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Abstract
The Mumford–Shah model is a very powerful variational approach for
edge preserving regularization of image reconstruction processes. However, it
is algorithmically challenging because one has to deal with a non-smooth
and non-convex functional. In this paper, we propose a new efficient algo-
rithmic framework for Mumford–Shah regularization of inverse problems
in imaging. It is based on a splitting into specific subproblems that can
be solved exactly. We derive fast solvers for the subproblems which are
key for an efficient overall algorithm. Our method neither requires
a priori knowledge of the gray or color levels nor of the shape of the dis-
continuity set. We demonstrate the wide applicability of the method for
different modalities. In particular, we consider the reconstruction from
Radon data, inpainting, and deconvolution. Our method can be easily adapted
to many further imaging setups. The relevant condition is that the proximal
mapping of the data fidelity can be evaluated a within reasonable time. In
other words, it can be used whenever classical Tikhonov regularization is
possible.
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1. Introduction

The image formation processes of many imaging modalities, such as computed tomography,
positron emission tomography, and photoacoustic tomography, are ill-posed inverse pro-
blems. This means that even small perturbations in the data may cause large errors in the
reconstruction. Therefore, the reconstruction process needs regularization. It is common to
stabilize the inversion of the imaging operator via a variational approach: an energy functional
consisting of a data fidelity term and a regularizing term is minimized. The data term is
typically determined by the image acquisition device, i.e., by the imaging operator and by the
type of noise. The regularizing term depends on the characteristics of the underlying image. It
is well known that classical linear regularization—based on Hilbert space semi-norms-per-
forms poorly when the underlying image has discontinuities. Much better results are obtained
using the Mumford–Shah functional which is given by

C u x d H u fmin length d , . 1
u C C

q

,
( ) ∣ ∣ ( ( ) ) ( )

⧹òg a+  +
W

Here, H is the (not necessarily linear) imaging operator, and the (quasi-)metric d measures the
fidelity to the acquired data f. Often, d is the pth power of an Lp-distance
d x y x y,

p
p( ) = -  . In contrast to Tikhonov-type priors, the Mumford–Shah prior penalizes

the variation (measured in an Lq norm) of the argument only for the complement of a
discontinuity set C. Furthermore, the ‘length’, i.e., the (outer) one-dimensional Hausdorff
measure of this discontinuity set is penalized. The parameters 0g > and 0a > control the
weight of the length penalty and the variation penalty, respectively. Closely related to (1) is
the piecewise constant Mumford–Shah functional, often called the Potts functional. It
corresponds to the degenerate case a = ¥ which amounts to (1) with the second summand
removed and restricted to piecewise constant priors.

Problem (1) was studied by Mumford and Shah in their seminal work [32, 33] for H id=
using quadratic variation, and the L2 data fidelity term. Its discrete counterpart was investi-
gated by Blake and Zisserman [7], and the discrete piecewise constant variant by Geman and
Geman [22]. Mumford–Shah functionals with Lq variation penalty have been considered by
Fornasier and Ward [20]. Further (more classical) references are [2, 3, 12]. More recently,
Mumford–Shah priors have gained a lot of interest for stabilization of inverse problems. The
regularizing properties (in the sense of inverse problems) of Mumford–Shah functionals have
been studied by Rondi [40] and by Jiang et al [24]. In addition the latter paper also inves-
tigated the regularizing properties with respect to the corresponding discontinuity sets. As
related work, we also mention [19]. Potts functionals have been studied by Ramlau and Ring
[37, 38]. In general, it turns out that additional (mild) conditions are needed for the Mumford–
Shah approach to be a regularizing method. Such conditions are, e.g., pointwise boundedness,
compactness of the operator, and/or additional assumptions on the regularity of the edge set
such as perimeter constraints. We refer to [24, 38, 40] for a more detailed discussion. It is
worth mentioning that, without additional assumptions, even the the existence of minimizers
of (1) is not guaranteed in a continuous domain setting for general data terms [19, 20, 38, 41].
Such situations are not pathological as they appear even in deconvolution problems. How-
ever, with suitable assumptions, the existence of minimizers, stability, and an a priori
parameter choice rule are available.

The Mumford–Shah problem is algorithmically challenging, because it deals with a
nonsmooth and nonconvex functional. Finding a minimizer has turned out to be an NP hard
problem [1]; thus, there is no hope of finding global minimizers within a reasonable time.
Therefore, the goal is to find approximative strategies that give satisfactory results in practice.
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For the classical image denoising setup—where H id= and d is the squared L2 distance—
there are various algorithmic approaches. Examples are graduated non-convexity [7],
approximation by elliptic functionals [3], graph cuts [10], active contours [16, 47], and
convex relaxations [36, 46], to mention only a few. Algorithms for the related Potts functional
with imaging operator H id¹ have been recently studied in a series of tomographic problems
[27–29, 37, 45], deconvolution [44], and optical flow estimation [11]. In contrast, it seems
that only a few articles consider algorithms for the (piecewise smooth) Mumford–Shah
problem in inverse problems: Bar et al [5] consider an Ambrosio–Tortorelli-type approx-
imation based on elliptic functionals for deconvolution problems; Kim et al [26] use a level-
set based active contour method; Rondi and Santosa [41] use the Ambrosio–Tortorelli
approach for electrical impedance tomography; for general linear inverse problems with an L2

data term, Fornasier and Ward [20] propose an iterative thresholding algorithm.
In this paper, we propose an algorithmic framework for (piecewise smooth) Mumford–

Shah regularization of imaging problems. We first discuss proper discretizations of (1) that
give an accurate approximation of the Euclidean length term. We base our discretization on a
finite difference scheme introduced by Chambolle [13] and the refinements of the weights
derived in [43, 45]. Then we show that the discrete problem has a minimizer. The key
contribution of this paper is on the algorithmic side: we derive a splitting algorithm that (i) is
computationally feasible, (ii) yields high quality reconstructions in practice, and (iii) is very
flexible in the sense that it can be easily adapted to various imaging modalities. To this end,
we employ an ADMM strategy initially considered for Potts problems in [43–45] to split the
discretized problem into specific subproblems which we can solve efficiently. One of the
subproblems is a standard evaluation of the proximal mapping with respect to the data term
(also known as Tikhonov regularization). The remaining subproblems turn out to basically
consist of univariate (discrete) Mumford–Shah or, synonymously, Blake–Zisserman pro-
blems. In the corresponding Potts setup, there are fast solvers of complexity n2( ) with
respect to time and n( ) with respect to memory [21]. In contrast, even for the case of the
Blake–Zisserman problem of quadratic variation q 2 ,( )= the presently available solvers are
rather slow; there were only n3( ) algorithms (w.r.t. time) available. Because of calling these
routines n( ) times in each iteration, this becomes a significant bottleneck. Even for not too
large images, it limits applicability tremendously, and for larger data, it makes application
even infeasible. To overcome this problem, we propose exact and efficient solvers for the
practically most relevant cases of quadratic variation q 2( )= and ordinary variation q 1 .( )=
Our solver for the first case is based on a combination of the dynamic programming concept
of [21, 50] with the efficient spline energy computation of [6] and a pruning strategy [25, 43].
Its worst case complexity is n2( ) with respect to time and n( ) with respect to memory. We
emphasize that, to our knowledge, this is the first exact solver of this complexity. Our solver
for the latter case is based on the taut string algorithm [17, 30]. Although its worst case
complexity is cubic in time and linear in memory, we obtain reasonable runtimes in practice
which is due to a speedup strategy we propose. We observe that our method converges. We
note that the gray-levels (or the color-levels) of a solution do not have to be fixed a priori.
Furthermore, there are no restrictions on the discontinuity set; in particular, there is no
restriction on the number of connected components. Finally, we do not require an initial guess
of the solution or of the edge set. Numerical experiments demonstrate that our method
achieves comparable or slightly better reconstruction quality than the Ambrosio–Tortorelli
approximation [3, 5, 41] within significantly less computation time. Another major advantage
of our framework is that it can be easily adapted to various imaging setups. We only need an
implementation of the proximal mapping with respect to the data term. This in turn is a
standard task in imaging problems because the evaluation of the proximal mapping is
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equivalent to classical Tikhonov regularization. We demonstrate the wide applicability of our
method to several classical image recovery setups: we consider the reconstruction from Radon
data, image inpainting, and deconvolution.

The paper is organized as follows. In section 2 we present our algorithmic framework for
the Mumford–Shah problem. In section 3, we apply the developed method to various imaging
modalities.

2. Proposed algorithmic framework for the Mumford–Shah problem

We first discuss finite difference discretizations of the Mumford–Shah functional, and we
prove existence of minimizers for these discretizations (section 2.1). The splitting scheme is
explained in section 2.2. We derive efficient solvers for the arising univariate Mumford–Shah
problems in section 2.3, and we comment on the evaluation of the arising proximal mapping
in section 2.4. In section 2.5, we show convergence of the algorithm. An extension for vector-
valued images is provided in section 2.6. We summarize the complete algorithm and discuss
the parameters in section 2.7.

2.1. Discretization of the Mumford–Shah functional

The Mumford–Shah functional is closely related to the discrete weak membrane energy
proposed by Blake and Zisserman [7]. For u ,m nÎ ´ this energy is given by

u u u u u d H u fmin , min , , .
i j

i j ij
i j

i j ij
,

1,
2

,
, 1

2( ) ( ) ( ( ) )å åg a g a- + - ++ +

In fact, when refining the grid, these functionals Γ-converge to a variant of the Mumford–
Shah functional that measures the length of the discontinuity set in terms of the ℓ1 analogue of
the Hausdorff measure [12]. In particular, if the discontinuity set is a differentiable curve c,
the length is given in terms of the Manhattan metric

c t c t td
0

1

1 2∣ ( )∣ ∣ ( )∣ò ¢ + ¢

instead of the desired Euclidean length c t c t td .
0

1

1
2

2
2 1 2( ( ) ( ) )ò ¢ + ¢ The practical

consequences are undesired block artifacts in the reconstruction (geometric staircasing).
We next discuss how to avoid such anisotropy effects.

Our starting point is a more general discretization of the form

u d H u fmin , , 2
u s

S

s a
1

m n s( ) ( ( ) ) ( )
 åw f  +

Î =
´

where f is a truncated q-norm given by

x x xmin , .
i j

ij
q

,
,

( )( ) ( ) åf f g a= =a g

(See figure 1 for an illustration of the potential functions for q 1, 2.= ) The symbol ∇a

denotes finite differences with respect to the displacement vector a so that
u u a u,a ( · ) = + - where a 0 .2⧹{ }Î The displacement vectors a belong to a

neighborhood system a a, , S1{ } = ¼ where S 2, and , , S1w w¼ are non-negative
weights. The classical anisotropic discretization corresponds to a neighborhood system made
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up of the two canonical basis vectors of 2 along with unit weights. We here use the system

1, 0 , 0, 1 , 1, 1 , 1, 1 , 2, 1 , 2, 1 , 2, 1 , 2, 1 . 3{( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} ( ) = - - - - -

It contains finite differences in axial, diagonal, and ‘knight-move’ (referring to the moves of a
knight in chess) directions. The discretization (2) with the above neighborhood system  was
first used by Chambolle [13]. We here use the weights

s

s

s

5 2, for 1, 2,

5 2 , for 3, 4,

1 2 5 , for 5, , 8.

4s
3
2

1
2 ( )

( )w =

- =

- =

+ - = ¼

⎧
⎨
⎪⎪

⎩
⎪⎪

which have been derived in [45]. We briefly discuss the gain of this discretization. First
note that a neighborhood system along with the weights gives rise to a norm a   given

for a 2Î by a a a, .
s

S
s s1
∣〈 ∣ å w= ñ=  The above weights are constructed such that

as   coincides with the Euclidean norm as 2  for all vectors as in the neighborhood
system [45]. (See figure 2 for an illustration of the unit circle.)With these weights, the ratio of
the longest and the shortest unit vector is only about 1.03. Thus, this discretization can be
considered as almost isotropic. For comparison, the ratio is 2 for the anisotropic
discretization.

Next, we show that the considered (discrete) Mumford–Shah problem (2) actually has a
minimizer when assuming suitable conditions. This extends the results of [20] derived for ℓ2

data terms using other methods.

Theorem 2.1. We assume that either the data fidelity term is of the form
d H u f Hu f,

p
p( ( ) ) = -  for some p 0,( ]Î ¥ with a (possibly non injective) linear

operator H, or, for a (possibly nonlinear) operator H and a general pseudo-metric d, that the
coercivity condition d H u g,( ( ) )  ¥ for u  ¥  is fulfilled for some g. Then the
discrete Mumford–Shah problem (2) has a minimizer.

Proof. We start with the second kind of assumption of the theorem and assume that the
coercivity condition in the theorem is fulfilled for the (possibly nonlinear) operator H. Then
(2) is coercive which implies that the corresponding sublevel sets are compact. Together with
the continuity of the functional (2), this implies the existence of minimizers.

Now we consider the first kind of assumption of the theorem. This means that we
consider a linear operator H and the distance d H u f Hu f, .

p
p( ( ) ) = -  (We note that we do

Figure 1. Truncated linear function for q = 1 (left) and truncated quadratic function for
q = 2 (right).
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not assume coercivity in this case.) Then the situation becomes more involved and we need
some preparation. We consider a neighborhood system a a, , S1{ } = ¼ and use the notation
r to denote a member of this system. Then we consider tuples (v, r) where v i j,( )= is a
coordinate in the image and v r+ is also a valid coordinate. Let  be the set of all such
tuples. (Calling these objects tuples is a slight abuse of notation which causes no issues in the
following.) For a subset , Ì we consider the problem:

F u

u v v a s S

min

subject to for all , , 1, , , 5
u

a s

m n

s

( )

∣ ( )∣ ( ) { } ( )






g ¢ Î Î ¼
Î ´

where

F u u Hu f 6
s

S

s s a p
p

1
s( )( ) ( ) åw y=  + -

=
 

and

x x , and .s
v i j v a

ij
q q

, : ,

1

s s

( ) ∣ ∣ ( )
{ }( ) ( ) 

åy a g g a= ¢ =
= Î

Here s Ì are those tuples (v, r) in  having direction r as= . This means that we only
consider members of the set s s È= as indices for the sums above.

We first deal with the existence of minimizers of (5). To this end, we notice that the
functional F in (6) consists of a sum of concatenations of affine-linear operators defined on
the reconstruction domain m n ´ with quasinorms. More precisely, the data term
d Hu f Hu f,

p
p( ) = -  Hu f ,

k k k
p∣ ∣å= - p 0, ,( ]Î ¥ is the concatenation of the linear-

affine operator u Hu f- mapping from the image domain to the data space l (where l
stands for the number of measurements) with the quasinorm ,

p
p·  p 0,> defined on .l The

regularizing term consists of the sum of S terms, each of them being the concatenation of a
linear directional difference operator u uas mapping from the reconstruction domain

Figure 2. Unit circles of the norm induced by the anisotropic discretization (left, green
solid line) and the near-isotropic discretization used in this paper (right, green solid
line). In the anisotropic case, the length of the diagonals is much shorter than the length
of the compass directions. The near-isotropic discretization induces a close
approximation to the Euclidean unit circle.
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m n ´ to the vector space ks with the seminorm .s sw y Here, the number ks is the cardinality of
.s The intersection of the kernels of all these linear operators—the one corresponding to the

data term and the S corresponding to the regularizer—is a linear space which we call K. On K,
and on the parallel affine subspaces a K+ for all a as well, the functional is constant. This
may be seen by considering u v a K, Î + and concluding from u v K- Î that the value of
u v, for each summand of the functional F in (6) is equal. Hence, we may restrict to a
complement of the kernel and project the constraining set on this complement. On the
complement, the functional is coercive and hence has a minimizer. In consequence, (5) has a
minimizer whenever the admissible set is nonempty. We denote this set of minimizers by M
(which is empty only if there is no admissible point).

Now we allow the sets  to vary. For those  where the corresponding problem (5) has
an admissible point, we consider the quantities

m F umin , 7
u s

S

s s s
1

( ) ∣ ⧹ ∣ ( )   åg w= +
=

where F is defined in (6), and the minimum is taken over all admissible u. Here, s are those
tuples in  having direction as and s s∣ ⧹ ∣  denotes the cardinality of the corresponding
complement of s in .s We choose ¢ such that m¢ is minimal among all  with an
admissible point, i.e.,

marg min . 8( )


¢ Î

This is possible since  is a finite set and therefore the cardinality of the set of its subsets is
finite. We claim that a minimizer

u M is a minimizer of the Mumford Shah functional 2 9– ( ) ( )Î*
¢

which would complete the proof. (The set M was defined at the end of the previous
paragraph.)

In order to prove this claim we need to show the following key property of a minimizer
u M :Î*

¢ for u* we have

u u v a s Sfor all , , 1, , . 10v a v ss
∣ ∣ ( ) ⧹ { } ( )  g- ¢ Î ¢ Î ¼+

* *

Suppose to the contrary that this is not the case. Then, we define   É ¢ distinguishing
whether u uv a vs

∣ ∣  g- ¢+
* * or not: precisely, we let v a, ,s s( ) Î  if and only if

u u ,v a vs
∣ ∣  g- ¢+

* * and define  by .s
S

s1 È = = Then, we use the notation u″ to denote
a corresponding minimizer of (5) w.r.t. . We have that u* is admissible for 5 w.r.t. , and
further, by the minimality of u″,

F u F u

F u u u

F u .

11

s

S

s s s
s

S

s s s

s

S

s
v i j v a

ij i j a
q

s

S

s s s

s

S

s s s

1 1

1 , : ,
,

1

1

s s s

s( )

( )

( )

( )

{ }

( ) ∣ ⧹ ∣ ∣ ⧹ ∣

∣ ⧹ ∣

∣ ⧹ ∣
( )

( ) ( ) ⧹
( )

   

 

 

 


 



å å

å å å

å

g w g w

w g a g w

g w

 +  + 

< + - - + 

= + ¢

 


 ¢

=

*

=

*

= = Î

*
+

*

=

¢
*

=

Here, the strict inequality is due to our assumption on u* and the definition of . More
precisely, by our assumption, there is a tuple v a, s( ) in ⧹ ¢ such that u u ;v a vs

∣ ∣ g- < ¢+
* * this

tuple is in  by definition, and so the second summand in the second line of (11) is strictly
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positive. We conclude from (11) that m m < ¢ which contradicts our assumption that m¢ is
minimal. Hence, (10) is true.

We finally show (9) which states that u MÎ*
¢ with ¢ as in (8) is a minimizer of the

Mumford–Shah functional (2). To this end, we consider an arbitrary u and show that its
Mumford–Shah value is larger than or equal to m mmin .  =¢ For u, we define  in
analogy to the way we defined  for u* above. Precisely, we let s be those tuples v a, s( )
where the value u uv a vs

∣ ∣-+ of u does not exceed ,g¢ and let .s
S

s1 È = = Then u is
admissible for the problem (5) with respect to . Hence M is nonempty and there is a
minimizer of (5) w.r.t. . By the definition of ,¢

m m . 12( )  ¢

In addition, by the definition of , the Mumford–Shah value of u equals the value
F u

s

S
s s s1

( ) ∣ ⧹ ∣  åg w+  =
which, by the admissibility of u for (5) with respect to , is

bigger than or equal to m . The value m¢ equals the Mumford–Shah value of u* (see (10)).
Together with (12), these two observations yield that the Mumford–Shah value of an arbitrary
u is bigger than or equal to the Mumford–Shah value of u .* This shows (9) and completes the
proof. ,

We remark that, for the existence of minimizers, we actually need the simpler problems
(5) to have a minimizer which might be easier to show in particular for nonlinear situations
not covered in the theorem. We further notice that minimizers need not be unique in general.
In the above proof, this is, for instance, reflected by the non-uniqueness of the sets ¢ of (8)
and the fact that the set K at the beginning of the proof formed w.r.t. a minimizing set¢ of (8)
need not be single-valued.

2.2. ADMM splitting for the Mumford–Shah problem

Our minimization strategy for the (discretized) Mumford–Shah problem (2) is based on an
alternating direction method of multipliers (ADMM) approach developed in the authors’
work [43, 45] in the context of Potts problems.

Our first step is to rewrite (2) as the constrained optimization problem

u d H v f

v u s S
u u r t S

minimize , ,

subject to 0, for all 1 ,
0, for all 1 . 13

s

S

s a s

s

r t

1
s( ) ( ( ) )

( )
 
 

åw f  +

- =
- = <

=

The augmented Lagrangian  of this minimization problem is given by

u v

u v u

u u d H v f

, , ,

2

1

2

2

1

2
, . 14

s s
S

s s
S

r t r t S

s

S

s a s s
s

s

r t S

S

r t
r t

r t

1 1 , 1

1
2
2

2
2

1

,
2
2

, 2
2

s

( ){ } { } { }

( )

( ( ) ) ( )

  

 

å

å

l r

w f 
m l

m m
l

n r

n n
r

= + - + -

+ - + - +

= = <

=

<

   

   

In the above form, the constraints are included in the target functional, and the parameters
0m > and 0n > control their weights. The , ,s s t

m n
, l Î ´ where s S1   and

r t S1 , < take the role of Lagrange multipliers.
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Minimization of (14) with respect to all target variables simultaneously is still unfeasible.
Nevertheless, our specific splitting allows us to use ADMM. That means, that we minimize 
with respect to u u, , ,S1 ¼ and v. Then, we perform a gradient ascent step in the Lagrange
multiplier. (See [8] for an extensive treatment on the ADMM.) To bring the expressions for
arg minus into a convenient form we use the fact that x a b

i i i
2( )å - =

x a C
i i

b x

x
2i i i

i i
( )( )å - +å

å
for a b b, , , N1 ¼ Î and x x, , 0N1 ¼ > and a constant C Î

that does not depend on a. Then, we obtain by a standard algebraic manipulation that

S
u u warg min arg min

2

1u u

s
a s s s 2

2

s s

s( )
( )


w

m n
f=

+ -
 + - 

where

w
v u u

S 1
.s

s r s r r s s t S t s t1 , ,( ) ( )

( )

  å åm l n n

m n
=

+ + + + -

+ -
< <

Furthermore, we rewrite the minimization problem with respect to v in terms of the the
proximal mapping which is defined for a functional F by

z F v v zprox arg min
1

2
, 15F

v
2
2( ) ( ) ( )= + - 

see [39], for instance. In this notation, a minimizer of  with respect to v reads

d H v f
S

v
S

u

S
u

arg min arg min ,
2

1

prox
1

.

v v s

S

s
s

d H f S
s

S

s
s

1
2
2

,
1

( ( ) )

( (·) ) ( )

 å

å

m l
m

l
m

= + - -

= -m

=

=

 
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

Thus, we obtain the ADMM iteration

u u u w

u u u w

v u

v u s S

u u r t S

arg min ,

arg min ,

prox ,

, for all 1 ,

, for all 1 ,

16

k

u
S a

k

S
k

u
S a S S S

k

k
d H f S S

s

S

s
k

s
k

s
k

k
k

s
k

r t
k

r t
k

k r
k

t
k

1
1 2

1 1 1 1 2
2

1 2
1 2

2

1
,

1

1

1

1 1 1

,
1

,
1 1

k k

S

S

k k
S

k

s
k

k

1

1
1

( )
( )
( )

( )

( )

( )
( )

( )

( )

( (·) )
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f

f
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n
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w
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l
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+
+ -

+
+ -

+
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+
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⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

where ws
k is given by

w
v u u

S 1
.s

k k
k

s
k

r s k r
k

r s
k

s t S k t
k

s t
k

k k

1
1

, ,( ) ( )
( )

  å åm l n n

m n
=

+ + + + -

+ -
<

+
<

We use as coupling parameters increasing sequences k k( ) m Î and .k k( ) n Î
The important point is that the subproblems in (16) are computationally tractable. The

minimization problems in u u, , S1 ¼ decompose into univariate Mumford–Shah problems
with respect to the paths induced by the finite difference vectors a .s Moreover, these
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univariate subproblems can be solved in parallel. The last subproblem is the evaluation of a
proximal mapping with respect to the data term. In the context of inverse problems, the
proximal mapping is often called a classical Tikhonov regularization. Hence, the algorithm is
applicable whenever classical Tikhonov regularization of the data term d H v f,( ( ) ) is pos-
sible. This is the case in many imaging setups; see section 3 for some examples. Solvers for
the subproblems will be described in the following.

2.3. Efficient solvers for the univariate Mumford–Shah problems

The crucial part of the splitting approach (16) is the efficient solution of univariate Mumford–
Shah/Blake–Zisserman problems of the form

B u u u u ymin min , , 17
u i

i i
q

i
i i, 1

2
n

( )( ) ∣ ( ) ( )
 å åg a= - + -g a

Î
+

⎧⎨⎩
⎫⎬⎭

where y .nÎ In order to see the connection to (1), we reformulate (17) equivalently as

J u u u ymin 18
u J n i J

i i
q

i
i i

, 1, , 1
1

2
n

∣ ∣ ∣ ∣ ( ) ( )
{ } å åg a+ - + -

Î Ì ¼ - Ï
+

where J∣ ∣ denotes the number of elements in the ‘jump set’ J. Recall from the introduction
that the solver of [6] for (18) with q = 2 has cubic time and linear memory complexity in
the worst case. For the case q 1,= no efficient solver has been proposed yet to
our knowledge. To obtain a computationally feasible method, we next propose efficient
solvers.

2.3.1. Basic dynamic programming approach to univariate Mumford–Shah problems. Our
solvers are based on the dynamic programming scheme developed in [21, 50] which we
explain next. Assume that we have already computed minimizers u l of the functional B ,g a
associated with the partial data y y, , l1( )¼ for each l r1, , 1= ¼ - and some r n. Then,
the functional B ,g a associated with data y y, , r1( )¼ can be computed efficiently by

B u B umin min , 19
u l r

l
l r,

1, ,
,

1
,

r
{ }( )( ) ( )


g e= + +a g a g

Î = ¼

-

where l r,e denotes an approximation error on the interval l r, ,( )¼ given by

h h y ymin , , . 20l r
h q

q
l r, 2

2
r l 1

( ) ( )


e a=  + - ¼
Î - +

   

Here we use the convention that u0 is the empty vector and B u .,
0( ) g= -a g A corresponding

minimizer reads ur= u h,l l r1 ,( )-* * where l* is a minimizing argument of the right-hand side of
(19) and hl r,* is a minimizer of (20). It has been shown in [21] that we obtain a minimizer u*

for full data y by successively computing u r for each r n1, , .= ¼ When using suitable data
structures, the described procedure is n2( ) time and n( ) space provided that the
approximation error l r,e can be computed in 1( ) [21].

It remains to compute the l r,e for all l r n1 .   Since the functional in (20) is
convex for all q 1 we could use generic solvers for convex optimization problems, see e.g.
[9, 35]. However, generic solvers are too slow in practice, so our next goals are faster
algorithms.

2.3.2. Fast computation of the approximation errors for q = 2. In the case of quadratic
variation, we get by a standard computation that a minimizer hl r, of (20) satisfies the linear
system of equations
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U h y yid , , ,r l l r
l r

T1 ,( ) ( )( )a + = ¼- +

where U t t t( ) Î ´ is given by

U

1 1
1 2 1

1 2 1
1 1

t( ) =

-
- -

- -
-

  

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

Since U idt( )( )a + is a bandmatrix, we can use Gaussian elimination to compute a minimizer
hl r, and then compute the approximation error using (20). This procedure is easy to derive and
to implement but it amounts in total to n3( ) for computing all .l r,e In [21], it is claimed that
the l r,e can be computed in n2( ) time and n2( ) memory using the eigenvalue
decompositions of the matrices U .t( ) The authors of the present paper could not verify the
claimed n2( ) time complexity from the information given in [21]. We believe that, there, the
costs for computing the moments have been neglected and that the given procedure grows at
least cubicly, i.e., it is not an n2( ) algorithm.

Here, we propose the utilization of a completely different way to compute the .l r,e We use
a sophisticated recurrence relation which has been derived by Blake [6]. For completeness,
we here provide this recurrence relation. First, the approximation error for a single point fl( ) is
given by 0.l l,e = Then, we recursively define an auxiliary n-tuple C by

C C
C

C
t1, and 1, for 2.t

t

t
1

1

1( ) a
a

= =
+

+-

-

We consider another auxiliary variable ul,· whose first entry is given by u y .l l l, = For
r l 1, + the rth entry is given by the recurrence

u
u C y

C

1
,l r

l r r l r

r l
,

, 1 1

1

( )
=

- +- - +

- +

and the corresponding error is given by

C u u u y1 .l r l r r l l r l r l r r, , 1 1 , , 1
2

,
2( )( ) ( )e e= + - - + -- - + -

The updates only need constant time. Thus, we are able to compute the l r,e for all
l r n1    in n2( ) time. Moreover, we observe that the computation of a specific l r,e

depends only on C, u ,l r, 1- u ,l r, and .l r, 1e - Hence, the l r,e can be computed in situ in the
dynamic program of section 2.3.1 so that we obtain n( ) memory complexity. A pseudocode
of the proposed solver is given in algorithm 1. In summary, we have obtained:

Theorem 2.2. Algorithm 1 computes a global minimizer for the univariate Mumford–Shah/
Blake–Zisserman problem (17) with q = 2. Its complexity is n2( ) w.r.t. time and n( ) w.r.t.
memory.

To our knowledge, the proposed procedure (algorithm 1) is the first exact solver in this
complexity class. We point out that the applicability of the algorithm is not limited to the
considered imaging setup. Another important application is the efficient smoothing of time
series with discontinuities [7, 21, 49].
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Algorithm 1. Fast solver for the 1D Mumford–Shah problem (q 1, 2{ }Î )

Input: Data y nÎ ; model parameters , 0;a g >

Output: Global minimizer of the 1D Mumford–Shah problem u nÎ
begin

/* Find the optimal jump locations */
for r n1, ,¬ ¼ do

J 0r ¬ /* init right-most jump */
Br r1,e¬ /* p 2= : section 2.3.2; p 1:= section 2.3.3 */
for l r r, 1, , 2¬ - ¼ do

Compute l r,e /*p 2= : section 2.3.2; p 1= : section 2.3.3*/

b Bl l r1 ,g e¬ + +- /* compute candidate functional
value b */

if b Br then
B br ¬ /* store new best func-

tional value */
J l 1r ¬ - /* update right-most jump

location */
end
if Bl r r,e g+ > then break end /* Pruning, see section

2.3.4 */
end

end
/* Reconstruct the minimizer from the optimal jump locations */
r n l J; r¬ ¬
while r 0> do

u u, ,l r1( )¼ ¬+ Minimizer of (20) with data y y, ,l r1( )¼+

r l l J; r¬ ¬ /* go to next jump */
end
return u

end

2.3.3. Fast computation of the approximation errors for q = 1. Our strategy for the case q = 1
is based on two key ingredients. First, we use the taut string algorithm to solve (20) in linear
time. The taut string method was introduced in [30]; some further references are [17, 23, 42].
The second key ingredient is to reuse a great portion of the computations performed for l r1,e +
for the efficient computation of .l r,e Next we describe the concrete procedure.

Let us first recall the taut string algorithm following the presentations of [17, 42]. The basic idea
of the taut string method for the solution of (20) is as follows. We compute the cumulative sums Y of
the data y y, ,l r( )¼ and form a tube of radius 2a (in ordinate direction) around that vector.

Then we introduce a string into this tube, and pull from both ends until the string is taut.
The slopes of the string form the minimizer hl r, of (20). More precisely, the algorithm is as
follows:

(i) Compute the cumulative sum Y y y y y0, , , , .l l l i l

r
i

T
1( )å= + ¼+ =

(ii) Compute the upper and lower tube bounds Y Y Y Y Y, 2, , 2,u n n0 1 1{ }a a= + ¼ +-
and Y Y Y Y Y, 2, , 2, ,l n n0 1 1{ }a a= - ¼ -- where α is the smoothing parameter of
the Mumford–Shah functional.

(iii) Compute iteratively the convex majorantYu¢ of the upper bound and the concave minorant
Yl¢ of the lower bound both starting with the point Y0, 0( ( ))
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(iv) Repeat step 3 until the right side derivative at 0 of the convex majorant is smaller than the
one of the concave minorant.

(v) Take the point where the majorant touches the upper bound first or where the minorant
touches the lower bound first as new starting point of the majorant and minorant
wherever the ordinate value is smaller. Repeat this until the right side derivative of the
common starting point of the majorant is again larger than of the minorant.

(vi) Do all of this until there are no new points to be processed.

We end up with the taut string coded in the vector Y .* The final solution hl r, of (20) is
obtained by ‘differentiating’ Y ,* i.e. h Y ,l r, =  * where  denotes the finite difference
operator. Since the taut string has linear complexity, we obtain in total:

Theorem 2.3. Algorithm 1 computes a global minimizer for the univariate Mumford–Shah/Blake–
Zisserman problem (17) with q= 1. It is of n3( ) time complexity and of n( ) memory complexity.

Next we describe how to significantly decrease the computational costs of the solver.
First, we will compute the taut string in reverse order; that is, we form a tube around the
reverse cumulative sum Y given by

Y y y y y0, , , , .r r r
i

r

r i1
1

1å= + ¼-
=

- +


⎛
⎝⎜

⎞
⎠⎟

The reversed order is important for utilizing a pruning strategy which we will describe in
section 2.3.4. Now let us consider the computation of l r1,e + and l r,e for some l r.< Thus, the
task is to compute a solution of (20) for data y y,...,l r1( )+ and y y,..., .l r( ) Following the taut
string algorithm, we form a tube around the vectors Y Y,..., t0( )  and Y Y,..., t0 1( )+  where
t r l.= - The important observation is that the tubes around these two vectors are identical
up to the last two points t and t 1;+ see figure 3. This means that the computations of the taut
string algorithm are identical until the point Yt 1- is reached. Therefore, we store the current
state of the algorithm when reaching Y .t 1- Then, we continue with the computation of the
string in the tube around Y Y,..., .t0( )  In the next iteration, we restore the previous state for the
computation of the string in the tube around Y Y,..., .t0 1( )+  In the worst case scenario, it still can
happen that we have to run through all t data points; therefore, we are still in the linear
complexity class. Nevertheless, for the signals used in this work, we observed a speedup by a
factor of three to four.

Figure 3. Illustration of the efficient solver for the univariate Mumford–Shah problem
with q=1. We observe that the tubes associated with data y y, ,l r( )¼ and y y, ,l r1( )¼+

are identical up to the two last points. Reusing the identical parts saves a significant
amount of computation.
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Eventually, in figure 4, we illustrate the effects of Mumford–Shah regularization with
different variation penalties. We observe that the L1 variation penalty preserves the jumps of low
contrast better, whereas the quadratic variant produces smoother results in the low contrast regime.

2.3.4. Pruning strategy. The above solvers can be accelerated significantly in practice by
pruning the search space of the basic dynamic program presented in section 2.3.1. Here, we
adopt a strategy that has been proposed in similar forms in [25] and in [43] in the context of
Potts problems. More precisely, we reduce the time for finding the minimizing argument l* in
(19). Let us denote b B umin .t l t r

l
l r, , ,

1
,( ) g e= + +a g= ¼

- First we observe that the
approximation errors l r,e and the functional values B ul

,
1( )a g

- are non-negative. Assume that
bt t r, g e+ for some t r. Since the mapping l l r,e is non-increasing it follows that
b bs t for all s t. This means that the minimizing index lies between t and r. Thus, the
indices smaller than t can be skipped. In our experiments this pruning led to an overall
speedup of a four to fivefold factor.

Note that the pruning strategy requires that we compute the approximation errors l r,e in
the order l r r, 1, , 1.= - ¼ This explains why we use the reverse order in our taut string
based solver (cf. section 2.3.3).

2.4. Computation of the proximal point

Our method is applicable if the proximal mapping of the data term d H v f,( ( ) ) can be evaluated
within a reasonable time. This term d H v f,( ( ) ) is determined by the properties of the image
acquisition device, and so its proximal mapping depends on the imaging setup. In particular, when
H is nonlinear and when d is non-convex this is typically a challenging problem in its own.
However, as it corresponds to Tikhonov regularization, implementations of the proximal mapping
are often available. Here, we briefly describe how to proceed in the frequently occurring situation
in which H is a linear operator, i.e., H u Hu,( ) = and the noise follows a zero mean distribution of
the exponential family. Then, the natural data fidelity term is given by

d H v f
p

Hv f,
1

, 21
p
p( ( ) ) ( )= - 

where H is a linear operator and p 1. The canonical choice for a Gaussian noise model is
p = 2. For Laplace noise, p = 1 is the appropriate choice. For the corresponding
computations, the structure of the linear operator can be exploited in many practically relevant
cases. For example, we can take advantage of the Fourier transform for convolution operators
(see section 3). When there is no such structure available, we have to resort to iterative

Figure 4. Comparison of the effects of ordinary and quadratic variation on the solution
of the univariate Mumford–Shah problem. The first variation preserves the jumps of
low contrast, whereas the second variation produces a smoother solution. (Original
signal: red dashed line.)
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algorithms. Since the data term is convex for all p 1, the proximal mapping proxd H f,( (·) ) t
can be evaluated using generic convex optimization techniques [9], for example the
Chambolle–Pock algorithm [14]. For the practically most relevant cases p 1, 2,= we can
also use dedicated minimization methods. For p 2,= the proximal point
v zproxd H f, ( )( (·) )= t
* satisfies the normal equation

H H I v H f z, 22( ) ( )t t+ = +* * *

where H* denotes the adjoint of H. Thus, the computation of v* reduces to solving a linear
system of equations. For p 1,= one can use the semi-smooth Newton method described in [15].

To retain the efficiency in the general case, we utilize ‘warmstarting’; that means, we use the
solution of iteration vk as initial guess for v .k 1+ This makes the iterative solver typically converge
within only a few iterations, thus only a few evaluations of H and H* have to be performed.

2.5. Convergence

We show that algorithm (16) converges in the prototypical case 0kn = for all k (which implies
that the 0k = for all k.) We leave a convergence proof for algorithm (16) with general kn as an
open problem. The following proof is closely related to the proofs in [11, 44, 45] which show the
convergence of the algorithms for the Potts problem developed in these papers. We here provide
the necessary modifications to deal with the Mumford–Shah setting and possibly nonlinear
operators H. Instead of pointing out where these modifications should be done, we, as a service to
the reader, provide a self-contained version of the proof for the considered setup.

Theorem 2.4. Let H be a Lipschitz continuous (not necessarily linear) operator from m n ´

to the metric space X d;( )¢ and the data term be given by d H u f d H u f, , p( ( ) ) ( ( ) )= ¢ for
some p 1. Let the sequence k k( ) m Î be increasing and satisfy .

k k
1 2å m < ¥-

Furthermore, let 0kn = for all k. Then, the iteration (16) converges in the sense that

u u v u u v u u v

s S

, , , , , , with ,

0 for all 1, , . 23

k
S
k k

S S1 1 1

s
k

k

( ) ( )
{ } ( )

¼  ¼ = ¼ = =

 Î ¼l
m

* * * * * *

Proof. We denote the S functionals appearing in the first S lines of (16) by F ,s
k i.e.,

F u u u v
2

.s
k

s
s

k
a s s

k s
k

k
2
2

s( )( ) w
m

f
l
m

=  + - + 
⎛
⎝⎜

⎞
⎠⎟

Using this notation, we rewrite the first S lines of (16) as us
k 1Î+ F uarg minu s

k
s( ) for all

s S1, , .{ }Î ¼ We first estimate the distance u v .s
k k1

2

s
k

k
( )- + l

m
+  To that end, we note that

F u F vs
k

s
k

s
k k1 s

k

k
( ) ( ) + l

m
+ which holds true since us

k 1+ minimizes F .s
k Applying the definition

of F ,s
k we get

u u v v L
2

,s a s
k k

s
k k s

k

k
s a

k s
k

k
s

1 1
2
2

s s( )  w f
m l

m
w f

l
m

gw + - +  ++ + 
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

where L = mn is the size of the considered m n( )´ image. This is because z mnas( ) f g for
any as and any data z. Since the first summand on the left-hand side is nonnegative, we get that
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u v
L

. 24s
k k s

k

k

s

k

1
2
2 ( )l

m
gw
m

- ++ 
⎛
⎝⎜

⎞
⎠⎟

In particular, for all s S1, , ,{ }Î ¼ we obtain that

u vlim 0. 25
k

s
k k s

k

k

1 ( )
l
m

- + =
¥

+
⎛
⎝⎜

⎞
⎠⎟

We now look at the S 1 th( )+ line of (16). We denote the corresponding functional byG ,k i.e.,

G v d H v f
S

v
S

u,
2

1
.k p k

s

S

s
k s

k

k1

1
2
2( ) ( ( ) ) å

m l
m

= ¢ + - -
=

+ 
⎛
⎝⎜

⎞
⎠⎟

The minimality of vk 1+ implies the inequality

G v G
S

u
1

.k k k

s

S

s
k s

k

k

1

1

1( )  å
l
m

-+

=

+
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

We now apply the definition of Gk to estimate

d H v f
S

v
S

u

d H
S

u f

d H
S

u H v d H v f

K
S

u v d H v f

,
2

1

1
,

1
, ,

1
, . 26

k p k k

s

S

s
k s

k

k

s

S

s
k s

k

k

p

s

S

s
k s

k

k

k k

p

s

S

s
k s

k

k

k k

p

1 1

1

1
2
2

1

1

1

1

1

1
2

( )

( )

( )

( )

( ) ( )

( ) ( )
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=
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⎠
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Here, K is the Lipschitz constant of the operator H acting on ℓ
2. Note that such a constant

exists since, on a finite dimensional space, all norms are equivalent and the standard topology
in Euclidean space is a norm topology. Next we combine (26) and (24) to estimate the
magnitude of the residuals d H v f, .k 1( ( ) )¢ + We get

d H v f
C

d H v f, , ,k

k

k1( ) ( )( ) ( )
m

¢ + ¢+

where C 0> is a constant that only depends on , sg w L, and K. Solving this recursion yields

d H v f C d H v f,
1

, ,k

j

k

j

1

1

0( ) ( )( ) ( ) å m
¢ + ¢+

=

which shows that the sequence of residuals d H v f,k
k

1( ( ( ) )) ¢ +
Î is bounded.
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We consider the right-hand term in the first line of (26) and we apply (26) to get

v
S

u

d H
S

u H v d H v f
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S

u v C
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1
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1
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s
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s
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⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

The last inequality is a consequence of the boundedness of the residuals where we denote the
bound by the positive constant C′ (which is independent of k). We now apply (25) to the first
summand to conclude that the sequence (with respect to k)

v
S

u
1

is bounded. 27k
k

s

S

s
k s

k

k

1

1

1

2

2

( )åm
l
m

- -+

=

+
⎛
⎝⎜

⎞
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We use this fact to establish the convergence of the sequence v k by showing that it is a
Cauchy sequence. We first apply the triangle inequality to get

v v v
S

u
S

u v
1 1

.k k k

s

S

s
k s

k

k s

S

s
k s

k

k
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2

1

1

1
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⎠⎟

We now apply (27) to the first summand on the right-hand side as well as (24) to the second
summand on the right-hand side to obtain v vk k C1

2
k

-
m

+   for some constant C 0 >
which is again independent of k. The assumption on the sequence km guarantees that v k is a
Cauchy sequence and hence that v k converges to some v*.

To establish the last statement in (23), we rewrite each of the last S lines in (16) to obtain
the identity

u v v v . 28s
k

k

s
k

k
s
k k k k

1
1 1( ) ( )

l
m

l
m

= - + + -
+

+ +
⎛
⎝⎜

⎞
⎠⎟

by (25) and (27), each term in parentheses converges to 0. Hence, lim 0.k
s
k

k

1

=l
m¥
+

Since we

assume that the sequence km is nondecreasing, we have that 1k k 1 m m + and thus, for all

s S1, ,= ¼ , lim 0.k
s
k

k
=l

m¥ This shows the last statement in (23). We rewrite the

penultimate line of (16) as v u ,k
s
k

s
k

s
k

k
1 1 1( )l l m- = -+ + + and we get the inequality

u v 0.s
k k1 1

2
s
k

k

s
k

k

1
2 2- + 

l

m

l

m
+ +

+

     

This means that u v 0s
k k-  for all s S1, ,= ¼ and, since v k converges, also each u k

s

converges and the corresponding limit us
* equals v ,* which completes the proof. ,

2.6. Vector-valued data

The proposed method can be extended from scalar to vector valued data as follows. Let
u m n dÎ ´ ´ be a vector-valued image; that is, each pixel (i, j) carries a d-dimensional vector.
For vector-valued data, the gradient operator with respect to the displacement vector
a 02⧹{ }Î is understood in the sense
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u u u ;a ijk i j a k ijk, ,( ) ( ) = -+

that is, we form the vector of componentwise differences. The corresponding potential
function f in (2) reads

x x xmin , .
i j k

d

ijk
q

,
, 1

( ) ( ) å åf f g a= =a g
=

⎛
⎝⎜

⎞
⎠⎟

Then, the minimization problems in (16) can be decomposed into univariate (vector-valued)
Mumford–Shah problems of the form

J u u u ymin .

29

u J n i Jk

d

i k i k
q

i

n

k

d

i k i k
, 1, , 1 1

1, ,
1 1

, ,
2

n d
∣ ∣ ∣ ∣ ( )

( )

{ } åå ååg a+ - + -
Î Ì ¼ - Ï =

+
= =

´

A global minimizer of this problem can be computed using algorithm 1 with the following
modification. The approximation error on an interval l r, ,¼ is now given by

h h h y

h h y

h h y y
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d
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⎠⎟

We observe that the vectorial approximation error l r,e ¢ is the sum of the scalar approximation
error l r,e (defined by (20)) over all channels k d1, , .= ¼ Accordingly, the final reconstruction
step in algorithm (1) is performed channelwise. We point out that only the approximation errors
can be computed channelwise in (29); we emphasize that the overall solution of the univariate
Mumford–Shah problem cannot be computed channelwise. In particular, all channels share a
single jump set. (Considering separate Mumford–Shah problems on each channel typically leads
to poor results as each channel may get a different jump set.) The computations in the vectorial
case are around d-times as expensive as for the scalar case. Thus, our solvers for the univariate
Mumford–Shah problem have time complexity O n d2( ) for p 2,= and O n d3( ) for p = 1. We
emphasize that the complexity scales linearly with the length d of the vectorial data.

2.7. Complete algorithm and discussion of the parameters

A pseudocode of the complete proposed method is given in algorithm 2. It depends on the
ordering of the a ,s the initialization of the split variables, the stopping criterion, and the choice
of the sequence ,km which we discuss in the following.

We observed in our experiments that the initialization of the split variables and the ordering
of the as have only a little influence on the final result when starting the iteration with sufficiently
small coupling parameters. Here, we initialize the variables us and the Lagrange multipliers

,s r s,l with 0, and v by prox 0 .d H f S, 1( )( )( (·) ) m We use the ordering of the as as in (3). The choice
of the coupling sequence has a certain impact on the solution;typically, the slower we choose the
progression the better are the results. We will compare different progressions in the numerical
part, section 3. The sequence k10k

6 ·m = b- with 2.01b = worked in all cases. For the
denoising problems (which are not ill-posed) we can safely use the much faster geometric
progression 2 10 .k

k 6·m = - In all cases, we use S2 1k k ( )n m= - in order to give a balanced
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Algorithm 2. Proposed algorithm for Mumford–Shah regularization

Input: Measured data f, model parameters 0g > and 0a >
Output: Vector-valued image u m n dÎ ´ ´

begin
k 1¬
Initialize u , ,s s r s,l with 0 and v prox 0d H f S, k( )( )( (·) )= m
repeat

for s S1, ,= ¼ do

w
v u u

S 1

k s r s k r r s s t S k t s t

k k

1 , ,( ) ( )

( )

  ¬
å åm l n n

m n

+ + + + -

+ -
< <

us¬ Solution of 1D Mumford–Shah problems with data w, line-wise

w.r.t. the direction a ,s using the parameters
S

2

1
s

k k ( )
w g

m n+ -
and

S

2
1

s

k k ( )
w a

m n+ -
/* see algorithm 1 */

end
v uproxd H f S S s

S
s,

1
1k

s

k( )( ( ))( (·) ) å¬ -m
l
m=

/ *Use warmstart, cf. section 2.4 */

for s S1, ,= ¼ do
v us s k s( )l l m¬ + -

for r s1, , 1= ¼ - do
u ur s r s k r s, , ( )  n¬ + -

end
end
k k 1¬ +

until stopping criterion reached (see Sec. 2.7)

return u u
S s

S
s

1
1

( )å=
=

/ *return average of the split variables us
*/

end

weight of the coupling for the split variables and the data term. We stop the iteration when
the split variables u1

k and u2
k are close to each other;more precisely,

we stop when the relative discrepancy u u u uk k k k
1 2 2 1 2 2 2( )- +      falls below

TOL 10 ,3= - or if u u TOL.k k
1 2 2 2+ <    For the geometric progression, usually

20–30 iterations are required, for the quadratic progression around 103 iterations.
The model parameters α and γ are chosen empirically. A rule of thumb in the case

H id= is as follows. Assume that f is a (scalar-valued) piecewise constant signal of length
n a with exactly one jump of height b at its center point. The minimizer candidate u = f
has the functional value .g A candidate without jumps has the functional value .n1,e Thus, the
jump is taken if .n1,g e< As n is large compared to ,a we get for p = 1 approximately

b .n1,e a» Thus, the critical value of γ for jump detection of height b is b .g a= The
analogous critical value for p = 2 is given by b ;1

2
2g a= we refer to the book of Blake and

Zisserman [7, chapter 4] for the derivation and a more detailed discussion. For vector valued
data of dimension d, we multiply the critical values for γ by a factor d. The cutoff b is usually
easier to guess than the other parameters. A typical value for b is around 0.1 to 0.3 for images
with a dynamic range 0, 1[ ]. Having chosen b, it only remains to adjust .a This is done
empirically where a higher α means stronger smoothing.

Following the observations of figure 4, we use the following criterion for the choice of
the exponent q in the variation penalty. On the one hand, if we aim for visually pleasing
results, then the quadratic variation penalty (q= 2) is a suitable choice, because it favors
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smoothing in the low contrast regime. On the other hand, if we want to recover small
structures of low contrast, which might be of interest in medical imaging, then q = 1 is
favorable.

3. Numerical results and applications

In this section, we illustrate the wide applicability of our algorithmic framework. To this end,
we apply our method to classical imaging problems; namely, we consider deconvolution,
reconstruction from Radon data, and inpainting. Furthermore, we consider various noise
models such as Gaussian, Laplacian, and impulsive noise. We emphasize that only the
proximal mapping of the data term has to be adapted to the specific imaging setup; all other
parts of the algorithm remain unchanged.

3.1. Experimental setup

In all our experiments, we use algorithm 2 with the proximal mappings corresponding to the
problem under consideration. The experiments were conducted on a desktop computer (Intel
Xeon E5, 6 cores, 3.5 GHz, 32 GB RAM).

In the synthetic experiments, we simulate Gaussian noise of zero mean and standard
deviation ,s if not indicated otherwise. A noise level of r means r f·s = ¢ ¥  where f′ is the
clean data. The images in figures 6, 11, and 12 were taken from the Berkeley Segmentation
Dataset [31]; their dynamic range is the color cube 0,1 .3[ ] The PET (figure 8) dataset was
taken from [18].

As a measure for reconstruction quality, we use the mean structural similarity index
(MSSIM) [48]. The MSSIM is better suited to perceived visual quality than measures based
on the L2 error (such as, e.g., PSNR) as it takes the similarity of local structures into account.
The MSSIM is bounded from above by 1 and a higher MSSIM means a better reconstruction
quality. Here, we use Matlab’s function ssim with standard parameters for the computation
of the MSSIM.

3.2. Deconvolution

We first look at blurred images; that is, the measured image is convolved by a kernel K, for
example a Gaussian kernel or a motion blur. Then, the corresponding data term reads

d H v f K v f,
1

2
. 30

2
2( ( ) ) ( )= * - 

We compare our method with the Ambrosio–Tortorelli approximation [3] of the Mum-
ford–Shah functional (with q= 2). For deconvolution problems, it is given by the bivariate
functional

u v v
v

x v u x K u f x,
1

4
d d

1

2
d ,2

2
2 2 2( ) ∣ ∣ ( ) ∣ ∣ ( ) ò ò òg e

e
a=  +

-
+  + * -e

see [5]. The additional variable v takes the role of an edge indicator. The parameter 0e > is
an edge smoothing parameter which is chosen empirically. The approximation e converges
to the functional (1) in the Γ-sense as 0e  ; see [4, 41]. We implemented the numerical
scheme proposed in [5].5 It consists of alternately minimizinge with respect to u and v using

5 Our implementation is partially based on the implementation by Stefan Fürtinger for the case H id= , available at
http://uni-graz.at/people/fuertins/codes.html.
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iterative solvers on the Euler–Lagrange equations given by

v u
v

v

K u f K v u

2
1

2
2 0,

2 div 0, 31

2 2

2( )
∣ ∣

( ) ( )

a g
e

eg

a

 +
-

-  =

* - * -  =
~

where K x K x .( ) ( )= -
~

The first line is solved w.r.t. v using the MINRES solver and the
second line is solved using conjugate gradients [5]. In both cases we used the solvers
provided by Matlab with the standard tolerance and maximum 10000 iterations. We
iterate until the two variables do not change any further; more precisely, if

u u u 10 10k k k1
2 2

6 3( ) - ++ - -    and v v v 10 10 .k k k1
2 2

6 3( ) - ++ - -   
From figure 5 we conclude that the Ambrosio–Tortorelli approximation is computationally
demanding even for moderate filter sizes. We further observe a visible dependence on the
choice of the edge smoothing parameter .e

In contrast to the Ambrosio–Tortorelli approach (31), the proposed method (16) is based
on proximal mapping which comes with some advantages: first, the method can be easily
adapted to many imaging setups as implementations for proximal mapping are available for
virtually every imaging setup. Second, proximal mapping can frequently be evaluated very
efficiently. For deconvolution, we utilize the fast Fourier transform:

z K v f v z yprox arg min
1

2 2
, 32K f

v
2
2

2
2 1

1
2 2

2 ( ) { } ( )· 
t

= * - + - =t* -
-    

where

y
f K z

K
.ij

ij ij ij

ij
2

ˆ ˆ ˆ

∣ ˆ ∣

t

t
=

+

+

Here, K̂ denotes the (discrete) Fourier transform of K, and y1{ }- denotes the inverse Fourier
transform of y. Figure 5 demonstrates that our method is significantly faster even for the
slowest progression w.r.t. the coupling parameter .m

Figure 5 also shows a comparison of the different progressions w.r.t. .km We obtain the
best reconstruction quality for the slowest progression, k10 ,k

6 2.01m = - and the lowest run-
times for the faster geometric progression, 10 2 .k

k6m = - In the following, we will focus on
optimal reconstruction quality; therefore we will use the quasi-quadratic progression

k 10 .k
2.01 6m = - In the denoising experiments later on, we will utilize the fast progression

2 10k
k 6m = - because the difference of quality is negligible there.

A deconvolution example of a vector-valued image is given in figure 6. There, we
compare with the classical Wiener deconvolution using the Matlab function deconvwnr
with the regularization parameter optimized with respect to MSSIM. The CPU time is 532.4
seconds. Our method removes the noise reliably and it restores the edges.

3.3. Reconstruction from Radon data

Next, we consider reconstruction from Radon data which appears for example in x-ray
computed tomography (CT) and positron emission tomography (PET). Assuming a Gaussian
noise model, the according data term is given by

d H v f v f,
1

2
. 33

2
2( ( ) ) ( )= - 
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Figure 5. Comparison of our method (rows 2 and 4) with the Ambrosio–Tortorelli
approximation (rows 1 and 3). The image is blurred by a Gaussian kernel of width Ks
and corrupted by Gaussian noise of level .s Our method produces comparable or
slightly better results within a significantly shorter computational time.
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Here,  is the Radon transform defined by

u s u s t t, d ,( )( ) òq q q= +
-¥

¥
^

where s Î , S1q Î , and q^ is the unit vector 2p radians counterclockwise from ;q see
e.g. [34].

The proximal mapping of the data term can be written in closed form. It is a filtered
backprojection algorithm with a filter function given in the following. If f w= for some
w L ,2 ( )Î W then the proximal mapping reads

z f zprox , 34f1
2 2

2 ( ) ( ) ( )·   = Y -t t-
*

 

where the filtering operator Yt is defined by

f fs s
1( ) yY =t t

-

with the filter function

r
r

r4
.( ) ∣ ∣

∣ ∣
y

p t
=

+t

Above, s (and s
1- ) denotes the one dimensional Fourier transform (and its inverse) of a

function f s,( )q with respect to the parameter s. (A proof of (34) can be found e.g. in [45]).
In the experiments, we show the filtered backprojection (FBP) reconstructions using the

standard Ram–Lak ramp filter. In figure 7, we see a reconstruction of the Shepp–Logan
phantom from noisy Radon data. The CPU time was 143.7 min. The FBP amplifies the noise
of the sinogram. The regularized FBP (Hamming window, cutoff frequency optimized with
respect to MSSIM) smoothes out the edges and reduces the contrast. Our method removes the
noise and preserves the edges.

Figure 6. Deconvolution of an image blurred by a Gaussian kernel and corrupted by
Gaussian noise of level 0.025s = . The Mumford–Shah approach (quadratic variation)
removes the noise reliably and preserves the sharp edges.
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In figure 8, we reconstruct a physical thorax phantom from real PET data. The CPU time
was 36.4 minutes. Our method reliably removes the noise. We also see that the induced edge
set gives a segmentation of the anatomic structures.

3.4. Inpainting

Let us assume that we are given high-quality data on a set of pixels Ω but the data on the
complement of Ω is missing or unreliable. Then, a natural data term is given by

d H v f
v f

,
0, if on ,

, else.
( ( ) ) =

= W
¥

⎧⎨⎩
The proximal mapping of this functional has the simple form

z
f i j

z
prox

, if , ,

, else.
35d H f ij

ij

ij
, ( )

( )
( )( (·) ) =

Î W
t

⎧⎨⎩
In figure 9, we see the inpainting of a large region using the Mumford–Shah functional. We
see that the geometric structures are continued reasonably and also color gradients propagate
to the inpainted region. The triple junction and the crack tip are typical results of Mumford–
Shah priors.

Figure 7. Reconstruction of the Shepp–Logan head phantom from Radon data (1000
projection angles, 10% noise). The filtered backprojection propagates the noise to the
reconstruction; the optimized version smoothes out the edges and reduces the contrast.
The Mumford–Shah method (q= 1) removes the noise and it preserves the edges.
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If data on Ω is additionally corrupted by noise, then a joint inpainting and denoising is
desirable. For Gaussian noise, this can be modeled by a weighted L2 norm as data term. It is
defined by

d H v f v f w v f,
1

2

1

2
.

w
i j

ij ij ij2,
2

,

2( ( ) ) ∣ ∣å= - = - 

Here w is an array of nonnegative weights. We set the weight wij equal to zero whenever a
pixel (i, j) is marked as missing and equal to one otherwise. The corresponding proximal
mapping reads

z v f v zprox arg min
1

2 2
.f

v
w2,

2
2
2

w
1
2 2,

2 ( )·
t

= - + -t-     

Pointwise minimization leads to

z
w f z

w
prox ,f

ij

ij ij ij

ijw
1
2 2,

2( )( )·

t

t
=

+

+t- 

which is a weighted average of f and z. In figure 10, we see the reconstruction of a noisy
image where a large portion of the data is missing. Using the Mumford–Shah functional we
obtain a smooth result while the edges remain sharp. The CPU time was 82.4 s.

Figure 8. Reconstruction of a physical thorax phantom from PET data [18]. The filtered
backprojection propagates the noise of the data onto the reconstruction. The Mumford–
Shah method (q= 1) suppresses the noise and preserves the edges. The edge set can be
used for segmentation of the anatomic structures (lung, spine, and thorax body).

Figure 9. Inpainting of the gray regions using the Mumford–Shah functional. Left: the
jumps are reasonably continued and they meet at the center in a triple junction. Note
also the continuation of the color gradient in the green part. Right: the inpainting results
in a so called crack tip. Both figures are typical effects of the Mumford–Shah prior.
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3.5. Non-Gaussian noise

We now look at non-Gaussian noise models, where we focus on the case H id.= For non-
Gaussian noise, other data fidelities than the L2 norm typically perform better.

For noise distributions with heavy tails, e.g. the Laplace distribution, L1 data fitting terms
are more robust. We here consider a weighted L1 norm, i.e.,

d H v f v f w v f, w
i j

ij ij ij1,
,

( ( ) ) ∣ ∣å= - = - 

where w is an array of nonnegative weights. The corresponding proximal mapping is given by

z T z f fprox f
ij

w ij ij ijw ij1,( ) ( )( )· = - +t t- 

with the soft threshold function T x x r xmax , 0 signr ( ) (∣ ∣ ) ( )= - for r x0, .> Î We refer
to [15] for a method to compute the proximal point for the case of H being a linear operator.
In figure 11, we see the restoration from Laplacian noise using the Mumford–Shah functional
with q = 1. The CPU time was 520.6 s. We observe that the noise is removed while fine
details are preserved.

Figure 10. Joint inpainting and denoising using the Mumford–Shah functional
( 0.02, 60%s = missing data). The image is continued smoothly to the missing data
and the large edges remain sharply localized.
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If we have impulsive noise, for example salt and pepper noise, we consider an ℓ
0 data

fidelity of the form

d H v f v f w, 1 36w
i j

ij v f0,
,

ij ij( )( ( ) ) ( )å d= - = - - 

where δ denotes the Kronecker delta, i.e., 10d = and 0td = for all t 0.¹ Note that the data
fidelity is non-smooth and non-convex. So computing the proximal point is a challenging
problem on its own for general imaging operators. Nevertheless, in the considered case
H id= , the proximal mapping has a closed form, which we obtain as follows. The
corresponding minimization problem is separable. So the computation of the proximal
mapping reduces to computing w z rarg min 2 1r ij r f ij

2
ij

( ) ( ) d t- + -Î - for all i j,
separately. For r f ,ij= the first term equals zero and the functional value equals z f .ij ij

2( )-
Otherwise, the functional value is given by w z r2 ij ij

2( )t + - which attains its minimal
value w2 ij t at r z .ij= Hence, we get, for the proximal mapping of the ℓ

0 data fidelity, that

z
z z f w

f
prox

, if 2 ,

, else.
f

ij

ij ij ij ij

ij

2

w0,( ) ( )( )·
 t

=
-

t- 

⎧
⎨⎪
⎩⎪

This is a hard thresholding operation. In figure 12 we see the restoration from salt and pepper
noise. Although the high noise level creates some color distortions, we obtain a reconstruction
where many details can be recognized. The CPU time was 96.5 s.

4. Conclusion and outlook

We have established an algorithmic framework for Mumford–Shah regularization of inverse
problems in imaging. Our algorithms were based on a specific splitting into tractable sub-
problems. For those subproblems, we have derived efficient solvers. We have obtained very

Figure 11. Restoration of an image from Laplacian noise using the Mumford–Shah
functional (q= 1) and L1 data term. The noise is removed and structures of small
contrast are preserved.
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satisfactory results for classical image recovery problems. In particular, we have demonstrated
the wide applicability of the method. It can be easily applied to further imaging problems
because only the proximal mapping of the data term has to be adapted. Some potential fields
of further application are magnetic particle imaging, photoacoustic tomography, or disparity
estimation. Our future research includes a further speedup of the solvers and parallelization on
the GPU.
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