IP-LAB: A Tool to Teach Image Processing Programming in Java

- Challenge in Swiss Federal Institute of Technology Lausanne -
IPLAB : Java [Z & DEHEAMET OS5 S U IHEY—IL
- AARAERIRKRZEO—H 2 IRIZE 1T HEHEHI-

OAkira Hirabayashi*’
OF# %*'

Daniel SAGE*?
F=I)L H—a*?

Michael UNSER**
THITIL oY=

Keyword: Image processing programming, Java, Educational tool

F—D— K EENETOSSIUY, Java, HEYV—IL

1. Introduction

Image processing i1s getting more and more
important because of the widespread use of digital
imaging devices, such as digital cameras or digital
videos. While image processing is a very practical
discipline, it is perceived as being rather theoretical.
It is actually a subject that involves a rigorous,
mathematical treatment. Hence, what is important
In image processing education is that instructors
make students not only understand such
mathematical formulas but also become to be able to
use them. To this end, computer laboratories
accompanied by lectures are very effective for image
processing education. In order to make the best use
of them, computer systems which will be used by
students play a very important role. IP-Lab is a
system in Java that was developed by the second
and the third authors of the present paper in the
Swiss Federal Institute of Technology Lausanne
(EPFL) to offer an environment where the students
could implement the algorithms literally as they are

seen 1n the course.

2. Conventional Tools

There are a number of tools for image processing
education. It is desirable for tools to be ready to
program algorithms literally in the textbook as
mentioned above. Further, tools should be freeware.
offer the
computational speed, but tend not to be good at

Low-level languages advantage of
basic operations such as reading files, data types,
accessing pixels, and displaying images. High-level
languages offer a rich functionality for those
operations, but tend to hide many important aspects
of imaging routines. They are also commercialized
compromise the

and expensive. In order to

advantages of them, IP-Lab was developed.

3.IP-LAB

IP-Lab [1] is an environment based on Java,
Imaged, and originally developed interface layer
called ImageAccess.

Java

The programming language chosen in order to
develop the system is Java. The main arguments of
this choice are: 1) Java is free; 2) Java is platform
neutral, hence well adapted to the diversity of the
student community; 3) Java is robust with a good
handling of errors and garbage collection; 4) Java is
syntactically close to C and easy to learn if we
provide examples and templates for the methods. 5)
Java is reasonably fast.

In addition to them, students are attracted by Java,
a modern and fashionable language that plays a
major role on the Web.

ImageJ

Imaged [2] is one of the most comprehensive image
processing freeware available. Its graphical user
interface provides convivial interaction with the full
functionality of an image processing application. It
can run on any platform with a Java Virtual
Machine (Mac, Windows, and various flavors of
Unix). Applications and sources are freely available.

Imaged has an open architecture that allows
extensibility by the addition of Java plug-ins. We
take advantage of this functionality for adding our
educational modules. Java also provides a
mechanism for loading the plug-ins dynamically
without having to restart the application after each
modification of the code; this functionality offers a
fast and comfortable way to edit-compile-execute a
program.

ImageAccess: The Interface Layer

ImageAccess is a “student-friendly” software layer
that has been developed by the second and the third
authors; it simplifies and robustifies the access to
data without

technicalities and the interfacing with Imaged.

pixel having to worry about

ImageAccess was designed by applying two
well-known principles of software development.

A Abstraction. For the user, an image is simply an
instance of the ImageAccess class. The pixel data is
always retrieved and stored in “double” format,
independently of the underlying Imaged image type.
In this way, students do not have to worry about
rounding, truncation, or conversion of pixel data.
Moreover, pixel data can be accessed “anywhere”
through the use of consistent mirror symmetric
applying
abstraction is to let the source code express the
clearly. The full
documentation of the class is available at [3].

boundary conditions. The aim of

original algorithm more
A Encapsulation. The fact of working with Image
Access objects prevents the students from having to
worry about implementation details. The typical
way to program is to retrieve an image block by
using a method that begins with get...0. The block is

Listing 1. Example of an implementation

public ImageAccess

filter2D NonSeparable (ImageAccess input)

int nx = input.getWidth() ;
int ny = input.getHeight () ;
ImageAccess output = new ImageAccess (nx, ny);
double block[] [] = new double[3] [3];
double value = 0.0;
for (int x=0; x<nx; x++) {
for (int y=0; y<ny; y++) {
input.getNeighborhood (x, y, block) ;
value = (block([2] [0] - block[0] [0]
+ block([2] [1] - block[0] [1]
+ block([2] [2] - block[0] [2]) / 6.0;

output.putPixel (x, y, value);

}

return output;

processed and the result is written in the image

using a put...) method. The block can be a single
pixel, a row, a column, a 3 X 3 or a 5 X 5

neighborhood window.

Sample Source Code

The students who participate in the laboratories do
not necessarily know Java. Hence, an example of a
Java method that does an operation similar to the
assignment 1s always provided to the students.

Listing 1 is an example provided to the students.
This is a digital filter that detects vertical edges. We
can see that the code is relatively straightforward; it
is essentially a literal translation of the textbook
versions of the algorithm. This owes much on the

interface layer.

4. Conclusion
IP-Lab has been used for a course in EPFL from
2000 (Fig.1). Even though students do not know
Java, “learn by example” strategy has been
providing good success. The first author is going to
use IP-Lab in Yamaguchi University in the course
for graduate students from 2005. Because of the
ease and the robustness of the system, it will not be
so difficult for the

achievements.

author to have good

(a-hira@yamaguchi-u.ac.jp, daniel.sage@epfl.ch)

Fig.1 Scene in the computer laboratory in EPFL

References

[1] D. Sage, M. Unser, "Teaching image-processing
programming in Java," IEEE Signal Processing
Magazine, vol. 20, no. 6, pp. 43-52, November 2003.
[2] W. Rasband, Imaged, National Institutes of
Health, Bethesda, MD., http://rsb.info.nih.gov/ij/.

[3] http://bigwww.epfl.ch/teaching/iplabsite/

