Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Spline Studies
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

スプライン関数とそのディジタル信号処理・画像処理への 応用に関する研究

市毛弘一 (K. Ichige), T. Blu, M. Unser

The Telecommunications Advancement Foundation, vol. 18, no. 7(1), pp. 358-365, January 2003.


本稿では, 2つの異なる関数基底を用いて信号を補間する手法として一般化区分的線形補間法を提案し, こうした関数系の信号処理・画像処理における有用性を検証した結果について報告する。

提案する関数系は, 線形近似と同様に近似オーダー(approximation order)が2であり, 階段関数や折れ線を正 確に再構成できる。関数基底は2つの実パラメータ τ と α によって特徴付けられる。パラメータ τ は関数基底の座標に対応するシフトパラメータであり, もう一方のパラメータaは関数の非対称性をあらわすパラメータである。これらのパラメータを変化させることで, 入力信号・画像に関係なく, 近似精度を向上させ最適化を図ることが可能となることを示す。

この補間手法では, 2つのパラメータを, τ=0.21, α=1 と設定することで, シフト線形補間 (shifted-linear interpolation) を再現することができる。ここでは, このパラメータの組み合わせ以外に, τ=0.21, α=0.58 と設定した場合に, シフト線形補間と同様の精度で信号の補間を行うことができることに注⽬する。シフト線形補間では分解プロセスにおいて IIR フィルタを必要としていたが, 後者のパラメータを設定した場合は FIR フィルタのみで構成可能である。これにより, 後者のパラメータはシフト線形補間におけるギブス (発振) 現象を大いに低減できる。

こうしたパラメータを設定した場合の有効性を, 補間操作を用いてディジタル画像を回転した場合のピーク SN 比 (原画像と回転した画像の信号・ノイズ比), 補間後の画像の最大振幅などを検証することを通して評価する。

@ARTICLE(http://bigwww.epfl.ch/publications/ichige0303.html,
AUTHOR="Ichige, K. and Blu, T. and Unser, M.",
TITLE="A Study on Spline Functions and Their Applications to Digital
	Signal and Image Processing",
JOURNAL="The Telecommunications Advancement Foundation",
YEAR="2003",
volume="18",
number="7(1)",
pages="358--365",
month="January",
note="")
© 2003 TAF. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from TAF. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved