))k1k2 | : 1  k1, k2 

p
d
 
, (8.22)

where Padp
d

zero-pads KUT U into a (
p

d ⇥
p

d) image. We rely on (8.22)
to estimate kUk ' max(spec(UTU)) during training since it is efficient to
compute.

• Subsequently, when evaluating a trained WCRR-NN model, the true kUk is
computed with high precision using the power method (1000 steps). This
firm normalization guarantees the 1-weak convexity of the underlying R (up
to numerical imprecision).

Implicit-Differentiation The learning of the proximal denoiser comes with the
challenge that D✓(�) depends implicitly on ✓. As shown in the deep-equilibrium
(DEQ) framework [307], it is possible to compute the Jacobian J✓D✓(�) of the de-
noiser with respect to the parameters via implicit differentiation. For this purpose,
two steps are required.
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• Image Denoising. First, given a noisy input ym, one needs to perform the
forward pass, which consists in the computation of x̂ = D✓(�m)(y

m). The
deployed AGD is run until the relative change of norm between consecutive
iterates is lower than 10�4.

• Gradient Computation. We use the DEQ implementation introduced in
[307] and now briefly discuss the general concept within our setting. The
differentiability of R implies that the denoised images satisfy

x̂(✓)� y + rxR(✓, x̂(✓)) = 0, (8.23)

where the dependence on � is dropped for clarity and the dependence on ✓
is made explicit. The application of the implicit-function theorem for (8.23)
leads to

(I + HR(✓, x̂(✓)))J✓x̂(✓) = J✓(rxR)(✓, x̂(✓)). (8.24)
Hence, we evaluate the matrix-vector products with (J✓D✓(y))T = (J✓x̂(✓))T

(which are required for computing the gradients of (8.21) within the back-
propagation algorithm) by solving a simple linear system. This is carried
out with the Anderson routine given in [307]. While deriving J✓(rxR) is
cumbersome and usually left to automatic differentiation, we use the explicit
expression

HR(x̂)u = WT
�
'

0(Wx̂)� (Wu)
�
, (8.25)

where � is the Hadamard product and the piecewise-constant function '
0 is

analytically derived from the B-spline representation of the linear spline '.
This yields the same results as automatic differentiation but was found to be
more efficient.

Optimization The non-convex training problem in (8.21) is solved with the
stochastic Adam optimizer [43], where we sample for each batch the xm, the corre-
sponding noise-level �m, and the noise nm. Note that, within each batch, images
are corrupted with different noise levels and, likewise, in different epochs, different
noise levels can be applied to the same xm.

8.4.4 Training and Denoising Performance
The proposed weakly convex regularizer is learned over the Gaussian-denoising task
described in Section 8.4.3, with �max = 30/255. The same procedure as in [188]
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is used to form 238,400 grayscale patches4 of size (40 ⇥ 40) from 400 images of
the BSD500 data set [280], while 12 other images are kept for validation. In
accordance with the ablation study reported in Tables 8.2 and 8.3, the three filters
in U have kernels with ks = 5 and 4, 8, and 60 output channels, respectively. The
linear spline '

i
have M + 1 = 101 equally distant knots with � = 2 · 10�3. We

initially set c+ = 0 and (c�)m = ⌧m, which was found to be important to help
the training. Intuitively, this choice helps the regularizer to use weak convexity,
which is only permitted through c�. The linear splines parameterizing ↵i(�) have
11 equally distant knots in the range [0,�max] and are initialized with the constant
value 5. Our model is trained with the Adam optimizer for 6000 steps with batches
of size 128, which takes less than 2 hours on a Tesla V100 GPU. The learning rates
are initially set to 5 · 10�2 for µ, 5 · 10�3 for U, and ci

↵
, and to 5 · 10�4 for c+

and c�. Then, they are decayed by 0.75 every 500 batches. For evaluation, the
denoising (8.20) is performed with AGD and a tolerance of 10�4 for the relative
change of norm between consecutive iterates. An example of convergence curves is
provided in Figure 8.1.

Figure 8.1: Example of convergence curves for denoising with the WCRR-NN and
AGD.

The numerical evaluation of our WCRR-NNs and several other methods on
the BSD68 test set is provided in Table 8.1. The task is non-blind, in the sense
that the noise level is used either directly as an input (as in BM3D) or indirectly
via a regularization parameter that is tuned on a corresponding validation set (as
in TV). The first important observation is that WCRR-NNs, which implement a

4
WCRR-NNs are fully convolutional and can process input of any spatial size.
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convex energy, outperform the popular BM3D denoiser [331]. To the best of our
knowledge, this is the first time a (learnable) convex model surpasses BM3D. A
visual comparison of BM3D and (W)CRR-NNs is provided in Figure 8.2. The
results obtained with the 2nd and 6th methods in Table 8.1 on the same image can
be found in the original paper [292]. Next, we discuss in more depth the frameworks
from Table 8.1 that are close in spirit to WCRR-NNs.

Table 8.1: Denoising performance on the BSD68 test set.

� 5/255 15/255 25/255

Convex
TV1,2,3[22] 36.41 29.90 27.48
Higher-order MRFs convex1,2,3 [292] - 30.45 28.04
CRR-NN1,2,3[329] 36.96 30.55 28.11

Provably CNC TV CNC1,2 36.53 29.92 27.49
WCRR-NN1,2 37.68 31.22 28.69

Approx. CNC Prox-DRUNet 37.98 31.70 29.18

Others Higher-order MRFs1 [292] - 31.22 28.70
BM3D [331] 37.54 31.11 28.60

1
Ridge-based regularizer,

2
Minimization of convex functional,

3
Convex regularizer

Table 8.2: WCRR-NN: PSNR on BSD68 vs number of filters.

Nc 10 20 40 60 80

� = 5/255 37.43 37.59 37.63 37.66 37.66
� = 15/255 30.85 31.15 31.19 31.21 31.20
� = 25/255 28.16 28.62 28.67 28.68 28.69

CNC-Based Total Variation The WCRR-NN model is inspired by earlier
works that extend TV denoising to the CNC framework using non-convex poten-
tial functions [325, 326]. The publicly available implementations outperform TV for
specific classes of images, typically cartoon-like ones with sharp edges. However, we
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Figure 8.2: Denoising of the “castle" image from the BSD68 test set for noise level
� = 25.

Table 8.3: WCRR-NN: PSNR on BSD68 vs kernel size.

ks 3 5 7
Ks 5 13 19

� = 5/255 37.64 37.66 37.65
� = 15/255 31.14 31.21 31.21
� = 25/255 28.56 28.68 28.68

did not observe any significant improvements in the denoising of the natural images
in BSD68. Hence, in our comparison, we used our version of CNC-TV, which was
obtained by training a WCRR-NN with two fixed filters, namely, the horizontal and
vertical finite differences. This corresponds to an anisotropic TV denoising with
learned profiles—the CNC counterpart of the standard anisotropic TV denoising
model. As reported in Table 8.1, this only yields marginal improvements over TV.
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Field of Experts and Higher-Order MRFs The FoE approach corresponds
to learning the filters associated with a regularizer of the form (8.10) with hand-
picked profile functions [291]. It was successfully applied in [292], with both convex
and non-convex profiles. A key difference with WCRNNs lies in the theoretical
guarantees: The non-convex profiles are unconstrained in [291, 292]. Hence, the
objective function is not provably convex. This means that the optimization is
delicate and the convergence to a global optimum cannot be guaranteed. Interest-
ingly, WCRR-NN offer the same performance as in [292] while minimizing a convex
energy.

CRR-NNs This chapter extends upon the convex regularizers learned with CRR-
NNs [329]. The substitution of weak convexity for convexity makes a significant
difference as it yields a gain of at least 0.5dB for all noise levels (see Table 8.1 and
Figure 8.3). In contrast with the simpler 2-filter TV setting, the improvement is
substantial. This indicates that the learning of sufficiently many filters is necessary
to fully exploit the additional freedom provided by weak convexity.

Gradient-Step Denoisers Proposition 8.1 allows one to (implicitly) construct
non-convex regularizers R by learning their proximal operator. This result is ex-
ploited in [76], where prox

R
= r is parameterized through the potential  =

1

2
k · k2 + g, where rg must be contractive. To leverage the power of deep-learning,

the authors choose g = 1

2
k · �DRUNet(·)k2

2
, where DRUNet [336] is a deep CNN

with ⇠ 17 million parameters. As there are currently no efficient methods to glob-
ally bound the Lipschitz constant of the gradient of a deep CNN, they propose to
instead regularize the norm of the Jacobian of rg at finitely many locations dur-
ing training. This yields the Prox-DRUNet denoiser, which performs very well in
practice (see Table 8.15). Note that Prox-DRUNet only approximately satisfies the
conditions to be a truly CNC method because kHg(x)k can be greater than 1 for
some x, meaning that rg is not contractive (as already reported in [76]). On noisy
BSD68 images, we found6 that kHgk can be as large as 1.07 (� = 5), 1.08 (� = 15),

5
The Prox-DRUNet denoiser given in [76] is trained on color images. For grayscale denoising,

we plug the image into all three color channels and average the output across the channels, and

tune the denoising strength parameter � to optimize performance. As expected, the obtained

metrics are on par with DnCNN for � = 25 and with the gradient-step denoiser for � = 5 in [102],

which indicates the appropriateness of the usage.
6
We computed kHgk with a precise power method (300 iterations).
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Figure 8.3: Denoising test performance of WCRR-NNs vs weak convexity bound
sinf . Note that for sinf = 0 the regularizer is convex and we recover the performance
of CRR-NNs.

1.18 (� = 25), and on a set of 68 random images (iid uniformly distributed pixels
in [0, 1]) as large as 1.69 (� = 5), 1.20 (� = 15), 1.43 (� = 25). Overall, we believe
that WCRR-NNs and Prox-DRUNet offer a very complementary perspective. In
fact, the good performance of Prox-DRUNet suggests that there could even be some
room for further improvements with provably CNC methods.
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8.4.5 Interpretation as Sparsity Prior
The filters and profile functions learned for our WCRR-NNs are shown in Figures 8.4
and 8.6, respectively.

Filters The impulse responses of the filters in W present patterns akin to wavelets
and Gabor filters, in that they come in various modulations, orientations, and scales.
In addition, the kernel K corresponding to the convolution WTW is very close to
the 2D discrete Kronecker impulse, meaning that W is almost a Parseval frame
(WTW ' I). A key difference, however, is that K is zero-mean. We also observed
that more filters than in the convex setting of CRR-NNs are needed to reach the
maximal performance. The payoff is that the filters are now able to capture more
complicated patterns.

Profile Functions The learned profiles  i are shared among the filters and then
individually rescaled with the ↵i so that the  i have the same shape. Hence, only
their prototype  is discussed here. The latter converges to a quasi-convex function
(i.e., sub-level sets are intervals) even without us explicitly imposing this constraint.
Moreover,  fully exploits the 1-weak convexity of the regularizer R in the sense
that mint  00(t) = �1. Hence, this is an active constraint since R would not satisfy
it by default. Overall,  closely resembles the minimax concave penalty function
[324]. The influence of the weak-convexity parameter sinf on the shape of the profile
is shown in Figure 8.6.

To extend our model, we also experimented with learning a different  i for each
filter. This led to less interpretable profiles (not necessarily quasi-convex and with
some oscillations), while it only offered a negligible gain in performance: less than
0.05dB on the denoising experiment for noise levels � 2 {5/255, 15/255, 25/255}.

Noise-Dependent Scaling The only part of R that depends on the noise level
� are the profiles  i, which depend on � through the ↵i(�). As can be seen in
Figure 8.5, the 1/↵i are on average linear functions of �. Loosely speaking, most
profiles will roughly have the form  i(t,�) ' �2 (t/�). To verify that such a simple
dependence of R on � is sufficient, 3 WCRR-NNs were trained to denoise at a single
noise level (� 2 {5/255, 15/255, 25/255}). As these models do not outperform the
multi-noise-level WCRR-NN on BSD68, the simple rescaling of the profiles appears
to suffice.
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Figure 8.4: Impulse response of the filters in the learned WCRR-NN.

Figure 8.5: Plot of 1/↵(�) vs �, where ↵(�) =
P

NC

i=1
↵i(�) encodes the average

behavior across the channels.
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Figure 8.6: Potential function  and activation function ' =  0 of the learned
WCRR-NN. These functions are splines of degrees 2 and 1, respectively. The ver-
tical markers indicate the control points of the splines.

Signal-Processing Perspective The regularizer R is trained to promote natural
images. The corresponding gradient-descent step7 x 7! x �rR(x)/Lip(rR) =
x�WT

'(Wx)/k'0k1, which should increase the regularity of images, is therefore
expected to remove features considered as noise in natural images. In turn, we
then expect that x 7!WT

'(Wx)/k'0k1 extracts some noise. Due to its shape,
see Figure 8.6, the function '/k'0k1 preserves the small responses Wx to the
filters (it is almost the identity for small inputs), and cuts the large ones (it is
almost the zero function for large inputs). Hence, one reconstructs the estimated
noise WT

'(Wx)/k'0k1 by essentially removing the components of x that exhibit
a significant correlation with the kernels. This allows for a more efficient noise
extraction than done by the monotonic clipping function learned in the convex
regularization framework of CRR-NNs, see [329, Figs. 5 and 6] and 8.7. While the

7
In our setting with no biases and where ' has a maximum slope at the origin, it can be shown

that Lip(WT '(W·)) = k'0k1.
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monotonic clipping also preserves the small inputs, it is unable to fully remove the
large responses because of the monotonicity constraint stemming from the convexity
of the underlying potential.

In addition to the above perspective, we can make a link with wavelet- or
framelet-like denoising [337, 338, 339, 340, 341]. Indeed, given that WTW ' I,
the gradient-descent step can be approximated as x 7! x �WT

'(Wx)/k'0k1 '
WT�(Wx) with � = Id � '/k'0k1. Since � is zero around the origin and is
the identity for sufficiently large inputs, it qualitatively stands between the soft-
and hard-thresholding functions that have been key components for wavelet and
framelet denoising for years. Finally, note that framelet-denoising models are them-
selves closely related to proximal operators [248].
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Figure 8.7: Potential functions  learned and the corresponding activation functions
' =  0 of the WCRR-NN for different weak-convexity modulus.
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8.5 Extension to Generic Inverse Problems
We now use the regularizer R✓(�) trained in Section 8.4 to solve inverse problems
based on the variational formulation (8.2). Here, the key challenge is the possible
non-convexity of the objective, which prevents us from minimizing (8.2) globally.
It is, however, possible to search for critical points. These are still of particular
interest, especially because the regularizer has a simple structure with an almost
convex energy landscape.

Proximal vs Gradient Methods Standard PnP frameworks rely on proximal-
based methods with an explicit denoising step. The motivation there is that the
denoising step is typically efficient to perform while neither the regularizer (if it
exists) is explicitly known, nor its gradient. In our setting, on the contrary, it is
very efficient to evaluate the regularizer and its gradient, and hence AGD methods
[333], which are applicable to general non-convex problems [342], are better suited.
In our setting, AGD is also known to attain optimal convergence rates among first-
order methods. In the sequel, we recall the main features of AGD and show how
to leverage the knowledge of the weak-convexity modulus of the objective.

8.5.1 Accelerated Gradient Descent
To solve the inverse problem, we minimize the regularized objective

J (x) =
1

2
kHx� yk2

2
+ �R✓(�)(x), (8.26)

where R✓(�) is the 1-weakly convex regularizer from Section 8.4.4 and � > 0 is
a regularization parameter. Since the objective is differentiable, we can rely on
gradient-based methods to find critical points of J as a convenient alternative
to proximal algorithms. To reduce the reconstruction time, we propose an AGD
variant in Algorithm 2, which is tailored to �-weakly convex functionals J with
L-Lipschitz-continuous gradient.

From (8.14), we infer that rJ is L-Lipschitz-continuous with L  kHk2 +
�max(µ, 1), which implies for x1,x2 2 Rd the standard upper estimate

J (x1)  J (x2) + rJ (x2)
T (x1 � x2) +

L

2
kx1 � x2k2. (8.27)
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Algorithm 2 Safeguarded AGD for �-weakly convex J with L-Lipschitz gradient
Input: initialization x0 2 Rd, tolerance ✏ > 0, a > 1
Set t0 = t1 = 1, k = 1, z0 = x0, x1 = x0

while kxk � xk�1k/kxk�1k > ✏ or k = 1 do
zk = xk + tk�1�1

tk

(xk � xk�1)

crit = rJ (zk)T (zk � zk�1) + a�

2
kzk � zk�1k2

if crit > 0 then
zk = xk

tk = 1

xk+1 = zk � 1

L
rJ (zk)

tk+1 =
1+

p
1+4t

2
k

2

k  k + 1
Output: Approximate solution xk

As R✓(�) is 1-weakly convex, J is �-weakly convex. Hence, the subgradient in-
equality for convex functions leads for x1,x2 2 Rd to the lower estimate

J (x1) � J (x2) + rJ (x2)
T (x1 � x2)�

�

2
kx1 � x2k2. (8.28)

Given some initilization x0 = x�1= z0 2 Rd and a sequence of Nesterov momentum
parameters {�k}k2N ⇢ [0, 1], the standard AGD [333] update steps read

zk = xk + �k(xk � xk�1), (8.29)

xk+1 = zk �
1

L
rJ (zk). (8.30)

The combination of (8.30) and (8.27) yields the decrease estimate

J (xk+1)� J (zk)  �L

2
kxk+1 � zkk2. (8.31)

Yet, the update (8.29) does not necessarily imply the decrease of {J (zk)}k2N.
Hence, for a predefined a > 1, we propose to check the condition

rJ (zk)T (zk � zk�1) +
a�

2
kzk � zk�1k2  0 (8.32)
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after having tentatively performed (8.29). If (8.32) is violated, we perform the
plain gradient update zk = xk (instead of (8.29)) and apply a restart technique, as
proposed in [334]. In this case, we get from (8.31) at the previous step that

J (zk)� J (zk�1)  �
L

2
kzk � zk�1k2. (8.33)

Otherwise, the incorporation of (8.28) implies that

J (zk)� J (zk�1) rJ (zk)T (zk � zk�1) +
�

2
kzk � zk�1k2 (8.34)

 � (a� 1)�

2
kzk � zk�1k2. (8.35)

To sum up, the acceleration steps are kept only if they lead to a sufficient decrease of
the objective. Otherwise, the plain gradient-descent step guarantees this decrease.

Remark 8.4. The gradient-based condition (8.32) is more restrictive than the
objective-based condition (8.33). However, (8.32) is computationally cheaper to
verify as it only involves inner products of already computed quantities. In practice,
we observed that (8.32) is rarely violated.

Remark 8.5. The parameter a in (8.32) must be greater than the weak-convexity
modulus of R✓ to ensure convergence. At this point, a precise estimate of this
modulus—which we know to be bounded by one in our setting—weakens the condi-
tion (8.32) and typically yields faster convergence. On the contrary, the reliance on
a loose bound leads to frequent restarts, at the detriment of acceleration.

Regarding Algorithm 2, we now derive a convergence result in Theorem 8.1
using [343, Theorem 3.7], which itself extends the seminal work [96] to the inertia
setting. Note that the objective (8.26) is semi-algebraic since the profile function
 is piecewise-polynomial. Hence, it satisfies the required (quite technical) KL
property, see also [96].

Theorem 8.1. Assume that J satisfies the KL property and is bounded from below.
If the sequence (zk)k2N generated by Algorithm 2 (without the stopping criterion)
is bounded, then it converges to a critical point ẑ of J . Moreover, the sequence
(zk)k2N has finite length, in the sense that

X

k

kzk+1 � zkk <1. (8.36)
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Proof. According to [343, Theorem 3.7], we need to check that

(H1) there exists a > 0 such that J (zk)+akzk�zk�1k2  J (zk�1) for all k 2 N;

(H2) there exists b > 0 such that krJ (zk)k  2b(kzk�zk�1k+ kzk+1�zkk) for
all k 2 N;

(H3) there exists a subsequence (zkj
)j2N such that zkj

! z and J (zkj
)! J (z).

These three conditions are needed in order to conclude that the iterates (zk)k2N
satisfy (8.36) and converge to a critical point ẑ of J . We have already verified
(H1) in (8.33) and (8.34). For (H2), we first note that, if (8.32) is violated, then it
directly holds that

krJ (zk)k = Lkzk+1 � zkk. (8.37)

Otherwise, krJ (zk)k = Lkxk+1 � zkk, and it follows that

krJ (zk)k  Lkzk+1 � zkk+ �kLkxk+1 � xkk

 Lkzk+1 � zkk+ L
���zk �

1

L
rJ (zk)� zk�1 +

1

L
rJ (zk�1)

���

 Lkzk+1 � zkk+ 2Lkzk � zk�1k. (8.38)

Since we assume that the sequence (zk)k2N is bounded and since J is continuous,
also (H3) holds and the result follows from [343, Theorem 3.7].

Remark 8.6. To ensure that (zk)k2N remains bounded, one can simply add a regu-
larization term kxk2 to J , where  > 0 can be arbitrarily small. Then, J becomes
coercive because the profile  has linear extensions (see Lemma 8.2). Therefore,
(zk)k2N must remain bounded, otherwise (J (zk))k2N could not be decreasing (see
(8.33)). Empirically, however, this “trick” was found to be unnecessary as the iter-
ates would remain bounded in all settings explored.

Lemma 8.2. Let R be a ridge regularizer of the form (7.4), where the profiles  j

are continuous, even, and have affine extensions8. Then

x 7! kHx� yk2
2

+ R(x) + kxk2
2

(8.39)

is coercive for any  > 0.
8
In the sense that there exists t0 2 R such that  j is affine on (�1,�t0] and on [t0,+1).
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Proof. By assumption all  j are affine on [t0, +1) with slope uj 2 R. Hence, it
holds for |t| > t0 that  j(t) =  j(|t|) = uj(|t| � t0) +  j(t0). Next, we define
vj = min|t|t0

( j(t) � uj(|t| � t0))   j(t0), which is well-defined since  j are
continuous. By definition of vj , it holds for any t 2 R that  j(t) � uj(|t|� t0)+ vj ,
and the objective in (8.39) is lower bounded by

x 7! kHx� yk2
2

+ kxk2
2

+
d⇥NCX

j=1

uj(|wT

j
x|� t0) + vj , (8.40)

which is coercive for any  > 0.

Remark 8.7. For
p
�min(HTH) � �, the objective (8.26) is (

p
�min(HTH)� �)-

strongly convex and, hence, convex. Then, Algorithm 2 is guaranteed to converge
to a global minimum of the objective. Otherwise, some results on convergence to
local minima come into play, including with rates[96, 344].

As the problem is potentially non-convex, the initialization of the algorithm may
influence the final reconstruction. However, we did not observe such a dependence
in our experimental settings. Therefore, we opted for a zero-initialization or when
applicable used a fast-to-compute initial guess, e.g. FBP for CT. A more sophisti-
cated strategy may take as initial configuration the reconstruction of a trustworthy
convex variational model such as [329]. Then, Algorithm 2 would be used to refine
the reconstruction.

8.5.2 Experiments
The WCRR-NN model trained in Section 8.4 to perform denoising on the BSD500
dataset is now deployed to solve two image-reconstruction problems using safe-
guarded AGD. For each setup, � and � are tuned over a validation set to maximize
the peak signal-to-noise ratio (PSNR) with the coarse-to-fine routine from [329],
and then used for evaluation.

MRI (I) The ground truth consists of fully sampled knee images with size (320⇥
320) from the fastMRI dataset [281]. The corresponding MRI measurements are
a subsampled version of the 2D Fourier transforms (k-space). This subsampling
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is performed with a Cartesian mask that has two parameters: the acceleration
Macc = 4 and the center fraction Mcf = 0.08. All the b320Mcfc columns in the
center of the k-space (low frequencies) are retained in full, while columns in the
other region of the k-space are uniformly sampled. More precisely, we are left
with b320/Maccc selected columns. Lastly, both the real and imaginary parts of the
measurements are corrupted by Gaussian noise with standard deviation �n = 10�4.
For validation and testing, we picked 10 and 99 images, respectively, all normalized
to have a maximum value of one.

Number of Parameters

TV 1
ACR [285] 6 · 105

PnP-�CNN [313] 1 · 105

CRR-NN [329] 1 · 104

AR [294] 2 · 107

WCRR-NN 1 · 104

PnP-DnCNN [81] 6 · 105

Prox-DRUNet [76] 2 · 107

Table 8.4

MRI (II) The first MRI experiment just described was replicated from our
preprint [345]. For completeness, we also provide in this thesis results for the other
MRI experiments explored in Chapter 6 and 7. These experiments include single-
and multi-coil MRI, and we refer the reader to Chapter 6 for the experimental
details.

CT To provide a comparison with adversarial regularization (AR) [294] and its
convex counterpart ACR [285] (see more details in Section 8.5.2), we include the
sparse-view CT experiment proposed in [285]. Its data consist of human abdominal
CT scans for 10 patients, publicly available as part of the low-dose CT Grand
Challenge [284]. For validation, 6 images are taken uniformly from the first patient
of the training set used by [285]. To benchmark all methods, we use the same set as
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Table 8.5: PSNR and SSIM values for MRI (I) and CT reconstruction experiments.

(a) MRI (I)

Metric PSNR SSIM

Zero-fill 27.92 0.711

TV[28] 32.03 0.7922
CRR-NN [329] 33.14 0.842

WCRR-NN 34.55 0.858
Prox-DRUNet [76] 35.09 0.864

(b) CT

Metric PSNR SSIM

TV 31.57 0.852
PnP-�CNN (ReLU) 30.34 0.782
PnP-�CNN (LLS) 31.85 0.844
ACR [285] 32.17 0.868
CRR-NN 32.87 0.862

AR [294] 33.62 0.875
WCRR-NN 34.06 0.895
PnP-DnCNN [81] 33.83 0.881
Prox-DRUNet 34.20 0.901

[285], made of 128 slices with size (512⇥ 512) from a single patient, all normalized
to have a maximum value of one. The CT measurements are simulated using
a parallel-beam acquisition geometry with 200 angles and 400 detectors. These
measurements are corrupted by Gaussian noise with standard deviation �n = 2.0.

Comparison and Discussion

The methods used for comparison and the corresponding number of learned param-
eters are given in Table 8.4. The PSNR and structural similarity index measure
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Table 8.6: Single-coil MRI (II).

2-fold 4-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

Zero-fill 33.32 34.49 0.871 0.872 27.40 29.68 0.729 0.745
TV 39.22 37.73 0.947 0.917 32.44 32.67 0.833 0.781
PnP-�CNN (ReLU) 38.15 37.41 0.938 0.918 30.62 31.45 0.818 0.786
PnP-�CNN (LLS) 40.06 38.63 0.955 0.931 32.81 33.04 0.859 0.817
CRR-NN 40.95 38.91 0.961 0.934 33.99 33.75 0.880 0.831

PnP-DnCNN [81] 40.52 39.02 0.956 0.935 35.24 34.63 0.884 0.840
WCRR-NN 41.71 39.10 0.966 0.935 35.76 34.62 0.898 0.838
Prox-DRUNet [76] 41.85 39.12 0.967 0.937 36.20 35.05 0.901 0.847

Table 8.7: Multi-coil MRI (II).

4-fold 8-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

HTy 27.71 29.94 0.751 0.759 23.80 27.19 0.648 0.681
TV 38.06 37.31 0.935 0.914 32.77 33.38 0.850 0.824
PnP-�CNN (ReLU) 37.21 37.06 0.929 0.915 31.37 32.57 0.837 0.822
PnP-�CNN (LLS) 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835
CRR-NN 39.54 38.29 0.950 0.927 34.29 34.50 0.881 0.852

PnP-DnCNN [81] 39.55 38.52 0.947 0.929 35.11 35.14 0.881 0.858
WCRR-NN 40.11 38.43 0.953 0.926 35.55 35.15 0.893 0.856
Prox-DRUNet [76] 40.26 38.47 0.955 0.929 35.78 35.12 0.894 0.857

(SSIM) values on the test sets are reported together with the parameter numbers in
Table 8.5. The hyperparameters of each method are tuned to maximize the average
PSNR over the validation sets with the coarse-to-fine method described in [329].
We observe that WCRR-NNs outperform the other energy-based methods and are
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close to the PnP approach. For both problems, reconstructions are provided in
Figures 8.8 and 8.9, and examples of convergence curves for SAGD are given in
Figures 8.10 and 8.11.

Overall, the results illustrate the universality and efficiency of our method. In
the following, we briefly comment on the competing methods used in our evaluation.

Figure 8.8: Reconstructed images for the MRI (I) experiment. The reported metrics
are PSNR and SSIM.

Figure 8.9: Reconstructions for the sparse-view CT experiment. The reported
metrics are PSNR and SSIM.
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Figure 8.10: Example of convergence curves (MRI).

Figure 8.11: Example of convergence curves (CT).

Convex Models The TV and CRR-NN reconstructions serve as references for
convex methods. They are computed via the FISTA algorithm [28] with a non-
negativity constraint. Similar to denoising, we observe that the move from convex
to weakly-convex regularization leads to significant improvements in quality. In
the MRI experiment, the aliasing artifacts introduced by CRR-NN, and even more
by TV, are suppressed by the weakly convex regularizer. In the CT experiment,
the TV reconstruction includes staircasing artifacts, and CRR-NN has a slight ten-
dency to blur the edges. On the contrary, our weakly convex regularizer is able
to produce sharp edges without blur, but sometimes at the cost of over-smoothing
some background details. Note that convex models are still better understood from
a theoretical perspective because convergence to global optima can be guaranteed.
Hence, they might be favorable in certain settings.
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Adversarial Regularization As references for explicit regularization methods,
we provide a comparison with the convex ACR [285, 301] framework and its non-
convex counterpart AR [294]. Bypassing a gradient-based parameterization, these
models parameterize the regularizer R directly and train it in an adversarial manner.
As the regularizers of [285, 301, 294] are tailored to a specific inverse problem, we
can only provide a comparison for their CT experiment. Even though ACR and
AR have significantly more parameters than (W)CRR-NN, they perform less well.
The numerical results present favorable evidence regarding the effectiveness of the
parameterization used for WCRR-NNs. Note, however, that drawing a definitive
conclusion on the parameterization only is delicate since AR and ACR rely on a
different training procedure.

Plug-and-Play Our approach bears some resemblance with PnP methods since
R is learned on a generic denoising task. Hence, it is natural to compare WCRR-
NNs with a deep CNN version of this approach. Among countless variations, the
recently proposed framework [76], which we refer to as Prox-DRUNet, is the closest
to ours in terms of theoretical guarantees and existence of an underlying regularizer
(see Section 8.4.4 for a discussion). We use the pre-trained DRUNet-based proximal
denoiser from [76] within the PnP-PGD (proximal gradient descent) for CT and
the PnP-DRS (Douglas-Rachford splitting) for MRI9. This approach, which is one
of the state-of-the-art in energy-related PnP, yields slightly better PSNR and SSIM
than our method. Note that Prox-DRUNet involves 3 orders of magnitude more
parameters and days of training.

In the MRI experiment, both Prox-DRUNet and WCRR-NN can avoid the alias-
ing artifacts typically generated by methods that rely on a convex regularizer. In
the CT experiment, the visual inspection of the reconstructions reveals that qual-
ity metrics are only part of the story. While the output of Prox-DRUNet always
looked remarkably realistic, it was more prone to hallucination/artifact exagger-
ation, especially for hard problems such as the CT experiment. In that respect,
the Prox-DRUNet reconstruction in Figure 8.9 is particularly telling: It includes
an elongated structure that is not present in the ground truth, nor in any other
reconstruction. While such enhanced images are desirable in many settings and
lead to state-of-the-art denoising performance, they raise major concerns for sensi-

9
PnP-DRS is well-suited to settings where the proximal operator of the data term can be

efficiently computed, which includes MRI but not CT.
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tive applications, including medical imaging. Regarding the theoretical convergence
guarantees of PnP-PGD, the necessary Lipschitz constraint is only enforced by reg-
ularization during training. Unfortunately, it is infeasible to verify if it is met after
training. In practice indeed, it seems to be not fully met [76].

8.6 Conclusion
In this chapter, we proposed a method for the learning of a 1-weakly convex regu-
larizer that leads to a convex denoising functional. To the best of our knowledge,
this is the first instance of convex non-convex schemes that surpasses BM3D for the
denoising of natural images. A key feature of our method is that the architecture
deployed to parameterize the regularizer is shallow. Thereby, the role of each pa-
rameter is transparent: Parameters are adjusted to produce a sparsity-promoting
prior. Although the regularization of inverse problems with the learned regular-
izer does not necessarily lead to a convex objective, gradient-based optimization
methods are empirically effective and produce high-quality reconstructions. In the
future, a better understanding of WCRR-NNs might help to boost the performance
of lightweight and robust data-driven image-reconstruction models even further.
This includes the dependence of the learned regularizer on the modality and/or on
the image domain used during training. It is indeed expected, for instance, that a
fine-tuning of the regularizer with modality-specific prior knowledge will improve
the quality of the reconstruction.

8.7 Appendix - Additional Reconstructed Images
The following reconstructions correspond to the second MRI setup (MRI II) and
the reported metrics are PSNR and SSIM.
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Figure 8.12: Acceleration 2, single coil, PD image.

Figure 8.13: Acceleration 4, single coil, PD image.

Figure 8.14: Acceleration 4, single coil, PD image.
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Figure 8.15: Acceleration 4, single coil, PD image.

Figure 8.16: Acceleration 4, single coil, PDFS image.

Figure 8.17: Acceleration 4, multiple coils, PD image.
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Figure 8.18: Acceleration 8, multiple coils, PD image.

Figure 8.19: Acceleration 8, multiple coils, PD image.

Figure 8.20: Acceleration 8, multiple coils, PD image.
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Figure 8.21: Acceleration 8, multiple coils, PDFS image.

Figure 8.22: Acceleration 8, multiple coils, PDFS image.

Figure 8.23: Acceleration 8, multiple coils, PDFS.



Chapter 9

Conclusion

In this thesis, we pursued the goal of improving the trustworthiness of deep-learning-
based image reconstruction techniques. Our efforts have been concentrated on
devising reconstruction methods with a good tradeoff between interpretability, the-
oretical guarantees, and empirical performance in diverse settings. To achieve this,
we have carefully designed constrained parameterizations and used learnable linear
splines to boost expressivity under the constraints.

In Section 9.1, we first summarize the key contributions of the thesis. We then
discuss in Section 9.2 possible future directions and we state several important open
problems that we have encountered throughout the thesis.

9.1 Summary of the Main Contributions

9.1.1 The World of Splines
In part I, we focused on parameterizations for low-dimensional regression problems
and, thereby, illustrated the power of splines as parameterization tools.

Shortest Multi-spline Bases

We first considered general multi-spline spaces. We introduced the notion of mB-
splines (Definition 2.4) as a generalization of the well-known B-splines. We proved

305
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that mB-splines have the shortest possible support given their approximation abil-
ities (Theorem 2.1) and that they form Riesz bases (Theorem 2.2). Finally, we
proposed a recursive procedure to construct mB-splines for any multi-spline space
(Theorem 2.3) and gave examples of such functions.

Stable Parameterization of CPWL Functions

We studied the parameterization of continuous and piecewise-linear (CPWL) func-
tions with local hat basis functions. To begin with, we showed that nonlocal param-
eterization of CPWL functions, such as ReLU neural networks (NNs), are typically
ill-conditioned (Section 3.8). We then analyzed the stability of the local parame-
terization which relies on a simplicial partition of the input domain (Section 3.2.1).
We proved that the set of hat functions form a Riesz-basis under mild assumptions
(Theorem 3.1), and provided in any number of dimensions the exact Riesz bounds
in the case where the hat functions are linear box splines (Theorem 3.3). Finally,
we showed how to compute the Lipschitz constant of CPWL functions given their
local parameterization and gave fast-to-evaluate lower and upper bounds (Proposi-
tion 3.5).

9.1.2 Going Deeper with Stability Guarantees
In part II, we designed Lipschitz-constrained deep NNs (DNNs) with spline activa-
tion functions to build convergent and stable plug-and-play (PnP) algorithms.

On the Number of Regions of Continuous and Piecewise-Linear Neural
Networks

To better understand deep parameterizations, we studied the expressivity of CPWL
DNNs via the counting of their linear regions. To begin with, we introduced the
notion of arrangement of convex partitions (Definition 4.5), and gave a sharp upper
bound on the number of regions of arrangement of convex partitions (Theorem 4.1).
We then provided upper and lower bounds on the maximum number of regions of
CPWL DNNs based on their depth, width and the number of regions of their
nonlinear modules (Theorem 4.2 and Corollary 4.1). Finally, we derived an upper
bound on the expected density of linear regions of a CPWL DNN along 1D paths
(Theorem 4.3).
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Stable and Convergent Plug-and-Play Methods

To provide stable and convergent PnP algorithms, we studied the design of provably
1-Lipschitz DNNs. We followed the layer-wise approach to constrain each layer to
be nonexpansive in terms of the 2-norm. In this context, we revealed some theo-
retical limitations of popular activation functions, including ReLU and leaky ReLU
(Proposition 5.2, Proposition 5.3) as well as PReLU, absolute value, GroupSort and
householder (Proposition 5.5). To bypass these shortcomings, we proposed to use
Lipschitz-constrained learnable linear splines (LLS) and showed their optimality in
this context (Theorem 5.2), even when they have no more than 3 linear regions
(Theorem 5.1).

In Chapter 6, we then put the theoretical findings into practice. First, we char-
acterized the stability of the measurement-to-reconstruction map for several PnP
algorithms when deployed with Lipschitz-constrained LLS-NN denoisers (Propo-
sition 6.1 and 6.2). We then proposed a reparameterization technique to train
efficiently Lipchitz-constrained LLS and gave some underlying theoretical motiva-
tions (Proposition 6.3). Finally, we showed the empirical improvements conferred
to nonexpansive convolutional NNs (CNNs) when activated by LLS in denoising,
MRI and CT image reconstruction compared to nonexpansive CNNs activated by
other activation functions.

9.1.3 From Convex to Weakly-convex Data-driven
Regularization

In part III, we designed learnable and constrained regularizers to build convergent
and sparsity-promoting reconstruction algorithms.

A Sparsity Promoting Convex Regularizer

In Chapter 7 we proposed to learn an interpretable convex regularizer to solve im-
age reconstruction tasks. The gradient of the regularizer was parameterized with
a one-hidden-layer CNN with increasing activation functions. In this constrained
setting, we proved that LLS activations yield an expressivity that is optimal and
superior to the one conferred by ReLU and PReLU activations (Proposition 7.3 and
7.4). We showed that the proposed regularizer yields a stable reconstruction map
in the measurement domain for linear inverse problems (Proposition 7.2), and leads
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to optimization problems for which a minimizer always exists and can be computed
(Proposition 7.1). We extended the toolbox introduced in Part II to learn effi-
ciently nonexpansive and nondecreasing LLS activations and introduced a training
procedure to learn the one-hidden-layer CNN within a few minutes as a multistep
Gaussian denoiser. We analyzed the learned filters and activation functions and
qualitatively showed that the regularizer promotes sparsity in a transformed do-
main. Finally, we deployed the learned CNN to reconstruct CT and MRI images
and showed improved performance compared to other convex regularizers, including
recent ones parameterized with deep CNNs.

From Convexity to Weak Convexity

In Chapter 8 we extended the framework of Chapter 7 to learn non-convex reg-
ularizers with a prescribed upper bound on their weak-convexity modulus. We
showed that the parameterization of the gradient of the regularizer with 1-weakly-
increasing activation functions and a nonexpansive convolutional layer gives rise to
a variational denoiser that minimizes a convex energy (Proposition 8.2). We showed
how to efficiently train our 1-weakly convex regularizer on a multi-noise-level de-
noising task with a bilevel-optimization routine. We analyzed the learned filters
and activation functions and qualitatively showed that the regularizer is promoting
images with a sparse representation in a transformed domain. We showed that the
proposed regularizer can be used to solve generic image reconstruction tasks via an
optimization problem for which a minimizer always exists (Proposition 8.3). We
gave an algorithm to compute critical points of the objective (Algorithm 1 and The-
orem 8.1). Finally, we tested the performance of the regularizer on CT and MRI
reconstruction resulting in an excellent tradeoff between performance, number of
parameters, guarantees, and interpretability when compared to other data-driven
approaches.

9.2 Future Directions, Open Problems and Perspec-
tives

In the following, we first list some possible extensions of the image reconstruction
frameworks developed in this thesis, then discuss some important remaining open
problems.
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Future Directions

The future directions are sorted from direct developments to more exploratory
extensions.

3D Regularization The convex and weakly convex regularizers proposed in this
thesis could easily be modified to process 3D volumes. This is expected to be
useful for spatiotemporal data and also for CT and MRI images, in which stacks of
slices could be reconstructed jointly. In both cases, high-memory requirements can
limit the use of the classical deep-learning models, and thus the lightweight models
proposed in this thesis could be better suited.

Multi-noise-level Lipschitz Constrained Denoisers We propose to train a
Lipschitz-constrained Gaussian denoiser x 7! D(x,�) at multiple noise levels � 2
[0,�max]1. The motivation is to boost the generalization performance of the denoiser
when used to solve image reconstruction problems and is inspired by the noise-
level-dependent weakly convex regularizer introduced in Chapter 8 as well as the
DRUNet-based denoiser [336].

A first simple way to achieve this is to use a LLS-NN denoiser (see Chap-
ter 6), and plug 1-Lipschitz noise-level-dependent linear spline activation functions
t 7! '(·,�). For example, one can use t 7! ↵(�)�(t/↵(�)) as activation, where � is a
learnable linear spline and ↵(·) another learnable spline, which remains 1-Lipschitz
if � is 1-Lipschitz. Another possible strategy, inspired by the DRUNet-based de-
noiser [336], could be to input as an additional channel a noise-level map to the
denoiser, and then to analyze the constraints required to ensure nonexpansiveness.

Multicomponent Regularization In some applications, images can be decom-
posed into multiple components with different characteristics, e.g. smooth and
sparse components, low- and high-resolution components, etc. In such cases, it
may be more effective to use a different regularizer for each component [346, 347,
348, 152, 349]. We thus propose to extend the convex and weakly-convex regu-
larizers introduced in Chapters 7 and 8 to build data-driven and multicomponent
regularization schemes.

1
Recall that the denoisers designed in Chapter 6 were trained on a single noise level.
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ICNNs with Learnable Activations In Chapter 7, we have seen that the one-
hidden-layer convex regularizer CRR may outperform deep convex regularizers built
with input convex NNs (ICNNs) [302]. ICNNs are usually deployed with ReLU,
PReLU, or ELU activation functions. The use of ICNNs with learnable linear spline
activations with appropriate constraints should generalize CRRs and thus improve
the performance of ICNNs while maintaining convexity.

Oracle-based Regularization The reconstruction methods built in Chapter 6
and Chapter 7 rely on nonexpansive denoisers and convex regularizers respectively.
Both setups require strong constraints on the models, which in turn provide a
trusted reconstruction xtrusted. To boost the performance, we believe that one can
incorporate the knowledge of the oracle xtrusted in the structure of the denoiser or
of the regularizer, with possibly no loss of theoretical guarantees, i.e. a convergent
reconstruction algorithm and a stable reconstruction map.

• PnP. Instead of using a denoiser x 7! D(x), one can plug a denoiser of the
form x 7! D(x,xtrusted), that is constrained to be nonexpansive. This idea
is exploited in [83] to build convergent PnP algorithms. This setup might
benefit from our LLS toolbox and the stability of the reconstruction map
could be investigated and compared to the one obtained in Proposition 6.1
and 6.2.

• Convex regularization. The oracle can serve to build a convex regularizer,
for instance R̃ : x 7! Rwcvx(x) + 1

2
kx � xtrustedk22 with a 1-weakly convex

regularizer Rwcvx. Such a regularizer is expected to improve over convex
regularizers, and stability of the reconstruction map should hold provided
that y 7! xtrusted is also stable.

Nonlinear Inverse Problems In this thesis, only linear inverse problems were
considered, but many reconstruction techniques explored can be used to solve non-
linear inverse problems. The optimization task would typically be non-convex, but
convergent algorithms should still exist, for instance, through an appropriate mod-
ification of the safeguarded gradient descent algorithm used to deploy our weakly
convex regularizer to solve ill-posed inverse problems.
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Nonlocal Regularization The image reconstruction methods proposed in this
thesis rely on convolutions. Even with large receptive fields, CNNs are known to
be spatially local. In image denoising, using nonlocal information can boost per-
formance, as illustrated for example with non-local mean denoisers [350, 351, 352].
The advent of vision transformers [353] calls for the use of parameterizations that
facilitate long-range spatial interactions. We have already proposed a first im-
provement of the weakly convex regularizer in this direction [354]. Possible ex-
tensions include the incorporation of an attention module—the core component of
transformers—which could lead to theoretical guarantees on the reconstruction if
carefully constrained.

Open Problems
Layer-wise Lipschitz Constraints The canonical approach to impose that the
Lipschitz constant of a DNN is less than L is to constrain the Lipschitz constant of
each of its layers so that the product of their Lipschitz constant is less than L [79].
This layer-wise approach relies on the sub-multiplicativity of the Lipschitz constant
with respect to the composition operation. While this strategy seems overly con-
straining for deep NNs, to the best of our knowledge it is still an open question
whether, in the 2-norm setup and given a multidimensional input space2, the set
of 1-Lipschitz layer-wise NNs with free-form and pointwise 1-Lipschitz activation
functions is dense in the set of 1-Lipschitz functions or not. If not, then it calls for
the design of multivariate Lipschitz-constraint activation functions.

Approximation Properties of Sum of Convex Ridges The approximation
capabilities of the sum of convex ridge functions x 7!

P
 j(wT

j
x) with  j convex, as

used in Chapter 7, have not been fully characterized yet to the best of our knowledge
for multidimensional input spaces. In particular, can such functions approximate
any convex function, alike the convex functions parameterized by ICNNs [355]?

Noise Dependence of the Weakly Convex Regularizer The weakly convex
regularizer used for denoising with Gaussian noise seems to scale very simply with
the noise level �, namely R(x,�) ' �2R(x/�). This observation requires first to be

2
For R ! R DNNs with linear-spline activations with 3 regions, we have proved that the

layer-wise approach is not overly constraining, see Proposition 5.6
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further verified experimentally. If such a simple relation indeed holds, it calls for
further analysis to discover possible theoretical justifications.

Implicit vs Explicit Regularization, the More Generic, the Less Well-
performing? Replacing the proximal operator of a convex regularizer with a
nonexpansive denoiser constitutes a generalization since not all nonexpansive oper-
ators are proximal ones3. Hence, PnP methods with nonexpansive denoisers should
perform at least as well as convex regularization methods. In practice, we have ob-
served the reverse. This paradox suggests that the parameterization and training
of nonexpansive denoisers is still not optimal, and calls for further research on the
topic.

Perspectives
The deep-learning revolution has pushed the performance of image reconstruction
methods one step further, paving the way for major improvements in many ap-
plications, including medical imaging, with the possibility of reducing patient ex-
posure and acquisition time. While these advances made classical reconstruction
techniques seemingly outdated, the erratic behavior of deep neural networks has
highlighted the trustworthiness of the classical techniques. Nowadays, the common
approach to maintaining performance while enhancing trustworthiness consists of
better balancing the old and the new, for instance with the incorporation of some
deep learning into classical reconstruction methods. While it is known that there
exists a fundamental tradeoff between performance and stability [288], it is very
challenging in practice to assess how close to the limit the current state-of-the-art
methods are—to this, the upcoming decade might hold the answer.

3
The proximal operator of a convex function is firmly nonexpansive, i.e. half averaged and

hence nonexpansive.
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