Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Multiwavelets
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Multiwavelet-Like Bases for High Quality Image Interpolation

市毛弘一 (K. Ichige), T. Blu, M. Unser

Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing X, San Diego CA, USA, August 4-8, 2003, vol. 5207, part I, pp. 153-161.


We present a simple but generalized interpolation method for digital images that uses multiwavelet-like basis functions. Most of interpolation methods uses only one symmetric basis function; for example, standard and shifted piecewise-linear interpolations use the “hat” function only. The proposed method uses q different multiwavelet-like basis functions. The basis functions can be dissymmetric but should preserve the “partition of unity” property for high-quality signal interpolation. The scheme of decomposition and reconstruction of signals by the proposed basis functions can be implemented in a filterbank form using separable IIR implementation. An important property of the proposed scheme is that the prefilters for decomposition can be implemented by FIR filters. Recall that the shifted-linear interpolation requires IIR prefiltering, but we find a new configuration which reaches almost the same quality with the shifted-linear interpolation, while requiring FIR prefiltering only. Moreover, the present basis functions can be explicitly formulated in time-domain, although most of (multi-)wavelets don't have a time-domain formula. We specify an optimum configuration of interpolation parameters for image interpolation, and validate the proposed method by computing PSNR of the difference between multi-rotated images and their original version.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/ichige0302.html,
AUTHOR="Ichige, K. and Blu, T. and Unser, M.",
TITLE="Multiwavelet-Like Bases for High Quality Image
	Interpolation",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical
	Imaging: {W}avelet Applications in Signal and Image Processing {X}",
YEAR="2003",
editor="",
volume="5207",
series="",
pages="153--161",
address="San Diego CA, USA",
month="August 3-8,",
organization="",
publisher="",
note="Part {I}")

© 2003 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved