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1 Optimal Second Best Tree Solutions: Graph Construction

We formally construct the auxiliary directed graph G = (f), E ) composed of two in-
stances of the original directed graph G = (V, &) stacked up vertically. We address the
lower layer with index 1, and the upper one with index 2. The new set of nodes and
edges is given by

]} = {172} X V,
ff = Elln @] Slzn U Ejump U Ecross-

In the following, the first and second layer copies of an original node v € V are written
as v! and v?, respectively.

EL = {(u,vh)|(u,v) € £} (1)
& = {(u®,0?)|(u,0) € €} )
Eump = { (v, v?)|v € V} (3)
Eeross 1= {(u,v?)|(u,v) € £} 4

Edges are duplicated for each layer (I, (2). Additionally, we introduce layer-jump-
edges that directly go from any node v' in layer 1 to its duplicate v? in layer 2.
Lastly, we add edge duplicates that originate in layer 1 and go to layer 2. These layer-
crossing-edges (@) are needed for message passing at branching points. Unary and pair-
wise potentials 6§ are also replicated for all nodes v € V and edges (u,v) € £ as

Yv eV évl = 0,, év2 =0,
Yu,v € € éulvl = Oyo, éu2v2 = Ouo, éulvz = Oy

To run dynamic programming on this new graph G, messages are propagated start-
ing at all leaves in layer 1, towards the designated root r2 € Y on the upper layer. From
every node v in the lower layer, a message — embodying the partial solution of the sub-
tree rooted at v! in layer 1 — is propagated in three directions: directly to its successors
within layer 1, crossing layers to the successors’ duplicates in the upper layer, and as a
jump to this node’s duplicate v? subject to a user-specified jumping criterion.

In summary, in the lower layer, standard messages are being sent as in the lowest
energy solution. In the upper layer, every junction point is reached by three kinds of
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messages: those from within layer 2, those that are incoming from predecessors in layer
1, and those along layer jump edges between node duplicates. At junction points in
layer 2, these incoming messages from both layers must be combined. The important
requirement for a valid configuration of any layer 2 junction point is that at least one of
the incoming messages must have come from layer 2 (we denote this nonempty set of
predecessor nodes as L), and must thus have jumped to layer 2 in the subtree rooted at
this junction point. We therefore change the DP rules in layer 2 to

E, (sz) = min (91111;2 (le R xv2) + E,n (le ), 5)

0,2 (x42) + mjn Z min [éu%a (Xu2,Xy2) + Ey2 (xuz)]
LQQN(’U) UELQ xu2

[L2]>1
+ Z min |:éu1,U2 (Xy1, sz) + Ex (Xul )i| ) . 6)
X1
U‘EN(U)\LQ

Compared to the standard dynamic programming rules, we now have two options in-
stead of one in layer 2. Firstly, we can reach the node by a layer jump. Note that, in case
of a jump (3), we do not account for 0,2 (x,2) as F,1 (x,1) already contains this term.
Alternatively, at least one of the incoming messages is coming from layer 2 using edges
from £2, (6), while the remaining messages may cross layers and originate from Eeyoss.

If we choose to set all layer-jump-edge potentials to zero, every vertex qualifies as
jump location and we obtain at the root the same solution we would get in the original
graph G. If we want to find the second best solution with a Hamming distance of 1,
we set the jump potentials of all states used by the previous solution to infinity. Then,
a jump can only happen when the current solution differs from the previous one at this
node. In addition, note that the duplicates of all leaf nodes v2 must be reached via a
layer jump. This can be achieved by setting their unaries to infinity 0,2 1= .

2 Approximate Diverse M -Best Solutions

In (@) and (6), we already considered edges from layer 1 and 2 such that at least one
of them came from layer 2 if that specific node was not used for a jump. In the case of
k + 1 layers, we define the set of admissible incoming edge combinations 7. We thus
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Fig. 1. (a) Visualization of different ways of obtaining a Hamming distance of 2, where the red
states show the previous solution. To reach vg’, one can jump two times at different nodes (green)
and arrive in layer 3, jump once before to layer 2 and then to 3 at vy (orange), or combine
two incoming branches from layer 2 to get to layer 3 (blue). (b) Counterexample for & = 2.
If E;, < Ej,, the minimization will pick the predecessors shown in blue, which prevents the
algorithm from jumping to layer 3 and finding a valid solution.

generalize the update equation as follows:
E,~ (X,UN) :=min (é,UNl,UN (XUN—I R XUN) + E, n—1 (XUN—I)
+ 00 - 6[Pred,nv—1 (x,v—1) == (v 72, x,n—2)],

Opv (Xpn) + min min Y Ogun (Xa, Xpn ) + Ea(xa)> @)

Aeva Xa acA
e i
Ay = {(uzf’ugz,,..,u“m:;'l) ub € N(v),
1N (@)
=1

To prevent two successive jumps at the same variable (a), one must incorporate a check
whether a node was reached by a jump. We thus include a dependence on the previous
step. We denote by Pred, (x,) the predecessor node of v and its state on the best path to
reach v’s state x,,. To model that the cumulative number of jumps to reach layer N must
be N — 1 (b) at each junction on layer N > 1, g defines o7 as the set of admissible
combinations of selecting incoming nodes u; € N (

sets are visualized in Figure Th.

v) from layers /;. Some admissible

3 Applications and Experiments

Disparity Map Estimation from Stereo Images: To generate different disparity maps
from stereo images, we build a minimal spanning tree of the pixel grid graph, using
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(b) ()

Fig.2. Exploring diverse solutions for disparity map estimation, on an image from the Mid-
dlebury benchmark resized to 741 x 500. (a) Left view of the motorbike image pair, and
corresponding (b) best solution found by [2] which struggles inside the front wheel. (¢) Enforc-
ing a large Hamming distance (here 13000) reveals that the area around the front wheel could
have been matched differently, exposing ambiguities in the estimation process.

the intensity gradient as edge weight as in [2]]. Neighboring pixels are connected by an
edge whenever they have similar intensities. Those that are not similar are not linked
and hence are not penalized when generating depth discontinuities. We allow disparities
of up to 40 pixels in either direction while computing matching costs on patches of
11 x 5 pixels, and use a (non-truncated) quadratic attractive potential on the edges.
While this setup is far from state-of-the-art in stereo, it demonstrates that our approach
scales to large trees with many labels. We used the proposed diversity accumulation
method where one unit of diversity is collected at every state that is at least a distance
of 5 away from the previous solution in label space, and requested a large amount of
diversity to obtain visually different depth maps.

References

1. Scharstein, D., Hirschmiiller, H., Kitajima, Y., Krathwohl, G., Nesi¢, N., Wang, X., Westling,
P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Confer-
ence on Pattern Recognition. pp. 31-42. Springer (2014)

2. Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). vol. 2, pp. 384-390. San Diego, CA, USA (20-25 June, 2005)



	Diverse M-Best Solutions by Dynamic ProgrammingSupplementary

