Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Contrast Metrics
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Multiple Contrast Metrics from the Measurements of a Digital Confocal Microscope

A.S. Goy, M. Unser, D. Psaltis

Biomedical Optics Express, vol. 4 , no. 7, pp. 1091-1103, July 1, 2013.


We describe various methods to process the data collected with a digital confocal microscope (DCM) in order to get more information than what we could get from a conventional confocal system. Different metrics can be extracted from the data collected with the DCM in order to produce images that reveal different features of the sample. The integrated phase of the scattered field allows for the three-dimensional reconstruction of the refractive index distribution. In a similar way, the integration of the field intensity yields the absorption coefficient distribution. The deflection of the digitally reconstructed focus reveals the sample-induced aberrations and the RMS width of the focus gives an indication on the local scattering coefficient. Finally, in addition to the conventional confocal metric, which consists in integrating the intensity within the pinhole, the DCM allows for the measurement of the phase within the pinhole. This metrics is close to the whole-field integrated phase and thus gives a qualitative image of the refractive index distribution.

@ARTICLE(http://bigwww.epfl.ch/publications/goy1301.html,
AUTHOR="Goy, A.S. and Unser, M. and Psaltis, D.",
TITLE="Multiple Contrast Metrics from the Measurements of a Digital
	Confocal Microscope",
JOURNAL="Biomedical Optics Express",
YEAR="2013",
volume="4",
number="7",
pages="1091--1103",
month="July 1,",
note="")

© 2013 OSA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from OSA. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved